亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? LIBSVM 是臺灣大學林智仁 (Chih-Jen Lin) 博士等開發設計的一個操作簡單、易于使用、快速有效的通用 SVM 軟件包
??
?? 第 1 頁 / 共 2 頁
字號:
    For example, if we have the following training data:    LABEL	ATTR1	ATTR2	ATTR3	ATTR4	ATTR5    -----	-----	-----	-----	-----	-----      1		  0	  0.1	  0.2	  0	  0      2		  0	  0.1	  0.3	 -1.2	  0      1		  0.4	  0	  0	  0	  0      2		  0	  0.1	  0	  1.4	  0.5      3		 -0.1	 -0.2	  0.1	  1.1	  0.1    then the components of svm_problem are:    l = 5    y -> 1 2 1 2 3    x -> [ ] -> (2,0.1) (3,0.2) (-1,?)	 [ ] -> (2,0.1) (3,0.3) (4,-1.2) (-1,?)	 [ ] -> (1,0.4) (-1,?)	 [ ] -> (2,0.1) (4,1.4) (5,0.5) (-1,?)	 [ ] -> (1,-0.1) (2,-0.2) (3,0.1) (4,1.1) (5,0.1) (-1,?)    where (index,value) is stored in the structure `svm_node':	struct svm_node	{		int index;		double value;	};    index = -1 indicates the end of one vector. Note that indices must    be in ASCENDING order.     struct svm_parameter describes the parameters of an SVM model:	struct svm_parameter	{		int svm_type;		int kernel_type;		int degree;	/* for poly */		double gamma;	/* for poly/rbf/sigmoid */		double coef0;	/* for poly/sigmoid */		/* these are for training only */		double cache_size; /* in MB */		double eps;	/* stopping criteria */		double C;	/* for C_SVC, EPSILON_SVR, and NU_SVR */		int nr_weight;		/* for C_SVC */		int *weight_label;	/* for C_SVC */		double* weight;		/* for C_SVC */		double nu;	/* for NU_SVC, ONE_CLASS, and NU_SVR */		double p;	/* for EPSILON_SVR */		int shrinking;	/* use the shrinking heuristics */		int probability; /* do probability estimates */	};    svm_type can be one of C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR.    C_SVC:		C-SVM classification    NU_SVC:		nu-SVM classification    ONE_CLASS:		one-class-SVM    EPSILON_SVR:	epsilon-SVM regression    NU_SVR:		nu-SVM regression    kernel_type can be one of LINEAR, POLY, RBF, SIGMOID.    LINEAR:	u'*v    POLY:	(gamma*u'*v + coef0)^degree    RBF:	exp(-gamma*|u-v|^2)    SIGMOID:	tanh(gamma*u'*v + coef0)    PRECOMPUTED: kernel values in training_set_file    cache_size is the size of the kernel cache, specified in megabytes.    C is the cost of constraints violation.     eps is the stopping criterion. (we usually use 0.00001 in nu-SVC,    0.001 in others). nu is the parameter in nu-SVM, nu-SVR, and    one-class-SVM. p is the epsilon in epsilon-insensitive loss function    of epsilon-SVM regression. shrinking = 1 means shrinking is conducted;    = 0 otherwise. probability = 1 means model with probability    information is obtained; = 0 otherwise.    nr_weight, weight_label, and weight are used to change the penalty    for some classes (If the weight for a class is not changed, it is    set to 1). This is useful for training classifier using unbalanced    input data or with asymmetric misclassification cost.    nr_weight is the number of elements in the array weight_label and    weight. Each weight[i] corresponds to weight_label[i], meaning that    the penalty of class weight_label[i] is scaled by a factor of weight[i].        If you do not want to change penalty for any of the classes,    just set nr_weight to 0.    *NOTE* Because svm_model contains pointers to svm_problem, you can    not free the memory used by svm_problem if you are still using the    svm_model produced by svm_train().     *NOTE* To avoid wrong parameters, svm_check_parameter() should be    called before svm_train().- Function: double svm_predict(const struct svm_model *model,                               const struct svm_node *x);    This function does classification or regression on a test vector x    given a model.    For a classification model, the predicted class for x is returned.    For a regression model, the function value of x calculated using    the model is returned. For an one-class model, +1 or -1 is    returned.- Function: void svm_cross_validation(const struct svm_problem *prob,	const struct svm_parameter *param, int nr_fold, double *target);    This function conducts cross validation. Data are separated to    nr_fold folds. Under given parameters, sequentially each fold is    validated using the model from training the remaining. Predicted    labels (of all prob's instances) in the validation process are    stored in the array called target.    The format of svm_prob is same as that for svm_train(). - Function: int svm_get_svm_type(const struct svm_model *model);    This function gives svm_type of the model. Possible values of    svm_type are defined in svm.h.- Function: int svm_get_nr_class(const svm_model *model);    For a classification model, this function gives the number of    classes. For a regression or an one-class model, 2 is returned.- Function: void svm_get_labels(const svm_model *model, int* label)        For a classification model, this function outputs the name of    labels into an array called label. For regression and one-class    models, label is unchanged.- Function: double svm_get_svr_probability(const struct svm_model *model);    For a regression model with probability information, this function    outputs a value sigma > 0. For test data, we consider the    probability model: target value = predicted value + z, z: Laplace    distribution e^(-|z|/sigma)/(2sigma)    If the model is not for svr or does not contain required    information, 0 is returned.- Function: void svm_predict_values(const svm_model *model, 				    const svm_node *x, double* dec_values)    This function gives decision values on a test vector x given a    model.    For a classification model with nr_class classes, this function    gives nr_class*(nr_class-1)/2 decision values in the array    dec_values, where nr_class can be obtained from the function    svm_get_nr_class. The order is label[0] vs. label[1], ...,    label[0] vs. label[nr_class-1], label[1] vs. label[2], ...,    label[nr_class-2] vs. label[nr_class-1], where label can be    obtained from the function svm_get_labels.    For a regression model, label[0] is the function value of x    calculated using the model. For one-class model, label[0] is +1 or    -1.- Function: double svm_predict_probability(const struct svm_model *model, 	    const struct svm_node *x, double* prob_estimates);        This function does classification or regression on a test vector x    given a model with probability information.    For a classification model with probability information, this    function gives nr_class probability estimates in the array    prob_estimates. nr_class can be obtained from the function    svm_get_nr_class. The class with the highest probability is    returned. For regression/one-class SVM, the array prob_estimates    is unchanged and the returned value is the same as that of    svm_predict.- Function: const char *svm_check_parameter(const struct svm_problem *prob,                                            const struct svm_parameter *param);    This function checks whether the parameters are within the feasible    range of the problem. This function should be called before calling    svm_train() and svm_cross_validation(). It returns NULL if the    parameters are feasible, otherwise an error message is returned.- Function: int svm_check_probability_model(const struct svm_model *model);    This function checks whether the model contains required    information to do probability estimates. If so, it returns    +1. Otherwise, 0 is returned. This function should be called    before calling svm_get_svr_probability and    svm_predict_probability.- Function: int svm_save_model(const char *model_file_name,			       const struct svm_model *model);    This function saves a model to a file; returns 0 on success, or -1    if an error occurs.- Function: struct svm_model *svm_load_model(const char *model_file_name);    This function returns a pointer to the model read from the file,    or a null pointer if the model could not be loaded.- Function: void svm_destroy_model(struct svm_model *model);    This function frees the memory used by a model.- Function: void svm_destroy_param(struct svm_parameter *param);    This function frees the memory used by a parameter set.Java Version============The pre-compiled java class archive `libsvm.jar' and its source files arein the java directory. To run the programs, usejava -classpath libsvm.jar svm_train <arguments>java -classpath libsvm.jar svm_predict <arguments>java -classpath libsvm.jar svm_toyjava -classpath libsvm.jar svm_scale <arguments>Note that you need Java 1.5 (5.0) or above to run it.You may need to add Java runtime library (like classes.zip) to the classpath.You may need to increase maximum Java heap size.Library usages are similar to the C version. These functions are available:public class svm {	public static final int LIBSVM_VERSION=288; 	public static svm_model svm_train(svm_problem prob, svm_parameter param);	public static void svm_cross_validation(svm_problem prob, svm_parameter param, int nr_fold, double[] target);	public static int svm_get_svm_type(svm_model model);	public static int svm_get_nr_class(svm_model model);	public static void svm_get_labels(svm_model model, int[] label);	public static double svm_get_svr_probability(svm_model model);	public static void svm_predict_values(svm_model model, svm_node[] x, double[] dec_values);	public static double svm_predict(svm_model model, svm_node[] x);	public static double svm_predict_probability(svm_model model, svm_node[] x, double[] prob_estimates);	public static void svm_save_model(String model_file_name, svm_model model) throws IOException	public static svm_model svm_load_model(String model_file_name) throws IOException	public static String svm_check_parameter(svm_problem prob, svm_parameter param);	public static int svm_check_probability_model(svm_model model);}The library is in the "libsvm" package.Note that in Java version, svm_node[] is not ended with a node whose index = -1.Building Windows Binaries=========================Windows binaries are in the directory `windows'. To build them viaVisual C++, use the following steps:1. Open a DOS command box (or Visual Studio Command Prompt) and changeto libsvm directory. If environment variables of VC++ have not beenset, type"C:\Program Files\Microsoft Visual Studio 8\VC\bin\vcvars32.bat"You may have to modify the above according which version of VC++ orwhere it is installed.2. Typenmake -f Makefile.win clean all3. (optional) To build python interface, download and install Python.Edit Makefile.win and change PYTHON_INC and PYTHON_LIB to your pythoninstallation. Typenmake -f Makefile.win python and then copy windows\python\svmc.pyd to the python directory.Another way is to build them from Visual C++ environment. See detailsin libsvm FAQ.- Additional Tools: Sub-sampling, Parameter Selection, Format checking, etc.============================================================================See the README file in the tools directory.Python Interface================See the README file in python directory.Additional Information======================If you find LIBSVM helpful, please cite it asChih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support vector machines, 2001.Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvmLIBSVM implementation document is available athttp://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdfFor any questions and comments, please email cjlin@csie.ntu.edu.twAcknowledgments:This work was supported in part by the National Science Council of Taiwan via the grant NSC 89-2213-E-002-013.The authors thank their group members and usersfor many helpful discussions and comments. They are listed inhttp://www.csie.ntu.edu.tw/~cjlin/libsvm/acknowledgements

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲免费观看高清完整| 91福利在线播放| 91福利在线观看| 欧美va日韩va| 亚洲成人av一区二区三区| 国产精品影视网| 日韩精品一区二区三区在线播放| 一区二区三区中文在线观看| 国产精品一区二区在线播放| 欧美人狂配大交3d怪物一区| 亚洲欧美日韩国产综合| 国产成人免费视频网站 | 亚洲成人激情av| 成人手机电影网| 欧美精品一区二区三区在线播放| 亚洲一二三四区不卡| 95精品视频在线| 国产欧美综合在线| 国内精品久久久久影院薰衣草| 欧美丰满美乳xxx高潮www| 一区二区三区国产精品| 99在线精品免费| 亚洲欧美日韩成人高清在线一区| 国产成人av资源| 国产免费观看久久| 成人精品免费看| 国产精品久久三区| 成人h版在线观看| 国产精品传媒视频| 91麻豆免费看片| 一区二区三区资源| 在线观看成人小视频| 亚洲已满18点击进入久久| 91成人国产精品| 亚洲国产精品欧美一二99| 在线观看区一区二| 丝袜亚洲另类欧美| 日韩午夜激情免费电影| 另类的小说在线视频另类成人小视频在线 | 成人美女视频在线观看18| 国产欧美日韩在线看| 成人福利视频在线看| 亚洲区小说区图片区qvod| 日本电影欧美片| 首页综合国产亚洲丝袜| 欧美一区二区视频在线观看2020| 另类小说一区二区三区| 日本一区二区三区国色天香| 91视视频在线直接观看在线看网页在线看| 中文字幕日韩精品一区| 在线观看一区不卡| 日韩电影一区二区三区四区| 久久久综合九色合综国产精品| 国产白丝网站精品污在线入口| 综合欧美亚洲日本| 91麻豆精品国产综合久久久久久| 久久不见久久见免费视频1| 中文在线一区二区| 欧美日韩综合不卡| 激情综合色播激情啊| 成人欧美一区二区三区1314 | 欧美大片拔萝卜| 不卡的电视剧免费网站有什么| 亚洲小说欧美激情另类| 欧美变态凌虐bdsm| 色综合色综合色综合| 欧美aaaaaa午夜精品| 国产精品久久久久久久浪潮网站 | 日本高清不卡视频| 国产在线精品一区在线观看麻豆| 中文字幕一区二区三区不卡| 欧美一区二区成人| 99视频热这里只有精品免费| 日韩vs国产vs欧美| 亚洲视频一区二区免费在线观看| 日韩美女一区二区三区| 色爱区综合激月婷婷| 国产一区二区不卡在线| 亚洲最大成人网4388xx| 国产午夜一区二区三区| 欧美日韩国产电影| 一本大道久久a久久综合| 精品制服美女丁香| 午夜精品一区二区三区免费视频| 国产丝袜美腿一区二区三区| 91精品免费在线| 91色在线porny| 国产99久久久国产精品免费看| 日韩av不卡在线观看| 亚洲色图欧美激情| 国产婷婷色一区二区三区在线| 91精品国产高清一区二区三区蜜臀| 成人动漫一区二区三区| 久久av资源网| 天天av天天翘天天综合网色鬼国产| 国产精品久久毛片| 久久精品人人做人人爽人人| 欧美一二三区精品| 欧美电影影音先锋| 欧美日韩在线电影| 在线视频你懂得一区二区三区| 国产成人精品在线看| 九一九一国产精品| 男人的天堂久久精品| 青青草国产精品97视觉盛宴| 一区二区三区日韩精品| 亚洲色欲色欲www在线观看| 国产日韩综合av| 国产女人18毛片水真多成人如厕| 精品国产一区二区亚洲人成毛片 | 亚洲国产精品精华液2区45| 精品国产制服丝袜高跟| 精品国产电影一区二区| 精品免费日韩av| 久久久美女艺术照精彩视频福利播放| 日韩三区在线观看| 欧美zozozo| 国产亚洲成年网址在线观看| 久久久久久久久久久电影| 欧美激情一二三区| 国产精品乱码久久久久久| 中文字幕日韩欧美一区二区三区| 中文欧美字幕免费| 自拍视频在线观看一区二区| 亚洲精品v日韩精品| 亚洲一区二区在线免费观看视频 | 亚洲人吸女人奶水| 一区二区三区视频在线看| 亚洲午夜免费福利视频| 日韩电影免费在线观看网站| 久久精品国产**网站演员| 国产福利一区二区三区视频在线| 成人激情小说网站| 欧美在线色视频| 日韩欧美一区二区视频| 国产欧美日本一区视频| 亚洲欧美色综合| 午夜精品久久久久久久99水蜜桃| 日韩电影在线观看一区| 国产a视频精品免费观看| 99精品久久免费看蜜臀剧情介绍| 欧洲精品视频在线观看| 欧美成人一区二区| 国产精品伦理一区二区| av网站免费线看精品| 99久久精品国产网站| 91超碰这里只有精品国产| 久久久亚洲午夜电影| 亚洲精品乱码久久久久久| 奇米影视在线99精品| 成人免费视频视频| 欧美精三区欧美精三区| 欧美韩国日本一区| 日韩成人免费看| 91在线免费视频观看| 日韩美女主播在线视频一区二区三区| 国产亚洲欧美中文| 日韩精品乱码av一区二区| 夫妻av一区二区| 91精品国产色综合久久不卡蜜臀 | 日韩女优视频免费观看| 成人免费小视频| 久久国产三级精品| 日本韩国欧美一区二区三区| 精品精品欲导航| 亚洲高清视频中文字幕| 成人免费高清视频| 精品盗摄一区二区三区| 亚洲国产综合人成综合网站| 成人av在线网站| 精品国产欧美一区二区| 日韩精品一二区| 在线观看精品一区| 国产精品久久久久婷婷| 国产精品一区三区| 91精品国产综合久久精品app| 亚洲天堂av老司机| 国产成人综合在线观看| 日韩一二三四区| 亚洲成人高清在线| 欧美特级限制片免费在线观看| 国产精品女人毛片| 国产成人免费在线| 久久久精品日韩欧美| 久久99国产精品久久99果冻传媒| 欧美色网站导航| 亚洲另类春色校园小说| 99麻豆久久久国产精品免费| 中国av一区二区三区| 国产成人小视频| 久久久久久久电影| 欧美一区二区三区人| 无码av中文一区二区三区桃花岛| 欧美影片第一页| 午夜激情一区二区三区| 欧美视频在线观看一区| 亚洲bdsm女犯bdsm网站| 欧美日韩国产免费| 日本在线播放一区二区三区| 日韩一区二区在线观看|