?? c_pso.m
字號:
function [m_pattern]=C_PSO(m_pattern,patternNum)
disType=DisSelDlg();%獲得距離計算類型
[centerNum iterNum]=InputClassDlg();%獲得類中心數和最大迭代次數
prticleNum=200;%初始化粒子數目
%初始化中心和速度
global Nwidth;
for i=1:centerNum
m_center(i).feature=zeros(Nwidth,Nwidth);
m_center(i).prticleNum=0;
m_center(i).index=i;
m_velocity(i).feature=zeros(Nwidth,Nwidth);
for i=1:prticleNum
Particle(i).location=m_centerNum;%粒子各中心
Particle(i).velocity=m_velocity;%粒子各中心速度
Particle(i).fitness=0;%適應度
P_id(i).location=m_center;%粒子最優中心
P_id(i).velocity=m_velocity;%粒子最優速度
P_id(i).fitness=0;%粒子最優適應度
end
P_gd.location=m_center;%全局粒子最優中心
P_gd.velocity=m_velocity;%全局粒子最優速度
P_gd.fitness=0;%粒子全局最優適應度
P_gd.string=zeros(1,prticleNum);
ptDitrib=zeros(prticleNum,prticleNum);%初始化粒子分布矩陣
for i=1:prticleNum %生成隨機粒子分布矩陣
ptDitrib(i,:)=randperm(prticleNum);
for j=1:prticleNum
if(ptDitrib(i,j)>centerNum)
ptDitrib(i,j)=fix(rand*centerNum+1);
end
end
end
%生成初始粒子群
for i=1:prticleNum
for j=1:prticleNum
m_pattern(j).category=ptDitrib(i,j);
end
for j=1:centerNum
m_center(j)=CalCenter(m_center(j),m_pattern,patternNum);
end
Particle(i).locatoin=m_center;
end
%初始化參數
w_max=1;
w_min=0;
h1=2;
h2=2;
for iter=1:iterNum
%計算粒子適應度
for i=1:patternNum
temp=0;
for j=1:patternNum
temp=temp+GetDistance(m_pattern(j),Particle(i).location(ptDitrib(i,j),disType));
end
if(temp==0) %最優解,直接退出
iter=iterNum+1;
break;
end
Particle(i).fitness=1/temp;
end
if(iter>iterNum)
break;
end
w=w_max-iter*(w_max-w_min)/iterNum;%更新權重系數
for i=1:particleNum %更新P_id,P_gd
if(Particle(i).fitness>P_id(i).fitness)
P_id(i).fitness=Particle(i).fitness;
P_id(i).location=Particle(i).location;
P_id(i).velocity=Particle(i).velocity;
if(Particle(i).fitness>P_gd.fitness)
P_gd.fitness=Particle(i).fitness;
P_gd.location=Particle(i).location;
P_gd.velocity=Particle(i).velocity;
P_gd.string=ptDitrib(i,:);
end
end
end
%更新粒子速度,位置
for i=1:particleNum
for j=1:centerNum
Particle(i).velocity(j).feature=w*Particle(i).velocity(j).feature
+h1*rand(Nwidth,Nwidth).*(P_id(i).location(j).feature-Particle(i).location(j).feature)
+h2*rand(Nwidth,Nwidth).*(P_gd.location(j).feature-Particle(i).location(j).feature);
end
end
%最鄰近聚類
for i=1:particleNum
for j=1:patternNum
min=inf;
for k=1:centerNum
tempDis=GetDistance(m_pattern(j),Particle(i).location(k),disType);
if(tempDis<min)
min=tempDis;
m_pattern(j).category=k;
ptDitrib(i,j)=k;
end
end
end
%重新計算聚類中心
for j=1:centerNum
Particle(i).location(j)=CalCenter(Particle(i).location(j),m_parttern,patternNum);
end
end
for i=1:partternNum
m_pattern(i).category=P_gd.string(1,i);
end
end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -