亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? apcluster.m

?? 無監督聚類算法,能夠自動聚類,不必預先給出類數,聚類精度好于常用的聚類算法.
?? M
字號:
%APCLUSTER Affinity Propagation Clustering (Frey/Dueck, Science 2007)
% [idx,netsim,dpsim,expref]=APCLUSTER(s,p) clusters data, using a set 
% of real-valued pairwise data point similarities as input. Clusters 
% are each represented by a cluster center data point (the "exemplar"). 
% The method is iterative and searches for clusters so as to maximize 
% an objective function, called net similarity.
% 
% For N data points, there are potentially N^2-N pairwise similarities; 
% this can be input as an N-by-N matrix 's', where s(i,k) is the 
% similarity of point i to point k (s(i,k) needn?t equal s(k,i)).  In 
% fact, only a smaller number of relevant similarities are needed; if 
% only M similarity values are known (M < N^2-N) they can be input as 
% an M-by-3 matrix with each row being an (i,j,s(i,j)) triple.
% 
% APCLUSTER automatically determines the number of clusters based on 
% the input preference 'p', a real-valued N-vector. p(i) indicates the 
% preference that data point i be chosen as an exemplar. Often a good 
% choice is to set all preferences to median(s); the number of clusters 
% identified can be adjusted by changing this value accordingly. If 'p' 
% is a scalar, APCLUSTER assumes all preferences are that shared value.
% 
% The clustering solution is returned in idx. idx(j) is the index of 
% the exemplar for data point j; idx(j)==j indicates data point j 
% is itself an exemplar. The sum of the similarities of the data points to 
% their exemplars is returned as dpsim, the sum of the preferences of 
% the identified exemplars is returned in expref and the net similarity 
% objective function returned is their sum, i.e. netsim=dpsim+expref.
% 
% 	[ ... ]=apcluster(s,p,'NAME',VALUE,...) allows you to specify 
% 	  optional parameter name/value pairs as follows:
% 
%   'maxits'     maximum number of iterations (default: 1000)
%   'convits'    if the estimated exemplars stay fixed for convits 
%          iterations, APCLUSTER terminates early (default: 100)
%   'dampfact'   update equation damping level in [0.5, 1).  Higher 
%        values correspond to heavy damping, which may be needed 
%        if oscillations occur. (default: 0.9)
%   'plot'       (no value needed) Plots netsim after each iteration
%   'details'    (no value needed) Outputs iteration-by-iteration 
%      details (greater memory requirements)
%   'nonoise'    (no value needed) APCLUSTER adds a small amount of 
%      noise to 's' to prevent degenerate cases; this disables that.
% 
% Copyright (c) B.J. Frey & D. Dueck (2006). This software may be 
% freely used and distributed for non-commercial purposes.
%          (RUN APCLUSTER WITHOUT ARGUMENTS FOR DEMO CODE)
function [idx,netsim,dpsim,expref]=apcluster(s,p,varargin);
if nargin==0, % display demo
	fprintf('Affinity Propagation (APCLUSTER) sample/demo code\n\n');
	fprintf('N=100; x=rand(N,2); % Create N, 2-D data points\n');
	fprintf('M=N*N-N; s=zeros(M,3); % Make ALL N^2-N similarities\n');
	fprintf('j=1;\n');
	fprintf('for i=1:N\n');
	fprintf('  for k=[1:i-1,i+1:N]\n');
	fprintf('    s(j,1)=i; s(j,2)=k; s(j,3)=-sum((x(i,:)-x(k,:)).^2);\n');
	fprintf('    j=j+1;\n');
	fprintf('  end;\n');
	fprintf('end;\n');
	fprintf('p=median(s(:,3)); % Set preference to median similarity\n');
	fprintf('[idx,netsim,dpsim,expref]=apcluster(s,p,''plot'');\n');
	fprintf('fprintf(''Number of clusters: %%d\\n'',length(unique(idx)));\n');
	fprintf('fprintf(''Fitness (net similarity): %%g\\n'',netsim);\n');
	fprintf('figure; % Make a figures showing the data and the clusters\n');
	fprintf('for i=unique(idx)''\n');
	fprintf('  ii=find(idx==i); h=plot(x(ii,1),x(ii,2),''o''); hold on;\n');
	fprintf('  col=rand(1,3); set(h,''Color'',col,''MarkerFaceColor'',col);\n');
	fprintf('  xi1=x(i,1)*ones(size(ii)); xi2=x(i,2)*ones(size(ii)); \n');
	fprintf('  line([x(ii,1),xi1]'',[x(ii,2),xi2]'',''Color'',col);\n');
	fprintf('end;\n');
	fprintf('axis equal tight;\n\n');
	return;
end;
start = clock;
% Handle arguments to function
if nargin<2 error('Too few input arguments');
else
    maxits=1000; convits=100; lam=0.9; plt=0; details=0; nonoise=0;
    i=1;
    while i<=length(varargin)
        if strcmp(varargin{i},'plot')
            plt=1; i=i+1;
        elseif strcmp(varargin{i},'details')
            details=1; i=i+1;
		elseif strcmp(varargin{i},'sparse')
% 			[idx,netsim,dpsim,expref]=apcluster_sparse(s,p,varargin{:});
			fprintf('''sparse'' argument no longer supported; see website for additional software\n\n');
			return;
        elseif strcmp(varargin{i},'nonoise')
            nonoise=1; i=i+1;
        elseif strcmp(varargin{i},'maxits')
            maxits=varargin{i+1};
            i=i+2;
            if maxits<=0 error('maxits must be a positive integer'); end;
        elseif strcmp(varargin{i},'convits')
            convits=varargin{i+1};
            i=i+2;
            if convits<=0 error('convits must be a positive integer'); end;
        elseif strcmp(varargin{i},'dampfact')
            lam=varargin{i+1};
            i=i+2;
            if (lam<0.5)||(lam>=1)
                error('dampfact must be >= 0.5 and < 1');
            end;
        else i=i+1;
        end;
    end;
end;
if lam>0.9
    fprintf('\n*** Warning: Large damping factor in use. Turn on plotting\n');
    fprintf('    to monitor the net similarity. The algorithm will\n');
    fprintf('    change decisions slowly, so consider using a larger value\n');
    fprintf('    of convits.\n\n');
end;

% Check that standard arguments are consistent in size
if length(size(s))~=2 error('s should be a 2D matrix');
elseif length(size(p))>2 error('p should be a vector or a scalar');
elseif size(s,2)==3
    tmp=max(max(s(:,1)),max(s(:,2)));
    if length(p)==1 N=tmp; else N=length(p); end;
    if tmp>N
        error('data point index exceeds number of data points');
    elseif min(min(s(:,1)),min(s(:,2)))<=0
        error('data point indices must be >= 1');
    end;
elseif size(s,1)==size(s,2)
    N=size(s,1);
    if (length(p)~=N)&&(length(p)~=1)
        error('p should be scalar or a vector of size N');
    end;
else error('s must have 3 columns or be square'); end;

% Construct similarity matrix
if N>3000
    fprintf('\n*** Warning: Large memory request. Consider activating\n');
    fprintf('    the sparse version of APCLUSTER.\n\n');
end;
if size(s,2)==3 && size(s,1)~=3,
    S=-Inf*ones(N,N,class(s)); 
    for j=1:size(s,1), S(s(j,1),s(j,2))=s(j,3); end;
else S=s;
end;

if S==S', symmetric=true; else symmetric=false; end;
realmin_=realmin(class(s)); realmax_=realmax(class(s));

% In case user did not remove degeneracies from the input similarities,
% avoid degenerate solutions by adding a small amount of noise to the
% input similarities
if ~nonoise
    rns=randn('state'); randn('state',0);
    S=S+(eps*S+realmin_*100).*rand(N,N);
    randn('state',rns);
end;

% Place preferences on the diagonal of S
if length(p)==1 for i=1:N S(i,i)=p; end;
else for i=1:N S(i,i)=p(i); end;
end;

% Numerical stability -- replace -INF with -realmax
n=find(S<-realmax_); if ~isempty(n), warning('-INF similarities detected; changing to -REALMAX to ensure numerical stability'); S(n)=-realmax_; end; clear('n');
if ~isempty(find(S>realmax_,1)), error('+INF similarities detected; change to a large positive value (but smaller than +REALMAX)'); end;


% Allocate space for messages, etc
dS=diag(S); A=zeros(N,N,class(s)); R=zeros(N,N,class(s)); t=1;
if plt, netsim=zeros(1,maxits+1); end;
if details
    idx=zeros(N,maxits+1);
    netsim=zeros(1,maxits+1); 
    dpsim=zeros(1,maxits+1); 
    expref=zeros(1,maxits+1); 
end;

% Execute parallel affinity propagation updates
e=zeros(N,convits); dn=0; i=0;
if symmetric, ST=S; else ST=S'; end; % saves memory if it's symmetric
while ~dn
    i=i+1; 

    % Compute responsibilities
	A=A'; R=R';
	for ii=1:N,
		old = R(:,ii);
		AS = A(:,ii) + ST(:,ii); [Y,I]=max(AS); AS(I)=-Inf;
		[Y2,I2]=max(AS);
		R(:,ii)=ST(:,ii)-Y;
		R(I,ii)=ST(I,ii)-Y2;
		R(:,ii)=(1-lam)*R(:,ii)+lam*old; % Damping
        R(R(:,ii)>realmax_,ii)=realmax_;
	end;
	A=A'; R=R';

    % Compute availabilities
	for jj=1:N,
		old = A(:,jj);
		Rp = max(R(:,jj),0); Rp(jj)=R(jj,jj);
		A(:,jj) = sum(Rp)-Rp;
		dA = A(jj,jj); A(:,jj) = min(A(:,jj),0); A(jj,jj) = dA;
		A(:,jj) = (1-lam)*A(:,jj) + lam*old; % Damping
	end;
	
    % Check for convergence
    E=((diag(A)+diag(R))>0); e(:,mod(i-1,convits)+1)=E; K=sum(E);
    if i>=convits || i>=maxits,
        se=sum(e,2);
        unconverged=(sum((se==convits)+(se==0))~=N);
        if (~unconverged&&(K>0))||(i==maxits) dn=1; end;
    end;

    % Handle plotting and storage of details, if requested
    if plt||details
        if K==0
            tmpnetsim=nan; tmpdpsim=nan; tmpexpref=nan; tmpidx=nan;
        else
            I=find(E); notI=find(~E); [tmp c]=max(S(:,I),[],2); c(I)=1:K; tmpidx=I(c);
            tmpdpsim=sum(S(sub2ind([N N],notI,tmpidx(notI))));
            tmpexpref=sum(dS(I));
            tmpnetsim=tmpdpsim+tmpexpref;
        end;
    end;
    if details
        netsim(i)=tmpnetsim; dpsim(i)=tmpdpsim; expref(i)=tmpexpref;
        idx(:,i)=tmpidx;
    end;
    if plt,
        netsim(i)=tmpnetsim;
		figure(234);
        plot(((netsim(1:i)/10)*100)/10,'r-'); xlim([0 i]); % plot barely-finite stuff as infinite
        xlabel('# Iterations');
        ylabel('Fitness (net similarity) of quantized intermediate solution');
%         drawnow; 
    end;
end; % iterations
I=find((diag(A)+diag(R))>0); K=length(I); % Identify exemplars
if K>0
    [tmp c]=max(S(:,I),[],2); c(I)=1:K; % Identify clusters
    % Refine the final set of exemplars and clusters and return results
    for k=1:K ii=find(c==k); [y j]=max(sum(S(ii,ii),1)); I(k)=ii(j(1)); end; notI=reshape(setdiff(1:N,I),[],1);
    [tmp c]=max(S(:,I),[],2); c(I)=1:K; tmpidx=I(c);
	tmpdpsim=sum(S(sub2ind([N N],notI,tmpidx(notI))));
	tmpexpref=sum(dS(I));
	tmpnetsim=tmpdpsim+tmpexpref;
else
    tmpidx=nan*ones(N,1); tmpnetsim=nan; tmpexpref=nan;
end;
if details
    netsim(i+1)=tmpnetsim; netsim=netsim(1:i+1);
    dpsim(i+1)=tmpdpsim; dpsim=dpsim(1:i+1);
    expref(i+1)=tmpexpref; expref=expref(1:i+1);
    idx(:,i+1)=tmpidx; idx=idx(:,1:i+1);
else
    netsim=tmpnetsim; dpsim=tmpdpsim; expref=tmpexpref; idx=tmpidx;
end;
if plt||details
    fprintf('\nNumber of exemplars identified: %d  (for %d data points)\n',K,N);
    fprintf('Net similarity: %g\n',tmpnetsim);
    fprintf('  Similarities of data points to exemplars: %g\n',dpsim(end));
    fprintf('  Preferences of selected exemplars: %g\n',tmpexpref);
    fprintf('Number of iterations: %d\n\n',i);
	fprintf('Elapsed time: %g sec\n',etime(clock,start));
end;
if unconverged
	fprintf('\n*** Warning: Algorithm did not converge. Activate plotting\n');
	fprintf('    so that you can monitor the net similarity. Consider\n');
	fprintf('    increasing maxits and convits, and, if oscillations occur\n');
	fprintf('    also increasing dampfact.\n\n');
end;

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲图片另类小说| 亚洲夂夂婷婷色拍ww47| 欧美一区二区美女| 欧洲精品一区二区| 欧美日韩电影一区| 欧美一区二区高清| 精品国产乱码91久久久久久网站| 精品黑人一区二区三区久久| 久久香蕉国产线看观看99| 国产蜜臀97一区二区三区| 国产亚洲一区二区三区在线观看 | www国产精品av| 精品99一区二区三区| 久久久亚洲精华液精华液精华液| 日本一区二区成人| 樱桃视频在线观看一区| 日韩激情视频在线观看| 国产一区二区调教| 色婷婷综合五月| 91精选在线观看| 国产日韩精品一区二区三区| 亚洲欧美另类在线| 热久久一区二区| 国产+成+人+亚洲欧洲自线| 色域天天综合网| 日韩一区和二区| 国产精品全国免费观看高清| 亚洲综合色在线| 精品综合免费视频观看| 91啪在线观看| 日韩一区二区三区免费看| 国产日韩欧美精品在线| 一区二区国产视频| 激情久久五月天| 欧美亚洲愉拍一区二区| 日本一区二区三区视频视频| 爽好多水快深点欧美视频| 国产精品影视在线观看| 欧美性猛交一区二区三区精品| 在线播放国产精品二区一二区四区| 久久蜜桃av一区二区天堂 | 国产精品18久久久久久久网站| 99re8在线精品视频免费播放| 日韩欧美中文一区| 一区二区在线电影| 国产成+人+日韩+欧美+亚洲| 欧美高清性hdvideosex| 亚洲另类一区二区| 国产**成人网毛片九色| 日韩无一区二区| 亚洲国产精品久久久久秋霞影院| 国产精品538一区二区在线| 欧美一级高清片在线观看| 一区二区三区四区在线| 成人福利视频在线看| 欧美精品一区二区三区很污很色的 | 欧美三级资源在线| 国产精品天干天干在观线| 久久99国产精品免费网站| 欧美日韩精品二区第二页| 樱桃国产成人精品视频| 99视频精品免费视频| 国产精品日产欧美久久久久| 丰满岳乱妇一区二区三区| 精品久久久久久久久久久久包黑料 | 不卡影院免费观看| 国产欧美一区二区精品性| 久久成人久久鬼色| 精品国产制服丝袜高跟| 麻豆国产精品官网| 日韩写真欧美这视频| 另类综合日韩欧美亚洲| 欧美成人r级一区二区三区| 日韩精品久久久久久| 91精品免费在线观看| 蜜桃视频一区二区三区| 日韩三级视频中文字幕| 久久精品国产亚洲a| 精品国产乱码久久久久久1区2区| 国产乱淫av一区二区三区 | ...中文天堂在线一区| av亚洲精华国产精华精华| 国产精品白丝在线| 欧美性受xxxx| 日韩国产欧美一区二区三区| 欧美一区二区视频在线观看| 久色婷婷小香蕉久久| 久久亚洲免费视频| 99国产精品久久| 亚洲成人一区在线| 精品欧美黑人一区二区三区| 国产精品综合在线视频| 国产精品女人毛片| 色婷婷狠狠综合| 奇米色一区二区| 国产亚洲精品超碰| 色94色欧美sute亚洲线路二| 视频一区二区三区在线| 久久先锋影音av| 色婷婷av一区二区三区大白胸 | 中文字幕在线免费不卡| 在线一区二区三区四区| 九九国产精品视频| 亚洲人成网站精品片在线观看| 9191成人精品久久| 成人av资源下载| 三级在线观看一区二区| 日本一区二区三区在线观看| 欧美日韩免费观看一区二区三区| 九九国产精品视频| 亚洲成人综合网站| 国产亚洲美州欧州综合国| 欧洲国内综合视频| 懂色一区二区三区免费观看 | 成人听书哪个软件好| 亚洲第一福利一区| 国产精品欧美极品| 欧美一区二区视频在线观看2020| 不卡高清视频专区| 黄色精品一二区| 五月综合激情婷婷六月色窝| 国产精品拍天天在线| 欧美成人高清电影在线| 欧美日韩久久不卡| 色老综合老女人久久久| 国产精品亚洲第一| 美国欧美日韩国产在线播放| 一区二区免费在线| 《视频一区视频二区| 2023国产一二三区日本精品2022| 欧美三级三级三级| 97精品电影院| 成人黄色大片在线观看| 国产在线精品免费| 日本系列欧美系列| 日韩av电影一区| 亚洲福利电影网| 夜夜嗨av一区二区三区中文字幕| 国产精品日韩成人| 中文字幕乱码亚洲精品一区| 久久精品视频在线免费观看| 日韩一区二区中文字幕| 欧美一区二区视频在线观看2022| 欧美日韩亚洲综合在线 欧美亚洲特黄一级| 成人性生交大片免费看视频在线 | 国产精品久久久久永久免费观看| 欧美不卡一区二区三区四区| 欧美一区日韩一区| 欧美一区二区三区色| 欧美精品乱人伦久久久久久| 欧美色图第一页| 欧美高清视频不卡网| 91精品国产91久久久久久一区二区 | 亚洲国产精品久久一线不卡| 亚洲综合999| 亚洲不卡一区二区三区| 天涯成人国产亚洲精品一区av| 午夜激情综合网| 日本不卡免费在线视频| 美国一区二区三区在线播放| 精品系列免费在线观看| 国产精品一二三四区| 99久久久无码国产精品| 在线观看av一区二区| 欧美日韩国产三级| 欧美成人猛片aaaaaaa| 国产色综合久久| 自拍偷拍欧美精品| 亚洲电影激情视频网站| 蜜臀av性久久久久蜜臀aⅴ| 经典三级视频一区| 波多野结衣一区二区三区| 色婷婷综合激情| 日韩一区二区视频在线观看| 国产欧美日韩在线看| 亚洲免费成人av| 男人操女人的视频在线观看欧美| 久久av资源网| 99精品视频在线观看免费| 欧美日韩久久久一区| 26uuu成人网一区二区三区| 中文字幕精品一区二区精品绿巨人 | 亚洲免费在线观看| 日韩av在线播放中文字幕| 国产.精品.日韩.另类.中文.在线.播放| www.欧美色图| 91精品国产欧美一区二区成人 | 99国产精品视频免费观看| 欧美日韩二区三区| 国产精品视频一二| 男人的天堂久久精品| 91网址在线看| 久久女同性恋中文字幕| 亚洲国产精品久久人人爱蜜臀| 国产精品一线二线三线精华| 在线观看日韩av先锋影音电影院| 国产亚洲精品7777| 青青草国产精品97视觉盛宴| 99久久久国产精品免费蜜臀| 日韩欧美资源站|