亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? fknn.html

?? 一個關于數據聚類和模式識別的程序,在生物化學,化學中因該都可以用到.希望對大家有用,謝謝支持
?? HTML
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"                "http://www.w3.org/TR/REC-html40/loose.dtd"><html><head>  <title>Description of fknn</title>  <meta name="keywords" content="fknn">  <meta name="description" content="FKNN Fuzzy k-nearest neighbor classification rule">  <meta http-equiv="Content-Type" content="text/html; charset=big5">  <meta name="generator" content="m2html &copy; 2003 Guillaume Flandin">  <meta name="robots" content="index, follow">  <link type="text/css" rel="stylesheet" href="../m2html.css"></head><body><a name="_top"></a><div><a href="../index.html">Home</a> &gt;  <a href="index.html">dcpr</a> &gt; fknn.m</div><!--<table width="100%"><tr><td align="left"><a href="../index.html"><img alt="<" border="0" src="../left.png">&nbsp;Master index</a></td><td align="right"><a href="index.html">Index for dcpr&nbsp;<img alt=">" border="0" src="../right.png"></a></td></tr></table>--><h1>fknn</h1><h2><a name="_name"></a>PURPOSE <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="box"><strong>FKNN Fuzzy k-nearest neighbor classification rule</strong></div><h2><a name="_synopsis"></a>SYNOPSIS <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="box"><strong>function test_out = fknn(sample_in, sample_out, test_in, k, m) </strong></div><h2><a name="_description"></a>DESCRIPTION <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="fragment"><pre class="comment"> FKNN Fuzzy k-nearest neighbor classification rule

    Usage:
    TEST_OUT = FKNNR(SAMPLE_IN, SAMPLE_OUT, TEST_IN, K)

    SAMPLE_IN: Input part of the sample data
    SAMPLE_OUT: Output part of the sample data
    TEST_IN: Input part of the test data
    K: The &quot;k&quot; in &quot;K-NNR&quot;
    TEST_OUT: Output of the test data according to fuzzy KNNR

    The dimensions of the above matrices is

    SAMPLE_IN: M1xN
    SAMPLE_OUT: M1xF
    TEST_IN: M2xN
    TEST_OUT: M2xF

    where
    
    M1 = the no. of sample data
    N = no. of features
    F = no. of classes (or categories)
    M2 = no. of test data

    For more technical details, please refer to the paper:

    J. M. Keller, M. R. Gray, and J. A. Givens, Jr., &quot;A Fuzzy K-Nearest
    Neighbor Algorithm&quot;, IEEE Transactions on Systems, Man, and Cybernetics,
    Vol. 15, No. 4, pp. 580-585.  

    For selfdemo, type &quot;fknn&quot; with no arguments.

    See also <a href="initfknn.html" class="code" title="function fuz_class = initfknn(sampledata, k)">INITFKNN</a> for obtaining a fuzzy version of SAMPLE_OUT.</pre></div><!-- crossreference --><h2><a name="_cross"></a>CROSS-REFERENCE INFORMATION <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2>This function calls:<ul style="list-style-image:url(../matlabicon.gif)"><li><a href="fknn.html" class="code" title="function test_out = fknn(sample_in, sample_out, test_in, k, m)">fknn</a>	FKNN Fuzzy k-nearest neighbor classification rule</li><li><a href="initfknn.html" class="code" title="function fuz_class = initfknn(sampledata, k)">initfknn</a>	INITfknn Initialize fuzzy membership grades of sample output for fuzzy KNN.</li><li><a href="vecdist.html" class="code" title="function distmat = vecdist(mat1, mat2)">vecdist</a>	VECDIST Distance between two set of vectors</li></ul>This function is called by:<ul style="list-style-image:url(../matlabicon.gif)"><li><a href="fknn.html" class="code" title="function test_out = fknn(sample_in, sample_out, test_in, k, m)">fknn</a>	FKNN Fuzzy k-nearest neighbor classification rule</li></ul><!-- crossreference --><h2><a name="_subfunctions"></a>SUBFUNCTIONS <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><ul style="list-style-image:url(../matlabicon.gif)"><li><a href="#_sub1" class="code">function selfdemo</a></li></ul><h2><a name="_source"></a>SOURCE CODE <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="fragment"><pre>0001 <a name="_sub0" href="#_subfunctions" class="code">function test_out = fknn(sample_in, sample_out, test_in, k, m)</a>0002 <span class="comment">% FKNN Fuzzy k-nearest neighbor classification rule</span>0003 <span class="comment">%</span>0004 <span class="comment">%    Usage:</span>0005 <span class="comment">%    TEST_OUT = FKNNR(SAMPLE_IN, SAMPLE_OUT, TEST_IN, K)</span>0006 <span class="comment">%</span>0007 <span class="comment">%    SAMPLE_IN: Input part of the sample data</span>0008 <span class="comment">%    SAMPLE_OUT: Output part of the sample data</span>0009 <span class="comment">%    TEST_IN: Input part of the test data</span>0010 <span class="comment">%    K: The &quot;k&quot; in &quot;K-NNR&quot;</span>0011 <span class="comment">%    TEST_OUT: Output of the test data according to fuzzy KNNR</span>0012 <span class="comment">%</span>0013 <span class="comment">%    The dimensions of the above matrices is</span>0014 <span class="comment">%</span>0015 <span class="comment">%    SAMPLE_IN: M1xN</span>0016 <span class="comment">%    SAMPLE_OUT: M1xF</span>0017 <span class="comment">%    TEST_IN: M2xN</span>0018 <span class="comment">%    TEST_OUT: M2xF</span>0019 <span class="comment">%</span>0020 <span class="comment">%    where</span>0021 <span class="comment">%</span>0022 <span class="comment">%    M1 = the no. of sample data</span>0023 <span class="comment">%    N = no. of features</span>0024 <span class="comment">%    F = no. of classes (or categories)</span>0025 <span class="comment">%    M2 = no. of test data</span>0026 <span class="comment">%</span>0027 <span class="comment">%    For more technical details, please refer to the paper:</span>0028 <span class="comment">%</span>0029 <span class="comment">%    J. M. Keller, M. R. Gray, and J. A. Givens, Jr., &quot;A Fuzzy K-Nearest</span>0030 <span class="comment">%    Neighbor Algorithm&quot;, IEEE Transactions on Systems, Man, and Cybernetics,</span>0031 <span class="comment">%    Vol. 15, No. 4, pp. 580-585.</span>0032 <span class="comment">%</span>0033 <span class="comment">%    For selfdemo, type &quot;fknn&quot; with no arguments.</span>0034 <span class="comment">%</span>0035 <span class="comment">%    See also INITFKNN for obtaining a fuzzy version of SAMPLE_OUT.</span>0036 0037 <span class="comment">%    Roger Jang, 990805</span>0038 0039 <span class="keyword">if</span> nargin == 0, <a href="#_sub1" class="code" title="subfunction selfdemo">selfdemo</a>; <span class="keyword">return</span>; <span class="keyword">end</span>0040 0041 <span class="keyword">if</span> nargin &lt; 5, m = 2; <span class="keyword">end</span>0042 <span class="keyword">if</span> nargin &lt; 4, k = 3; <span class="keyword">end</span>0043 0044 sample_n = size(sample_in, 1);0045 test_n = size(test_in, 1);0046 feature_n = size(sample_in, 2);0047 class_n = size(sample_out, 2);0048 0049 <span class="comment">% Euclidean distance matrix</span>0050 distmat = <a href="vecdist.html" class="code" title="function distmat = vecdist(mat1, mat2)">vecdist</a>(sample_in, test_in);0051 0052 <span class="comment">% knnmat(i,j) = class of i-th nearest point of j-th input vector</span>0053 <span class="comment">% (The size of knnmat is k times test_n.)</span>0054 [junk, index] = sort(distmat);0055 <span class="comment">% knnmat = reshape(sample_out(index(1:k,:)), k, test_n);</span>0056 0057 test_out = zeros(test_n, class_n);0058 <span class="keyword">for</span> i = 1:test_n,0059     neighbor_index = index(1:k, i);0060     weight = distmat(neighbor_index, i)'.^(-2/(m-1));0061     weight(isinf(weight))=realmax;        <span class="comment">% To avoid weight of inf</span>0062     test_out(i,:) = weight*sample_out(neighbor_index,:)/(sum(weight));0063 <span class="keyword">end</span>0064 0065 <span class="comment">% ========== Self demo ==========</span>0066 <a name="_sub1" href="#_subfunctions" class="code">function selfdemo</a>0067 0068 data_n = 50;0069 0070 data = rand(data_n, 2);0071 x = data(:, 1);0072 y = data(:, 2);0073 class = zeros(data_n, 1);0074 0075 index = find(y &gt; x);0076 class(index) = 1;0077 index = find(y&lt;=x &amp; y&gt;=-x+1);0078 class(index) = 2;0079 class(find(class==0)) = 3;0080 0081 sampledata = [x y class];0082 0083 <span class="comment">%colordef black;</span>0084 figure;0085 axis([0 1 0 1]);0086 box on;0087 axis equal square0088 0089 color = {<span class="string">'r'</span>, <span class="string">'g'</span>, <span class="string">'c'</span>};0090 0091 <span class="keyword">for</span> i = 1:3,0092     index = find(class==i);0093     line(x(index), y(index), <span class="string">'linestyle'</span>, <span class="string">'none'</span>, <span class="string">'marker'</span>, <span class="string">'.'</span>, <span class="keyword">...</span>0094         <span class="string">'color'</span>, color{i});0095 <span class="keyword">end</span>0096 0097 k = 3;0098 fuz_sample_out = <a href="initfknn.html" class="code" title="function fuz_class = initfknn(sampledata, k)">initfknn</a>(sampledata, k);0099 index = find(sum(fuz_sample_out.^0.5, 2)~=1); 0100 <span class="comment">%line(x(index), y(index), 'linestyle', 'none', 'marker', 'o', 'color', 'w');</span>0101 0102 test_in = rand(50, 2);0103 test_out = <a href="fknn.html" class="code" title="function test_out = fknn(sample_in, sample_out, test_in, k, m)">fknn</a>([x y], fuz_sample_out, test_in, k);0104 <span class="comment">% Plot test data</span>0105 line(test_in(:,1), test_in(:,2), <span class="string">'linestyle'</span>, <span class="string">'none'</span>, <span class="string">'marker'</span>, <span class="string">'.'</span>, <span class="string">'color'</span>, <span class="string">'w'</span>);0106 0107 <span class="comment">% Plot desired boundaries</span>0108 line([0 1], [0 1], <span class="string">'linestyle'</span>, <span class="string">':'</span>);0109 line([0.5 1], [0.5 0], <span class="string">'linestyle'</span>, <span class="string">':'</span>);0110 0111 legend(<span class="string">'Sample data: Class 1'</span>, <span class="string">'Sample data: Class 2'</span>,<span class="keyword">...</span>0112     <span class="string">'Sample data: Class 3'</span>, <span class="string">'Test data'</span>, -1);0113 0114 <span class="comment">% Plot classification result of the test data</span>0115 [junk, max_index] = max(test_out');0116 <span class="keyword">for</span> i = 1:3,0117     index = find(max_index==i);0118     line(test_in(index,1), test_in(index,2), <span class="string">'linestyle'</span>, <span class="string">'none'</span>, <span class="keyword">...</span>0119         <span class="string">'marker'</span>, <span class="string">'o'</span>, <span class="string">'color'</span>, color{i});0120 <span class="keyword">end</span>0121 0122 title(<span class="string">'The circle color of a sample point shows its predicted class via FKNN.'</span>);0123 0124 <span class="comment">%for i = index(:)',</span>0125 <span class="comment">%    text(x(i), y(i), mat2str(fuz_sample_out(i, :), 2));</span>0126 <span class="comment">%end</span></pre></div><hr><address>Generated on Thu 30-Oct-2008 12:53:56 by <strong><a href="http://www.artefact.tk/software/matlab/m2html/">m2html</a></strong> &copy; 2003</address></body></html>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
男女男精品网站| av资源网一区| eeuss鲁片一区二区三区在线观看| 99久久精品免费看国产免费软件| 欧美一区二区三区视频在线 | 欧美日韩性生活| 中文字幕成人av| 久久国产尿小便嘘嘘尿| 在线观看成人免费视频| 国产精品拍天天在线| 青青青伊人色综合久久| 91黄色免费观看| 日本一区二区久久| 韩国女主播成人在线| 欧美一区二区精品| 一区二区在线观看视频| 成人综合婷婷国产精品久久蜜臀| 精品欧美乱码久久久久久| 亚洲国产aⅴ天堂久久| 一本一道久久a久久精品| 国产精品女同互慰在线看| 久久精品999| 精品国产精品一区二区夜夜嗨| 亚洲成av人片一区二区三区| 日本乱人伦aⅴ精品| 亚洲人亚洲人成电影网站色| 国产91精品一区二区麻豆网站| 欧美成人女星排名| 另类小说综合欧美亚洲| 欧美一级夜夜爽| 日本在线观看不卡视频| 69av一区二区三区| 亚洲va韩国va欧美va精品| 欧美天天综合网| 亚洲午夜三级在线| 欧美日韩视频在线一区二区| 日日欢夜夜爽一区| 日韩一级黄色片| 麻豆精品一二三| 精品久久久久久无| 国产乱码精品一区二区三区av| 久久综合色一综合色88| 国产精品123| 亚洲欧洲av一区二区三区久久| 不卡电影一区二区三区| 一区二区日韩电影| 91精品免费观看| 久久99久久久久| 国产精品午夜在线观看| 91亚洲大成网污www| 亚洲成人av一区二区| 日韩亚洲欧美中文三级| 国产美女精品人人做人人爽| 中文字幕av一区二区三区免费看| 不卡电影免费在线播放一区| 亚洲一区二区三区中文字幕在线| 欧美日韩不卡一区二区| 国内精品在线播放| 国产精品网站导航| 91麻豆国产精品久久| 亚洲va国产天堂va久久en| 精品久久久久久久久久久久包黑料 | 成人黄色av电影| 亚洲一区二区三区美女| 精品国产自在久精品国产| www.亚洲国产| 五月婷婷久久丁香| 国产人伦精品一区二区| 欧美日韩在线免费视频| 九九在线精品视频| 亚洲欧美日韩久久| 日韩欧美一二三四区| 99精品视频一区| 免费在线欧美视频| 中文字幕一区二区在线观看| 在线成人小视频| jizzjizzjizz欧美| 91视频在线看| 老汉av免费一区二区三区| 国产精品久久久久影院老司| 在线成人av网站| 99re热这里只有精品免费视频| 免费xxxx性欧美18vr| 一区二区三区91| 国产欧美一二三区| 欧美一级黄色片| 色婷婷久久99综合精品jk白丝| 韩国女主播一区二区三区| 亚洲国产一区在线观看| 国产精品久久久久永久免费观看 | 国产欧美日韩不卡免费| 欧美一区二区私人影院日本| 91麻豆视频网站| 国产乱妇无码大片在线观看| 日本三级亚洲精品| 一二三四社区欧美黄| 17c精品麻豆一区二区免费| 26uuu精品一区二区在线观看| 51精品久久久久久久蜜臀| 色综合激情久久| 91在线国产观看| 丁香天五香天堂综合| 国产乱子伦一区二区三区国色天香 | 久久成人18免费观看| 五月天激情综合| 亚洲自拍欧美精品| 亚洲激情六月丁香| 最新中文字幕一区二区三区| 日本一区二区三级电影在线观看| 精品国产免费人成电影在线观看四季 | 亚洲高清免费在线| 亚洲精品久久久蜜桃| 亚洲色欲色欲www| 亚洲欧美日韩电影| 一二三四社区欧美黄| 一区二区在线观看不卡| 亚洲视频香蕉人妖| 一区二区三区日韩欧美精品| 亚洲免费三区一区二区| 亚洲综合成人在线视频| 亚洲高清视频在线| 日韩 欧美一区二区三区| 免费成人在线观看| 久久成人av少妇免费| 国产精品一区在线| 国产jizzjizz一区二区| 成人动漫在线一区| 91丝袜美女网| 欧美视频自拍偷拍| 欧美一区二区三区电影| 欧美成人伊人久久综合网| 久久精品人人爽人人爽| 亚洲天堂av老司机| 亚洲电影在线播放| 青青青伊人色综合久久| 国产麻豆精品在线| 99国产精品国产精品毛片| 欧美性猛交xxxx乱大交退制版| 欧美精选午夜久久久乱码6080| 日韩亚洲欧美在线观看| 欧美激情在线观看视频免费| 亚洲欧美日韩国产手机在线| 午夜av区久久| 国产毛片精品国产一区二区三区| 成人av在线网| 欧美妇女性影城| 精品福利一区二区三区免费视频| 国产精品剧情在线亚洲| 视频在线观看一区二区三区| 国产91高潮流白浆在线麻豆 | 免费在线观看视频一区| 成人精品国产免费网站| 欧美曰成人黄网| 日韩精品专区在线影院观看| 国产精品亲子乱子伦xxxx裸| 亚洲大尺度视频在线观看| 精品一区二区精品| 91免费小视频| 欧美精品一区二区三区在线| 亚洲色图在线看| 国产麻豆精品久久一二三| 欧美在线啊v一区| 精品蜜桃在线看| 亚洲第一主播视频| 精品卡一卡二卡三卡四在线| 中文字幕综合网| 国内一区二区视频| 欧美怡红院视频| 国产精品麻豆欧美日韩ww| 美女高潮久久久| 欧美日韩欧美一区二区| 中文字幕免费不卡在线| 久久se精品一区二区| 欧美性视频一区二区三区| 欧美激情艳妇裸体舞| 久久99国产精品免费网站| 日本高清不卡在线观看| 欧美激情资源网| 精品一区二区三区影院在线午夜| 欧美中文字幕一二三区视频| 国产精品天干天干在线综合| 蜜臀av国产精品久久久久| 欧美亚洲自拍偷拍| 亚洲另类在线一区| 成人激情动漫在线观看| 精品久久久久久久久久久院品网 | 欧美久久久影院| 亚洲一区二区免费视频| 色综合网站在线| 亚洲视频一二区| 99久久久久久99| 国产精品三级在线观看| 国产乱人伦偷精品视频不卡| 欧美成人女星排名| 美国毛片一区二区三区| 欧美一级日韩不卡播放免费| 五月综合激情日本mⅴ| 欧美另类久久久品| 五月天视频一区| 制服丝袜亚洲网站|