?? do_plsa_evaluation.m
字號:
function do_plsa_evaluation(config_file)
%% Test and plot graphs for a plsa model learnt with do_plsa.m
%% Runs the pLSA procedure, this time holding P(w|z) constant and
%% estimating P(d|z) using a "folding in" procedure. Calls code written
%% by Josef Sivic (josef@robots.ox.ac.uk), based on the paper:
%%
%% J. Sivic, B. C. Russell, A. Efros, A. Zisserman and W. T. Freeman,
%% Discovering objects and their location in images, ICCV 2005.
%% The action of this routine depends on the directory in which it is
%% run:
%% (a) If run from RUN_DIR, then it will evaluate the latest model in the
%% models subdirectory. i.e. if you have just run
%% do_plsa('config_file_2'), which saved to model_0011.mat and
%% config_file_0011.m in the models subdirectory in RUN_DIR, then doing
%% do_plsa_evaluation('config_file_2') will load up model_0011.mat and
%% evaluate it.
%% (b) If run within in models subdirectory, then it
%% will evaluate the model corresponding to the configuration file passed
%% to it. i.e. do_plsa_evaluation('config_file_0002') will load
%% model_0002.mat and evaluate/plot figures for it.
%%
%% Mode (a) exists to allow a complete experiment to be run from start to
%% finish without having to manually go into the models subdirectory and
%% find the appropriate one to evaluate.
%% If this routine is called on a newly learnt model, it will run the pLSA code
%% in folding in mode and then plot lots of figures. If run a second time
%% on the same model, it will only plot the figures, since there is no need
%% to recompute the P(d|z) on the testing images. If you want to force it
%% to re-run on the images, then remove the Pd_z_test variable from the
%% model file.
%% Note this only uses a pre-existing model to evaluate the test
%% images. Please use do_plsa to actually learn a pLSA model.
%% Before running this, you must have run:
%% do_random_indices - to generate random_indices.mat file.
%% do_preprocessing - to get the images that the operator will run on.
%% do_interest_op - to get extract interest points (x,y,scale) from each image.
%% do_representation - to get appearance descriptors of the regions.
%% do_vq - vector quantize appearance of the regions in each image.
%% do_plsa - learn a pLSA model.
%% R.Fergus (fergus@csail.mit.edu) 03/10/05.
%%% figure number to start plotting at
FIGURE_BASE = 1000;
%%% color order
cols = {'r' 'g' 'b' 'c' 'm' 'y' 'k'};
%% Evaluate global configuration file
eval(config_file);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% Model section
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% get filename of model to learn
%%% if in models subdirectory then just get index off config_file string
if (strcmp(pwd,[RUN_DIR,'/',Global.Model_Dir_Name]) | strcmp(pwd,[RUN_DIR,'\',Global.Model_Dir_Name]))
ind = str2num(config_file(end-Global.Num_Zeros+1:end));
else
%%% otherwise just take newest model in subdir.
ind = length(dir([RUN_DIR,'/',Global.Model_Dir_Name,'/',Global.Model_File_Name,'*.mat']));
end
%%% construct model file name
model_fname = [RUN_DIR,'/',Global.Model_Dir_Name,'/',Global.Model_File_Name,prefZeros(ind,Global.Num_Zeros),'.mat'];
%%% load up model
load(model_fname);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Test section - run model on testing images only if Pd_z_test does not exist
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~exist('Pd_z_test') %%% only do this section the first time we look at the model
%%% saves time if we just want to look at the pretty
%%% figures
%% get all file names of testing image interest point files.
ip_file_names = genFileNames({Global.Interest_Dir_Name},Categories.All_Test_Frames,RUN_DIR,Global.Interest_File_Name,'.mat',Global.Num_Zeros);
%% Create matrix to hold word histograms from all images
X = zeros(VQ.Codebook_Size,length(Categories.All_Test_Frames));
%% load up all interest_point files which should have the histogram
%% variable already computed (performed by do_vq routine).
for a=1:length(ip_file_names)
%% load file
load(ip_file_names{a});
%% store histogram
X(:,a) = histogram';
end
%%% Call actual EM routine again in test mode
[Pw_z,Pd_z_test,Pz_test,Li_test] = pLSA_EM(X,Pw_z,Learn.Num_Topics,Learn);
%%% get labels for test frames
labels = [];
for a=1:Categories.Number
labels = [labels , Categories.Labels(a)*ones(1,length(Categories.Test_Frames{a}))];
end
%%% compute classification performance for each topic
for t=1:Learn.Num_Topics
%%% get scores for each image
values = Pd_z_test(:,t)';
%%% compute roc
[roc_curve{t},roc_op(t),roc_area(t),roc_threshold(t)] = roc([values;labels]');
%%% compute rpc
[rpc_curve{t},rpc_ap(t),rpc_area(t),rpc_threshold(t)] = recall_precision_curve([values;labels]',length(find(labels==1)));
end
%%% store all test variables in the model
save(model_fname,'Pd_z_test','Pz_test','Li_test','roc_curve','roc_op','roc_area','roc_threshold','rpc_curve','rpc_ap','rpc_area','rpc_threshold','-append');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Plotting section - plot some figures to see what is going on...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% We will use figures from FIGURE_BASE to FIGURE_BASE + 4;
%% clear them ready for plotting action...
for a=FIGURE_BASE:FIGURE_BASE+4
figure(a); clf;
end
%% Plot Pw_z as an image - to get an idea of overall entropy
figure(FIGURE_BASE);
imagesc(Pw_z); colormap(gray); colorbar;
set(gca,'XTick',[1:Learn.Num_Topics]);
xlabel('Topic'); ylabel('Word'); title('Pw|z density');
%% Plot Pd_z as an image - to get an idea of overall entropy
figure(FIGURE_BASE+1);
imagesc(Pd_z); colormap(gray); colorbar;
set(gca,'XTick',[1:Learn.Num_Topics]);
xlabel('Topic'); ylabel('Image'); title('Pd|z density');
%% Now lets look at the classification performance
figure(FIGURE_BASE+2);
for t=1:Learn.Num_Topics
plot(roc_curve{t}(:,1),roc_curve{t}(:,2),cols{rem(t-1,7)+1});
hold on;
end
axis([0 1 0 1]); axis square; grid on;
xlabel('P_{fa}'); ylabel('P_d'); title('ROC Curves');
%% Now lets look at the retrieval performance
figure(FIGURE_BASE+3);
for t=1:Learn.Num_Topics
plot(rpc_curve{t}(:,1),rpc_curve{t}(:,2),cols{rem(t-1,7)+1});
hold on;
end
axis([0 1 0 1]); axis square; grid on;
xlabel('Recall'); ylabel('Precision'); title('RPC Curves');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Now plot out example images
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% what crietrion are we going to use to choose the best topic?
if strcmp(Recog.Best_Topic_Criterion,'roc_area')
topic_scores = roc_area;
topic_thresholds = roc_threshold;
elseif strcmp(Recog.Best_Topic_Criterion,'roc_op')
topic_scores = roc_op;
topic_thresholds = roc_threshold;
elseif strcmp(Recog.Best_Topic_Criterion,'rpc_ap')
topic_scores = rpc_ap;
topic_thresholds = rpc_threshold;
elseif strcmp(Recog.Best_Topic_Criterion,'rpc_area')
topic_scores = rpc_area;
topic_thresholds = rpc_threshold;
else
error('Unknown criterion for picking the best topic');
end
%% first decide on plotting order
if strcmp(Plot.Example_Mode,'ordered')
%%% just go in orginial order of images
plot_order = sort(Categories.All_Test_Frames);
elseif strcmp(Plot.Example_Mode,'alternate')
%%% using random order but alternating between images of different
%%% classes...
ind = ones(Categories.Number,max(cellfun('length',Categories.Test_Frames)));
tmp = length(Categories.Test_Frames{1});
ind(1,1:tmp)=[1:tmp];
for a=2:Categories.Number
tmp = length(Categories.Test_Frames{a});
offset=sum(cellfun('length',Categories.Test_Frames(1:a-1)));
ind(a,1:tmp) = [1:tmp]+offset;
end
plot_order = ind(:);
elseif strcmp(Plot.Example_Mode,'random')
%%% using order given in random_indices.mat
plot_order = Categories.All_Test_Frames;
elseif strcmp(Plot.Example_Mode,'best')
%%% plot ordered by score on best topic
[tmp,best_topic] = max(topic_scores);
[tmp2,plot_order] = sort(-Pd_z(:,best_topic));
elseif strcmp(Plot.Example_Mode,'worst')
%%% plot ordered by score on worst topic
[tmp,best_topic] = max(topic_scores);
[tmp2,plot_order] = sort(Pd_z(:,best_topic));
elseif strcmp(Plot.Example_Mode,'borderline')
%%% images closest to threshold
[tmp,best_topic] = max(topic_scores);
%%% ordering by how close they are to the topic_thresholds...
[tmp2,plot_order] = sort(abs(Pd_z(:,best_topic)-topic_thresholds(best_topic)));
else
error('Unknown type of Plot.Example_Mode');
end
%% Get image filenames and ip filenames
image_file_names = genFileNames({Global.Image_Dir_Name},Categories.All_Test_Frames,RUN_DIR,Global.Image_File_Name,Global.Image_Extension,Global.Num_Zeros);
ip_file_names = genFileNames({Global.Interest_Dir_Name},Categories.All_Test_Frames,RUN_DIR,Global.Interest_File_Name,'.mat',Global.Num_Zeros);
%%% get labels for test frames
labels = [];
for a=1:Categories.Number
labels = [labels , Categories.Labels(a)*ones(1,length(Categories.Test_Frames{a}))];
end
%% now setup figure and run loop plotting images
figure(FIGURE_BASE+4);
nImage_Per_Figure = prod(Plot.Number_Per_Figure);
for a=1:nImage_Per_Figure:length(Categories.All_Test_Frames)
clf; %% clear figure
for b=1:nImage_Per_Figure
%%% actual index
index = plot_order(a+b-1);
%%% get correct subplot
subplot(Plot.Number_Per_Figure(1),Plot.Number_Per_Figure(2),b);
%%% load image
im=imread(image_file_names{index});
%%% show image
imagesc(im); hold on;
%%% if grayscale, then adjust colormap
if (size(im,3)==1)
colormap(gray);
end
%%% load up interest_point file
load(ip_file_names{index});
%%% loop over all regions, plotting and coloring according to Pw_z
for c=1:length(x)
%%% which topic is favoured by the region?
[tmp,preferred_topic]=max(Pw_z(descriptor_vq(c),:));
%%% plot center of region
plot(x(c),y(c),'Marker','+','MarkerEdgeColor',cols{rem(preferred_topic-1,7)+1});
%%% and circle showing scale
drawcircle(y(c),x(c),2*scale(c)+1,cols{rem(preferred_topic-1,7)+1},1);
hold on;
end
%%% do we plot header information?
if (Plot.Labels)
%% get Pz_d for image, from Pd_z
%% now get joint
Pdz_test = Pd_z_test(index,:) .* Pz_test;
Pz_d_test = Pdz_test / sum(Pdz_test);
%% Label according to correct/incorrect classification
%% is image above threshold?
[tmp,best_topic] = max(topic_scores);
above_threshold = (Pd_z(index,best_topic)>topic_thresholds(best_topic));
if (above_threshold==labels(index)) %% Correct classification
%% show image number and Pz_d
title(['Correct - Image: ',num2str(index),' P(z|d)=',num2str(Pz_d_test)]);
else
%% show image number and Pz_d
title(['INCORRECT - Image: ',num2str(index),' P(z|d)=',num2str(Pz_d_test)]);
end
fprintf('Image: %d \t Score: %f \t Threshold: %f\n',index,Pd_z(index,best_topic),topic_thresholds(best_topic));
end
end
pause
end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -