亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? myalgorithm.m

?? 關(guān)于粒子濾波的仿真程序,比較了粒子濾波和卡爾曼濾波的優(yōu)缺點
?? M
字號:
function [StdErr] = myalgorithm
 
 N=1000; % number of particles.
 tf=50; % simulation length
 
 xsensor=0;
 ysensor=0; 
 s=[xsensor ysensor]; %傳感器位置
 
 x=[0;0;1;1]; % initial state
 xrho=x(1,:);
 yrho=x(2,:);
 rho=[xrho yrho]; %目標(biāo)位置
 xvtarget = x(3,:);
 yvtarget = x(4,:);
 vtarget = [xvtarget yvtarget]; %目標(biāo)速度
 atarget=2;
 r=500; % radius of target
 
 Px=diag([25 25 1 1]); % initial estimation error covariance
 Q=[1 0;0 1]; % process noise covariance
 R=1; % measurement noise variance
 Ts=1;
 
 P0=30;
 d0=1;
 alpha=2.3;
 theta=pi*60/180;
 
 L=7;
 belta=0;
 ki=2;
 lambda=alpha^2*(L+ki)-L;
   
 xhat=x; %intial state estimate
 
%  Initialize the particle filter.
 for i=1:N
     xpart(:,i) = x + sqrt(Px) * [randn;randn;randn;randn]; % standard particle filter
 end

%  xArr=x;
%  xhatArr=xhat;
%  xhatUKFArr=xhat;
 
 for k=1:tf
     % System simulation
     xmsensor(k)=xrho(k)-r*cos(theta);
     ymsensor(k)=yrho(k)-r*sin(theta); 
     
     xrho(k+1)=xrho(k)+xvtarget*Ts;
     yrho(k+1)=yrho(k)+yvtarget*Ts;
     
     u(k)=atan(((xsensor(k)-xmsensor(k))^2+((ysensor(k)-ymsensor(k))^2)/2));

     xsensor(k+1)=xsensor(k)+u(k)*Ts;
     ysensor(k+1)=ysensor(k)+u(k)*Ts;
     
     x = kron([1 Ts;0 1],eye(2,2))*x + kron([Ts^2/2;Ts],eye(2,2))*sqrt(Q)*[randn;randn];
     y = P0-10*alpha*log10(sqrt((xsensor(k)-x(1,:))^2 + (ysensor(k)-x(2,:))^2)/d0) + sqrt(R) * randn;

     % Simulate the continuous-time part of the particle filters(time update)
     for i=1:N
         % standerd particle filter
         xpartminus(:,i) = kron([1 Ts;0 1],eye(2,2))*xpart(:,i) + kron([Ts^2/2;Ts],eye(2,2))*sqrt(Q)*[randn;randn];
         ypart=P0-10*alpha*log10(sqrt((xsensor(k)-xpartminus(1,i))^2+(ysensor(k)-xpartminus(2,i))^2)/d0) ;
         
         vhat(i)=y-ypart; %觀測和預(yù)測的差
     end
     
     % Normalize the likelihood of each a priori eatimate
     vhatscale = max(abs(vhat))/4;
     qsum = 0;
     for i = 1:N
         q(i)=exp(-(vhat(i)/vhatscale)^2);
         qsum = qsum+q(i);
     end
     % Normalize the likelihood of each a priori estimate.
     for i = 1:N
         q(i)=q(i)/qsum;
     end
     % Resample the standard particle filter
    for i = 1 : N
        u = rand; % uniform random number between 0 and 1
        qtempsum = 0;
        for j = 1 : N
            qtempsum = qtempsum + q(j);
            if qtempsum >= u
                xpart(:,i) = xpartminus(:,j);
                break;
            end
        end
    end
    % The standard particle filter estimate is the mean of the particles.
    
    xhat(:,k) = mean(xpart')';

    % Save data in arrays for later plotting
%     xArr=[xArr x];
%     xhatArr=[xhatArr xhat];
 end
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%%% Unscented Particle Filter %%%%%%%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 N=1000; % number of particles.
 tf=50; % simulation length
 
 xsensor=0;
 ysensor=0; 
 s=[xsensor ysensor]; %傳感器位置
 
 x=[0;0;1;1]; % initial state
 xrho=x(1,:);
 yrho=x(2,:);
 rho=[xrho yrho]; %目標(biāo)位置
 xvtarget = x(3,:);
 yvtarget = x(4,:);
 vtarget = [xvtarget yvtarget]; %目標(biāo)速度
 atarget=2;
 r=500; % radius of target
 
 Px=diag([25 25 1 1]); % initial estimation error covariance
 Q=[1 0;0 1]; % process noise covariance
 R=1; % measurement noise variance
 Ts=1;
 
 P0=30;
 d0=1;
 alpha=2.3;
 theta=pi*60/180;
 
 L=7;
 belta=0;
 ki=2;
 lambda=alpha^2*(L+ki)-L;
 
 Anoise=zeros(4,tf);
 X_sigma=zeros(7,tf);  
 P_sigma=zeros(7,7,tf);
 % Initialization
%  for i = 1:N
     xestimate = x;
     P = Px;
     X_sigma(:,1) = [(xestimate)' 0 0 0]';
     P_sigma(:,:,1) = blkdiag(P,Q,R);  
%  end
 
 for k=1:tf
     % System simulation
     xmsensor(k)=xrho(k)-r*cos(theta);
     ymsensor(k)=yrho(k)-r*sin(theta); 
     
     xrho(k+1)=xrho(k)+xvtarget*Ts;
     yrho(k+1)=yrho(k)+yvtarget*Ts;
     
     u(k)=atan(((xsensor(k)-xmsensor(k))^2+((ysensor(k)-ymsensor(k))^2)/2));

     xsensor(k+1)=xsensor(k)+u(k)*Ts;
     ysensor(k+1)=ysensor(k)+u(k)*Ts;
     
     x = kron([1 Ts;0 1],eye(2,2))*x + kron([Ts^2/2;Ts],eye(2,2))*sqrt(Q)*[randn;randn];
     y = P0-10*alpha*log10(sqrt((xsensor(k)-x(1,:))^2 + (ysensor(k)-x(2,:))^2)/d0) + sqrt(R) * randn;

     % Simulate the continuous-time part of the particle filters(time update)
     for i=1:N
         % update the particles with UKF
         % Caculate sigma points:
         for j = 1 : 2*L+1
             Wm(j) = 1/(2*(L+lambda));
             Wc(j) = 1/(2*(L+lambda)); % 權(quán)重
         end
         
         Wm(1) = lambda/(L+lambda);
         Wc(1) = Wm(1)+(1-alpha^2+belta); % 權(quán)值
         
         cho = (chol(P_sigma(:,:,k)*(L+lambda)))';
        
         for j = 1:L
             XsigmaP1(:,j) = X_sigma(:,k)+cho(:,j);
             XsigmaP2(:,j) = X_sigma(:,k)-cho(:,j);
         end
         Xsigma = [X_sigma(:,k) XsigmaP1 XsigmaP2];
         
         % Propagate particle into future(time update)
         Xsigmapre(1:4,:) = kron([1 Ts;0 1],eye(2,2))*Xsigma(1:4,:) + kron([Ts^2/2;Ts],eye(2,2))*sqrt(Q)*Xsigma(5:6,:);
         xpred = zeros(4,1);
         for j = 1:2*L+1
             xpred = xpred+Wm(j)*Xsigmapre(1:4,j);
         end
         ppred = zeros(4,4);
         for j = 1:2*L+1
             ppred = ppred+Wc(j)*(Xsigmapre(1:4,j)-xpred)*(Xsigmapre(1:4,j)-xpred)';
         end
         
         xestimate2 = [(xpred)' 0 0 0]';
         ppred2 = blkdiag(ppred,Q,R);
         
         chor = (chol((L+lambda)*ppred2))';
         for j = 1:L
             XaugsigmaP1(:,j) = xestimate2+chor(:,j);
             XaugsigmaP2(:,j) = xestimate2-chor(:,j);
         end
         Xaugsigma = [xestimate2 XaugsigmaP1 XaugsigmaP2];
         
         for j = 1:2*L+1
             Ysigmapre(j) = P0-10*alpha*log10(sqrt((xsensor(k)-Xaugsigma(1,j))^2+(ysensor(k)-Xaugsigma(2,j))^2)/d0)+sqrt(R)*Xsigma(7,j);
         end
         
         ypred = zeros(1,1);
         for j = 1:2*L+1
             ypred = ypred+Wm(j)*Ysigmapre(j);
         end
         
         % incorporate new observation(measure update)
         Pyy = zeros(1,1);
         Pxy = zeros(4,1);
         for j = 1:2*L+1
             Pyy = Pyy+Wc(j)*(Ysigmapre(j)-ypred)*(Ysigmapre(j)-ypred)';
             Pxy = Pxy+Wc(j)*(Xsigmapre(1:4,j)-xpred)*(Ysigmapre(j)-ypred)';
         end
         
         K=Pxy*pinv(Pyy);
         xestimate=xpred+K*(y-ypred);
         P = ppred - K*Pyy*K';
         
         X_sigma(:,k+1) = [(xestimate)' 0 0 0]';
         P_sigma(:,:,k+1) = blkdiag(P,Q,R);  
     
%          Anoise(:,k)=xestimate;
     
         xUKFpart(:,i) = xestimate+sqrt(P)*[randn;randn;randn;randn];
         
         % UKF particle filter
        xUKFpartminus(:,i) = xUKFpart(:,i);
%           xUKFpartminus(:,i) = kron([1 Ts;0 1],eye(2,2))*xUKFpart(:,i) + kron([Ts^2/2;Ts],eye(2,2))*sqrt(Q)*[randn;randn];
         yUKFpart=P0-10*alpha*log10(sqrt((xsensor(k)-xUKFpartminus(1,i))^2+(ysensor(k)-xUKFpartminus(2,i))^2)/d0) ;
         
        vhatUKF(i) = y-yUKFpart;
              
%         vhatUKF(i) = xestimate-xUKFpart(:,i);
     end
     
     % Normalize the likelihood of each a priori eatimate
     vhatscaleUKF = max(abs(vhatUKF))/4;
     qsumUKF = 0;
     for i = 1:N
         qUKF(i)=exp(-(vhatUKF(i)/vhatscaleUKF)^2);
         qsumUKF = qsumUKF+qUKF(i);
     end
     % Normalize the likelihood of each a priori estimate.
     for i = 1:N
         qUKF(i)=qUKF(i)/qsumUKF;
     end
     % Resample the standard particle filter
    for i = 1 : N
        u = rand; % uniform random number between 0 and 1
        qtempsum = 0;
        for j = 1 : N
            qtempsum = qtempsum + qUKF(j);
            if qtempsum >= u
                xUKFpart(:,i) = xUKFpartminus(:,j);
                break;
            end
        end
    end
    % The standard particle filter estimate is the mean of the particles.
    
    xhatUKF(:,k) = mean(xUKFpart')';

    % Save data in arrays for later plotting
%     xhatUKFArr=[xhatUKFArr xhatUKF];
end

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 close all;
 t = 0 : tf;
% figure;
% plot(Anoise(1,:),Anoise(2,:),'b-');
% plot(Xsigma,'b-');
% plot(xrho, yrho,'b-');
% figure;
% plot(xsensor, ysensor,'b-');
% 
% figure;
% plot(1:tf,y,'r-');
% figure;
% plot(1:100,ypart,'r-');
% figure;
% plot(1:100,vhat,'r-');

figure;
plot(xrho, yrho,'k-');hold on;
plot(xhat(1,:),xhat(2,:),'r-');hold on;
plot(xhatUKF(1,:),xhatUKF(2,:),'b-');
%  
% for i=1:4
%     StdErr(i)=sqrt((norm(xArr(i,:)-xhatArr(i,:)))^2/tf);
% end
% disp(['Standaed Particle filter RMS error=','num2str(StdErr)']);
% plot(StdErr,'b-');

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产人成一区二区三区影院| 欧美精品一区男女天堂| 蜜臀av一区二区在线观看| 国产精品女主播av| 91精品久久久久久久91蜜桃| 99re8在线精品视频免费播放| 爽好多水快深点欧美视频| 综合激情成人伊人| 精品99999| 日韩欧美在线不卡| 欧美三级在线播放| 91久久精品网| 99久久精品久久久久久清纯| 韩国三级在线一区| 天堂蜜桃91精品| 一区二区不卡在线播放 | 一个色综合av| 中文在线免费一区三区高中清不卡| 欧美久久一二区| 91黄视频在线观看| 97久久人人超碰| av电影一区二区| 国产激情视频一区二区在线观看| 久久精品国产第一区二区三区| 亚洲国产综合91精品麻豆| 亚洲女子a中天字幕| 国产精品高潮久久久久无| 久久久久久久综合日本| 日韩欧美成人一区二区| 在线不卡免费av| 欧美电影在线免费观看| 欧美少妇bbb| 欧美中文一区二区三区| 色域天天综合网| 色综合久久久久久久久| 色婷婷久久综合| 91成人看片片| 欧美综合一区二区三区| 在线免费观看成人短视频| 91久久人澡人人添人人爽欧美| av不卡在线播放| 99热在这里有精品免费| 91视频在线看| 91九色最新地址| 欧美视频日韩视频在线观看| 在线亚洲免费视频| 欧美日韩夫妻久久| 制服.丝袜.亚洲.另类.中文| 91精品国产aⅴ一区二区| 欧美一级视频精品观看| 精品久久久久久亚洲综合网 | 亚洲激情校园春色| 亚洲一区二区三区影院| 日韩精品久久久久久| 美脚の诱脚舐め脚责91 | wwwwxxxxx欧美| 国产女同性恋一区二区| 国产精品久久久久久久久晋中 | 综合激情成人伊人| 一区二区高清在线| 日韩国产高清在线| 激情六月婷婷久久| av在线免费不卡| 欧美午夜视频网站| 日韩免费高清av| 国产精品美女视频| 亚洲午夜久久久久久久久电影网 | 欧美裸体bbwbbwbbw| 日韩欧美国产综合一区| 中日韩av电影| 一个色妞综合视频在线观看| 日本v片在线高清不卡在线观看| 国产一区二区毛片| 91在线码无精品| 7777精品久久久大香线蕉| 久久尤物电影视频在线观看| 国产精品入口麻豆原神| 午夜久久久久久久久久一区二区| 久国产精品韩国三级视频| gogo大胆日本视频一区| 91精品国产高清一区二区三区蜜臀| www激情久久| 亚洲尤物视频在线| 国产一区在线精品| 91麻豆国产在线观看| 欧美一区二区三区播放老司机| 亚洲国产精品成人综合| 偷拍日韩校园综合在线| 成人免费观看视频| 在线播放国产精品二区一二区四区| 久久久久国产一区二区三区四区| 亚洲一区自拍偷拍| 国产成人综合亚洲91猫咪| 欧美主播一区二区三区美女| 久久嫩草精品久久久精品一| 亚洲最大的成人av| 国产91精品精华液一区二区三区| 欧美精品 日韩| 国产精品久久久久影院老司 | 韩国欧美一区二区| 欧美体内she精高潮| 欧美激情艳妇裸体舞| 日韩vs国产vs欧美| 在线亚洲一区观看| 国产精品丝袜久久久久久app| 日本在线不卡视频| 欧美中文字幕久久| 综合久久久久综合| 成人在线视频首页| 欧美成人精品福利| 日韩精品高清不卡| 欧美色图免费看| 亚洲视频免费观看| 福利一区二区在线| 26uuu久久天堂性欧美| 日韩精品乱码av一区二区| 欧美性猛交xxxx乱大交退制版| 国产精品美女久久久久av爽李琼| 久久99精品久久只有精品| 51精品秘密在线观看| 夜夜精品视频一区二区| 99国产精品久久久久久久久久久| 久久久91精品国产一区二区精品 | 久久91精品国产91久久小草 | 久久精品视频免费| 免费亚洲电影在线| 日韩欧美亚洲一区二区| 日韩国产精品久久| 欧美一区二区三区视频免费| 日日夜夜精品视频免费| 欧美精品久久99| 日韩精品免费视频人成| 91精品国产麻豆| 蜜桃视频第一区免费观看| 日韩欧美中文一区| 久久se这里有精品| 欧美精品一区二区三区很污很色的| 久久99国产乱子伦精品免费| 久久综合丝袜日本网| 国产精品一区二区三区四区| 国产视频在线观看一区二区三区| 国产一区二区在线观看免费| 久久青草国产手机看片福利盒子| 国产乱人伦精品一区二区在线观看 | 精品一区在线看| 久久精品人人爽人人爽| 成人精品国产一区二区4080| 日韩理论在线观看| 欧日韩精品视频| 日韩成人午夜电影| 久久久蜜臀国产一区二区| 国产精品自拍毛片| 亚洲日本在线a| 欧美日韩精品欧美日韩精品| 日韩成人av影视| 久久综合久久综合九色| 成人av在线一区二区三区| 亚洲啪啪综合av一区二区三区| 欧美系列日韩一区| 久久成人免费网| 国产精品欧美一级免费| 精品视频在线免费观看| 六月丁香婷婷色狠狠久久| 日本一区二区综合亚洲| 色吊一区二区三区| 天天射综合影视| 中文字幕av资源一区| 欧美三级欧美一级| 国产剧情一区二区三区| 一区二区三区四区激情| 日韩视频免费直播| 色综合天天做天天爱| 久久精品国产免费| 亚洲久草在线视频| 欧美成人一区二区三区在线观看| 国产a区久久久| 亚洲图片一区二区| 国产日本欧洲亚洲| 91成人看片片| 国产成人av电影在线| 午夜精品一区在线观看| 中文字幕免费不卡| 制服丝袜一区二区三区| 菠萝蜜视频在线观看一区| 日韩精品高清不卡| 亚洲色图.com| 久久精品欧美日韩精品| 在线91免费看| www.欧美色图| 国产曰批免费观看久久久| 亚洲在线视频一区| 国产亚洲一区二区三区四区| 欧美日韩一区精品| 成人不卡免费av| 国产麻豆精品在线观看| 性久久久久久久久| 日韩伦理av电影| 国产日韩在线不卡| 欧美成人精品1314www| 欧美日韩国产经典色站一区二区三区|