亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? opencvref_ml.htm

?? OpenCV1.0 + C++Builder6 example of finding coners programm. Highlites coners it found in frame.
?? HTM
?? 第 1 頁 / 共 5 頁
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<html><head>
<link rel="STYLESHEET" href="opencvref.css" charset="ISO-8859-1" type="text/css">
<title>Machine Learning Reference</title>
</head><body>

<h1>Machine Learning Reference</h1>

<p font-size="120%" color="#0000ff">&nbsp;</p>

<hr><p><ul>
<!-- <li><a href=#ch_introduction>Introduction</a> -->
<li><a href=#ch_commonfunctions>Introduction. Common classes and functions</a>
<li><a href=#ch_nbayes>Normal Bayes Classifier</a>
<li><a href=#ch_knn>K Nearest Neighbors</a>
<li><a href=#ch_svm>SVM</a>
<li><a href=#ch_dtree>Decision Trees</a>
<li><a href=#ch_boosting>Boosting</a>
<li><a href=#ch_randomforest>Random Trees</a>
<li><a href=#ch_em>Expectation-Maximization</a>
<li><a href=#ch_ann>Neural Networks</a>
<!-- <li><a href=#ch_cnn>Convolutional Neural Networks</a>
<li><a href=#ch_crossvalid>Cross-validation method of accuracy estimation</a> -->
</ul><p></p>

<hr><h2><a name="ch_introduction">Introduction. Common classes and functions</a></h2>

<!-- *****************************************************************************************
     *****************************************************************************************
     ***************************************************************************************** -->

<p>The Machine Learning Library (MLL) is a set of classes and functions for statistical classification,
regression and clustering of data.</p>

<p>Most of the classification and regression algorithms are implemented as C++ classes.
As the algorithms have different set of features (like ability to handle missing measurements,
or categorical input variables etc.), there is a little common ground between the classes.
This common ground is defined by the class <code>CvStatModel</code> that all
the other ML classes are derived from.

<hr><h3><a name="decl_CvStatModel">CvStatModel</a></h3>
<p class="Blurb">Base class for statistical models in ML</p>
<pre>
class CvStatModel
{
public:
    <i>/* <a href="#decl_CvStatModel_c">CvStatModel</a>(); */</i>
    <i>/* <a href="#decl_CvStatModel_ct">CvStatModel</a>( const CvMat* train_data ... ); */</i>

    virtual <a href="#decl_CvStatModel_ct">~CvStatModel</a>();

    virtual void <a href="#decl_CvStatModel_clear">clear()</a>=0;

    <i>/* virtual bool <a href="#decl_CvStatModel_train">train</a>( const CvMat* train_data, [int tflag,] ..., const CvMat* responses, ...,
    [const CvMat* var_idx,] ..., [const CvMat* sample_idx,] ...
    [const CvMat* var_type,] ..., [const CvMat* missing_mask,] &lt;misc_training_alg_params&gt; ... )=0;
     */</i>

    <i>/* virtual float <a href="#decl_CvStatModel_predict">predict</a>( const CvMat* sample ... ) const=0; */</i>

    virtual void <a href="#decl_CvStatModel_save">save</a>( const char* filename, const char* name=0 )=0;
    virtual void <a href="#decl_CvStatModel_load">load</a>( const char* filename, const char* name=0 )=0;

    virtual void <a href="#decl_CvStatModel_write">write</a>( CvFileStorage* storage, const char* name )=0;
    virtual void <a href="#decl_CvStatModel_read">read</a>( CvFileStorage* storage, CvFileNode* node )=0;
};
</pre>

<p>
In this declaration some methods are commented off.
Actually, these are methods for which there is no unified API
(with the exception of the default constructor), however, there are many similarities
in the syntax and semantics that are briefly described below in this section,
as if they are a part of the base class.
</p>


<hr><h3><a name="decl_CvStatModel_c">CvStatModel::CvStatModel</a></h3>
<p class="Blurb">Default constructor</p>
<pre>
CvStatModel::CvStatModel();
</pre>
<p>Each statistical model class in ML has default constructor without parameters.
This constructor is useful for 2-stage model construction, when the default constructor
is followed by <a href="#decl_CvStatModel_train">train()</a> or
<a href="#decl_CvStatModel_load">load()</a>.


<hr><h3><a name="decl_CvStatModel_ct">CvStatModel::CvStatModel(...)</a></h3>
<p class="Blurb">Training constructor</p>
<pre>
CvStatModel::CvStatModel( const CvMat* train_data ... ); */
</pre>
<p>Most ML classes provide single-step construct+train constructor.
This constructor is equivalent to the default constructor, followed by the
<a href="#decl_CvStatModel_train">train()</a> method with the parameters that 
passed to the constructor.</p>


<hr><h3><a name="decl_CvStatModel_d">CvStatModel::~CvStatModel</a></h3>
<p class="Blurb">Virtual destructor</p>
<pre>
CvStatModel::~CvStatModel();
</pre>
<p>
The destructor of the base class is declared as virtual,
so it is safe to write the following code:

<pre>
CvStatModel* model;
if( use_svm )
    model = new CvSVM(... /* SVM params */);
else
    model = new CvDTree(... /* Decision tree params */);
...
delete model;
</pre>

Normally, the destructor of each derived class does nothing, but calls
the overridden method <a href="decl_CvStatModel_clear">clear()</a> that deallocates all the memory.
</p>


<hr><h3><a name="decl_CvStatModel_clear">CvStatModel::clear</a></h3>
<p class="Blurb">Deallocates memory and resets the model state</p>
<pre>
void CvStatModel::clear();
</pre>
<p>
The method <code>clear</code> does the same job as the destructor, i.e. it deallocates all the memory
occupied by the class members. But the object itself is not destructed, and it can be reused further.
This method is called from the destructor, from the <code>train</code> methods of the derived classes,
from the methods <a href="decl_CvStatModel_load">load()</a>,
<a href="decl_CvStatModel_read">read()</a> etc., or even explicitly by user.
</p>


<hr><h3><a name="decl_CvStatModel_save">CvStatModel::save</a></h3>
<p class="Blurb">Saves the model to file</p>
<pre>
void CvStatModel::save( const char* filename, const char* name=0 );
</pre>
<p>
The method <code>save</code> stores the complete model state to the specified XML or YAML file
with the specified name or default name (that depends on the particular class).
<a href="opencvref_cxcore.htm#cxcore_persistence">Data persistence</a>
functionality from cxcore is used.
</p>


<hr><h3><a name="decl_CvStatModel_load">CvStatModel::load</a></h3>
<p class="Blurb">Loads the model from file</p>
<pre>
void CvStatModel::load( const char* filename, const char* name=0 );
</pre>
<p>
The method <code>load</code> loads the complete model state with the specified 
name
(or default model-dependent name) from the specified XML or YAML file. The 
previous model state is cleared by <a href="#decl_CvStatModel_clear">clear()</a>.</p>
<p>
Note that the method is virtual, therefore any model can be loaded using this virtual method.
However, unlike the C types of OpenCV that can be loaded using generic
<a href="opencvref_cxcore.htm#decl_cvLoad">cvLoad()</a>, in this case the model type
must be known anyway, because an empty model, an instance of the appropriate class,
must be constructed beforehand.
This limitation will be removed in the later ML versions.
</p>


<hr><h3><a name="decl_CvStatModel_write">CvStatModel::write</a></h3>
<p class="Blurb">Writes the model to file storage</p>
<pre>
void CvStatModel::write( CvFileStorage* storage, const char* name );
</pre>
<p>
The method <code>write</code> stores the complete model state 
to the file storage
with the specified name or default name (that depends on the particular class).
The method is called by <a href="#decl_CvStatModel_save">save()</a>.
</p>


<hr><h3><a name="decl_CvStatModel_read">CvStatModel::read</a></h3>
<p class="Blurb">Reads the model from file storage</p>
<pre>
void CvStatMode::read( CvFileStorage* storage, CvFileNode* node );
</pre>
<p>
The method <code>read</code> restores the complete model state from the specified node
of the file storage. The node must be located by user, for example, using
the function <a href="opencvref_cxcore.htm#decl_cvGetFileNodeByName">cvGetFileNodeByName()</a>.
The method is called by <a href="#decl_CvStatModel_load">load()</a>.
</p>
<p>The previous model state is cleared by <a href="#decl_CvStatModel_clear">clear()</a>.
</p>


<hr><h3><a name="decl_CvStatModel_train">CvStatModel::train</a></h3>
<p class="Blurb">Trains the model</p>
<pre>
bool CvStatMode::train( const CvMat* train_data, [int tflag,] ..., const CvMat* responses, ...,
    [const CvMat* var_idx,] ..., [const CvMat* sample_idx,] ...
    [const CvMat* var_type,] ..., [const CvMat* missing_mask,] &lt;misc_training_alg_params&gt; ... );
</pre>
<p>
The method trains the statistical model using a set of input feature vectors and the corresponding
output values (responses). Both input and output vectors/values are passed as matrices.
By default the input feature vectors are stored as <code>train_data</code> rows,
i.e. all the components (features) of a training vector are stored
continuously. However, some algorithms can handle the transposed representation,
when all values of each particular feature (component/input variable)
over the whole input set are stored continuously. If both layouts are supported, the method
includes <code>tflag</code> parameter that specifies the orientation:<br>
<code>tflag=CV_ROW_SAMPLE</code> means that the feature vectors are stored as rows,<br>
<code>tflag=CV_COL_SAMPLE</code> means that the feature vectors are stored as columns.<br>
The <code>train_data</code> must have
<code>32fC1</code> (32-bit floating-point, single-channel) format.
Responses are usually stored in the 1d
vector (a row or a column) of <code>32sC1</code> (only in the classification problem) or
<code>32fC1</code> format, one value per an input vector (although some algorithms, like various flavors of neural nets,
take vector responses).<p>For classification problems the responses are discrete class labels,
for regression problems - the responses are values of the function to be approximated.
Some algorithms can deal only with classification problems, some - only with regression problems,
and some can deal with both problems. In the latter case the type of output variable is either passed as separate parameter,
or as a last element of <code>var_type</code> vector:<br>
<code>CV_VAR_CATEGORICAL</code> means that the output values are discrete class labels,<br>
<code>CV_VAR_ORDERED(=CV_VAR_NUMERICAL)</code> means that the output values are ordered, i.e.
2 different values can be compared as numbers, and this is a regression problem<br>
The types of input variables can be also specified using <code>var_type</code>.
Most algorithms can handle only ordered input variables.
</p>
<p>
Many models in the ML may be trained on a selected feature subset,
and/or on a selected sample subset of the training set. To make it easier for user,
the method <code>train</code> usually includes <code>var_idx</code>
and <code>sample_idx</code> parameters. The former identifies variables (features) of interest,
and the latter identifies samples of interest. Both vectors are either integer (<code>32sC1</code>)
vectors, i.e. lists of 0-based indices, or 8-bit (<code>8uC1</code>) masks of active variables/samples.
User may pass <code>NULL</code> pointers instead of either of the argument, meaning that
all the variables/samples are used for training.
</p>
<p>Additionally some algorithms can handle missing measurements,
that is when certain features of
certain training samples have unknown values (for example, they forgot to
measure a temperature
of patient A on Monday). The parameter <code>missing_mask</code>, 8-bit matrix of the same size as
<code>train_data</code>, is used to mark the missed values (non-zero elements of the mask).</p>
<p>Usually, the previous model state is cleared by
<a href="#decl_CvStatModel_clear">clear()</a> before running the training procedure.
However, some algorithms may optionally update the model state with the new
training data, instead of resetting it.</a>


<hr><h3><a name="decl_CvStatModel_predict">CvStatModel::predict</a></h3>
<p class="Blurb">Predicts the response for sample</p>
<pre>
float CvStatMode::predict( const CvMat* sample[, &lt;prediction_params&gt;] ) const;
</pre>
<p>
The method is used to predict the response for a new sample. In case of 
classification the method returns the class label, in case of regression - the 
output function value. The input sample must have as many components as the
<code>train_data</code> passed to <a href="#decl_CvStatModel_train">train</a>
contains. If the <code>var_idx</code> parameter is passed to <a href="#decl_CvStatModel_train">train</a>,
it is remembered and then is used to extract only the necessary components from the input sample

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
免费成人在线观看| 国内精品视频一区二区三区八戒| 亚洲国产精品成人综合色在线婷婷| 日韩午夜激情免费电影| 日韩欧美一级二级| 精品欧美一区二区在线观看| 欧美大片一区二区三区| 亚洲精品一区二区在线观看| 国产亚洲精品久| 中文字幕av不卡| 亚洲视频在线一区| 亚洲成a人v欧美综合天堂下载| 性做久久久久久| 久久精品国产秦先生| 国产精品一区三区| 91同城在线观看| 欧美日免费三级在线| 日韩午夜小视频| 国产三级精品三级| 亚洲精品成人精品456| 视频一区中文字幕| 国产一区二区三区综合| 成人黄色小视频| 在线日韩av片| 精品久久久久久综合日本欧美| 久久免费午夜影院| 综合在线观看色| 亚洲成人av一区二区| 日韩精品五月天| 国产高清久久久久| 欧美最猛性xxxxx直播| 日韩视频中午一区| 国产中文字幕一区| 色综合天天综合给合国产| 欧美日本韩国一区二区三区视频| 精品999在线播放| 亚洲欧美电影一区二区| 日本成人超碰在线观看| 粉嫩aⅴ一区二区三区四区| 欧美三日本三级三级在线播放| 欧美大片拔萝卜| 亚洲同性gay激情无套| 奇米精品一区二区三区在线观看| 成人动漫av在线| 欧美一区二区大片| 亚洲欧洲三级电影| 亚洲高清免费在线| 国产成人av网站| 91精品欧美综合在线观看最新| 久久久精品一品道一区| 调教+趴+乳夹+国产+精品| 成人综合在线观看| 日韩天堂在线观看| 伊人一区二区三区| 国产成人夜色高潮福利影视| 欧美色涩在线第一页| 中文字幕久久午夜不卡| 欧美a级理论片| 色呦呦国产精品| 国产片一区二区三区| 日本强好片久久久久久aaa| 91免费视频网址| 国产亚洲婷婷免费| 日韩成人精品在线| 欧洲亚洲精品在线| 国产精品乱码一区二区三区软件 | 国产欧美日韩在线| 亚洲品质自拍视频| 福利视频网站一区二区三区| 欧美一区二区视频免费观看| 综合色天天鬼久久鬼色| 国产91精品在线观看| 日韩一级二级三级| 亚洲国产成人av网| 91亚洲精品一区二区乱码| 久久免费偷拍视频| 美女在线视频一区| 欧美日韩亚洲综合一区| 亚洲激情自拍偷拍| av在线不卡电影| 久久精品亚洲乱码伦伦中文| 婷婷成人综合网| 欧美日精品一区视频| 一区二区三区蜜桃| 91久久精品一区二区三| 亚洲视频1区2区| 99精品欧美一区| 国产精品理论片| 成人久久视频在线观看| 国产午夜久久久久| 国产精品自拍一区| 久久精品欧美一区二区三区不卡| 看国产成人h片视频| 69成人精品免费视频| 亚洲成人在线免费| 欧美日韩中文国产| 午夜视频久久久久久| 欧美日韩综合不卡| 日韩黄色在线观看| 91精品国产欧美一区二区18 | 国产很黄免费观看久久| 久久精品水蜜桃av综合天堂| 经典三级视频一区| 国产亚洲综合在线| www.一区二区| 亚洲蜜臀av乱码久久精品| 色欧美日韩亚洲| 亚洲高清免费视频| 欧美一区在线视频| 精品在线播放免费| 精品日韩99亚洲| 国产乱子轮精品视频| 久久久99精品久久| 丁香激情综合五月| 亚洲欧美日韩久久| 欧美三级日韩三级| 久久一二三国产| 欧美日韩中文国产| 奇米在线7777在线精品| 日韩精品一区二区三区在线 | 久久久久99精品国产片| 国产成人av福利| 国产精品伦一区| 欧美性做爰猛烈叫床潮| 偷拍亚洲欧洲综合| 欧美精品一区二区在线播放| 国产盗摄精品一区二区三区在线| 中文字幕一区二区三区色视频| 91在线视频在线| 天堂久久久久va久久久久| 日韩女优制服丝袜电影| 国产福利91精品| 亚洲资源中文字幕| 日韩午夜在线播放| 成人av手机在线观看| 亚洲午夜一区二区三区| 精品日韩一区二区| 91原创在线视频| 日本中文在线一区| 欧美国产视频在线| 欧美日本韩国一区二区三区视频| 视频精品一区二区| 久久青草国产手机看片福利盒子| 91丨九色porny丨蝌蚪| 日韩av中文在线观看| 中日韩av电影| 欧美日韩你懂得| 国产成人免费视频精品含羞草妖精| 亚洲美女电影在线| 精品国产乱子伦一区| 91蜜桃网址入口| 狠狠色综合播放一区二区| 一区二区三区四区蜜桃| www激情久久| 中文字幕亚洲成人| 欧美精品在欧美一区二区少妇| 国产一区二区看久久| 亚洲成国产人片在线观看| 国产欧美视频在线观看| 欧美精品tushy高清| 成人av在线播放网址| 蜜臀av在线播放一区二区三区| 亚洲免费在线看| 国产日韩欧美亚洲| 欧美一区二区黄色| 色噜噜偷拍精品综合在线| 国产精品综合一区二区| 亚洲国产另类av| 国产精品久久久久影院色老大 | 国产精品美女久久久久aⅴ | 青青草国产成人av片免费| 亚洲高清久久久| 有坂深雪av一区二区精品| 亚洲图片另类小说| 国产精品视频yy9299一区| 久久久精品免费免费| 精品国产91久久久久久久妲己| 欧美日韩亚洲综合在线| 欧美体内she精高潮| 色屁屁一区二区| 色噜噜狠狠成人中文综合| 91色porny| 91九色最新地址| 91国偷自产一区二区三区观看| 色呦呦国产精品| 色综合久久综合| 91久久免费观看| 欧美亚洲综合网| 欧美性猛片xxxx免费看久爱| 欧美性猛交xxxx乱大交退制版| 欧美综合久久久| 欧美午夜精品电影| 欧美精品自拍偷拍| 欧美精品vⅰdeose4hd| 日韩一区二区三区电影在线观看| 在线综合+亚洲+欧美中文字幕| 91精品欧美福利在线观看| 日韩欧美中文字幕制服| 欧美成人精精品一区二区频| 精品国产91久久久久久久妲己|