亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? opencvref_ml.htm

?? OpenCV1.0 + C++Builder6 example of finding coners programm. Highlites coners it found in frame.
?? HTM
?? 第 1 頁 / 共 5 頁
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<html><head>
<link rel="STYLESHEET" href="opencvref.css" charset="ISO-8859-1" type="text/css">
<title>Machine Learning Reference</title>
</head><body>

<h1>Machine Learning Reference</h1>

<p font-size="120%" color="#0000ff">&nbsp;</p>

<hr><p><ul>
<!-- <li><a href=#ch_introduction>Introduction</a> -->
<li><a href=#ch_commonfunctions>Introduction. Common classes and functions</a>
<li><a href=#ch_nbayes>Normal Bayes Classifier</a>
<li><a href=#ch_knn>K Nearest Neighbors</a>
<li><a href=#ch_svm>SVM</a>
<li><a href=#ch_dtree>Decision Trees</a>
<li><a href=#ch_boosting>Boosting</a>
<li><a href=#ch_randomforest>Random Trees</a>
<li><a href=#ch_em>Expectation-Maximization</a>
<li><a href=#ch_ann>Neural Networks</a>
<!-- <li><a href=#ch_cnn>Convolutional Neural Networks</a>
<li><a href=#ch_crossvalid>Cross-validation method of accuracy estimation</a> -->
</ul><p></p>

<hr><h2><a name="ch_introduction">Introduction. Common classes and functions</a></h2>

<!-- *****************************************************************************************
     *****************************************************************************************
     ***************************************************************************************** -->

<p>The Machine Learning Library (MLL) is a set of classes and functions for statistical classification,
regression and clustering of data.</p>

<p>Most of the classification and regression algorithms are implemented as C++ classes.
As the algorithms have different set of features (like ability to handle missing measurements,
or categorical input variables etc.), there is a little common ground between the classes.
This common ground is defined by the class <code>CvStatModel</code> that all
the other ML classes are derived from.

<hr><h3><a name="decl_CvStatModel">CvStatModel</a></h3>
<p class="Blurb">Base class for statistical models in ML</p>
<pre>
class CvStatModel
{
public:
    <i>/* <a href="#decl_CvStatModel_c">CvStatModel</a>(); */</i>
    <i>/* <a href="#decl_CvStatModel_ct">CvStatModel</a>( const CvMat* train_data ... ); */</i>

    virtual <a href="#decl_CvStatModel_ct">~CvStatModel</a>();

    virtual void <a href="#decl_CvStatModel_clear">clear()</a>=0;

    <i>/* virtual bool <a href="#decl_CvStatModel_train">train</a>( const CvMat* train_data, [int tflag,] ..., const CvMat* responses, ...,
    [const CvMat* var_idx,] ..., [const CvMat* sample_idx,] ...
    [const CvMat* var_type,] ..., [const CvMat* missing_mask,] &lt;misc_training_alg_params&gt; ... )=0;
     */</i>

    <i>/* virtual float <a href="#decl_CvStatModel_predict">predict</a>( const CvMat* sample ... ) const=0; */</i>

    virtual void <a href="#decl_CvStatModel_save">save</a>( const char* filename, const char* name=0 )=0;
    virtual void <a href="#decl_CvStatModel_load">load</a>( const char* filename, const char* name=0 )=0;

    virtual void <a href="#decl_CvStatModel_write">write</a>( CvFileStorage* storage, const char* name )=0;
    virtual void <a href="#decl_CvStatModel_read">read</a>( CvFileStorage* storage, CvFileNode* node )=0;
};
</pre>

<p>
In this declaration some methods are commented off.
Actually, these are methods for which there is no unified API
(with the exception of the default constructor), however, there are many similarities
in the syntax and semantics that are briefly described below in this section,
as if they are a part of the base class.
</p>


<hr><h3><a name="decl_CvStatModel_c">CvStatModel::CvStatModel</a></h3>
<p class="Blurb">Default constructor</p>
<pre>
CvStatModel::CvStatModel();
</pre>
<p>Each statistical model class in ML has default constructor without parameters.
This constructor is useful for 2-stage model construction, when the default constructor
is followed by <a href="#decl_CvStatModel_train">train()</a> or
<a href="#decl_CvStatModel_load">load()</a>.


<hr><h3><a name="decl_CvStatModel_ct">CvStatModel::CvStatModel(...)</a></h3>
<p class="Blurb">Training constructor</p>
<pre>
CvStatModel::CvStatModel( const CvMat* train_data ... ); */
</pre>
<p>Most ML classes provide single-step construct+train constructor.
This constructor is equivalent to the default constructor, followed by the
<a href="#decl_CvStatModel_train">train()</a> method with the parameters that 
passed to the constructor.</p>


<hr><h3><a name="decl_CvStatModel_d">CvStatModel::~CvStatModel</a></h3>
<p class="Blurb">Virtual destructor</p>
<pre>
CvStatModel::~CvStatModel();
</pre>
<p>
The destructor of the base class is declared as virtual,
so it is safe to write the following code:

<pre>
CvStatModel* model;
if( use_svm )
    model = new CvSVM(... /* SVM params */);
else
    model = new CvDTree(... /* Decision tree params */);
...
delete model;
</pre>

Normally, the destructor of each derived class does nothing, but calls
the overridden method <a href="decl_CvStatModel_clear">clear()</a> that deallocates all the memory.
</p>


<hr><h3><a name="decl_CvStatModel_clear">CvStatModel::clear</a></h3>
<p class="Blurb">Deallocates memory and resets the model state</p>
<pre>
void CvStatModel::clear();
</pre>
<p>
The method <code>clear</code> does the same job as the destructor, i.e. it deallocates all the memory
occupied by the class members. But the object itself is not destructed, and it can be reused further.
This method is called from the destructor, from the <code>train</code> methods of the derived classes,
from the methods <a href="decl_CvStatModel_load">load()</a>,
<a href="decl_CvStatModel_read">read()</a> etc., or even explicitly by user.
</p>


<hr><h3><a name="decl_CvStatModel_save">CvStatModel::save</a></h3>
<p class="Blurb">Saves the model to file</p>
<pre>
void CvStatModel::save( const char* filename, const char* name=0 );
</pre>
<p>
The method <code>save</code> stores the complete model state to the specified XML or YAML file
with the specified name or default name (that depends on the particular class).
<a href="opencvref_cxcore.htm#cxcore_persistence">Data persistence</a>
functionality from cxcore is used.
</p>


<hr><h3><a name="decl_CvStatModel_load">CvStatModel::load</a></h3>
<p class="Blurb">Loads the model from file</p>
<pre>
void CvStatModel::load( const char* filename, const char* name=0 );
</pre>
<p>
The method <code>load</code> loads the complete model state with the specified 
name
(or default model-dependent name) from the specified XML or YAML file. The 
previous model state is cleared by <a href="#decl_CvStatModel_clear">clear()</a>.</p>
<p>
Note that the method is virtual, therefore any model can be loaded using this virtual method.
However, unlike the C types of OpenCV that can be loaded using generic
<a href="opencvref_cxcore.htm#decl_cvLoad">cvLoad()</a>, in this case the model type
must be known anyway, because an empty model, an instance of the appropriate class,
must be constructed beforehand.
This limitation will be removed in the later ML versions.
</p>


<hr><h3><a name="decl_CvStatModel_write">CvStatModel::write</a></h3>
<p class="Blurb">Writes the model to file storage</p>
<pre>
void CvStatModel::write( CvFileStorage* storage, const char* name );
</pre>
<p>
The method <code>write</code> stores the complete model state 
to the file storage
with the specified name or default name (that depends on the particular class).
The method is called by <a href="#decl_CvStatModel_save">save()</a>.
</p>


<hr><h3><a name="decl_CvStatModel_read">CvStatModel::read</a></h3>
<p class="Blurb">Reads the model from file storage</p>
<pre>
void CvStatMode::read( CvFileStorage* storage, CvFileNode* node );
</pre>
<p>
The method <code>read</code> restores the complete model state from the specified node
of the file storage. The node must be located by user, for example, using
the function <a href="opencvref_cxcore.htm#decl_cvGetFileNodeByName">cvGetFileNodeByName()</a>.
The method is called by <a href="#decl_CvStatModel_load">load()</a>.
</p>
<p>The previous model state is cleared by <a href="#decl_CvStatModel_clear">clear()</a>.
</p>


<hr><h3><a name="decl_CvStatModel_train">CvStatModel::train</a></h3>
<p class="Blurb">Trains the model</p>
<pre>
bool CvStatMode::train( const CvMat* train_data, [int tflag,] ..., const CvMat* responses, ...,
    [const CvMat* var_idx,] ..., [const CvMat* sample_idx,] ...
    [const CvMat* var_type,] ..., [const CvMat* missing_mask,] &lt;misc_training_alg_params&gt; ... );
</pre>
<p>
The method trains the statistical model using a set of input feature vectors and the corresponding
output values (responses). Both input and output vectors/values are passed as matrices.
By default the input feature vectors are stored as <code>train_data</code> rows,
i.e. all the components (features) of a training vector are stored
continuously. However, some algorithms can handle the transposed representation,
when all values of each particular feature (component/input variable)
over the whole input set are stored continuously. If both layouts are supported, the method
includes <code>tflag</code> parameter that specifies the orientation:<br>
<code>tflag=CV_ROW_SAMPLE</code> means that the feature vectors are stored as rows,<br>
<code>tflag=CV_COL_SAMPLE</code> means that the feature vectors are stored as columns.<br>
The <code>train_data</code> must have
<code>32fC1</code> (32-bit floating-point, single-channel) format.
Responses are usually stored in the 1d
vector (a row or a column) of <code>32sC1</code> (only in the classification problem) or
<code>32fC1</code> format, one value per an input vector (although some algorithms, like various flavors of neural nets,
take vector responses).<p>For classification problems the responses are discrete class labels,
for regression problems - the responses are values of the function to be approximated.
Some algorithms can deal only with classification problems, some - only with regression problems,
and some can deal with both problems. In the latter case the type of output variable is either passed as separate parameter,
or as a last element of <code>var_type</code> vector:<br>
<code>CV_VAR_CATEGORICAL</code> means that the output values are discrete class labels,<br>
<code>CV_VAR_ORDERED(=CV_VAR_NUMERICAL)</code> means that the output values are ordered, i.e.
2 different values can be compared as numbers, and this is a regression problem<br>
The types of input variables can be also specified using <code>var_type</code>.
Most algorithms can handle only ordered input variables.
</p>
<p>
Many models in the ML may be trained on a selected feature subset,
and/or on a selected sample subset of the training set. To make it easier for user,
the method <code>train</code> usually includes <code>var_idx</code>
and <code>sample_idx</code> parameters. The former identifies variables (features) of interest,
and the latter identifies samples of interest. Both vectors are either integer (<code>32sC1</code>)
vectors, i.e. lists of 0-based indices, or 8-bit (<code>8uC1</code>) masks of active variables/samples.
User may pass <code>NULL</code> pointers instead of either of the argument, meaning that
all the variables/samples are used for training.
</p>
<p>Additionally some algorithms can handle missing measurements,
that is when certain features of
certain training samples have unknown values (for example, they forgot to
measure a temperature
of patient A on Monday). The parameter <code>missing_mask</code>, 8-bit matrix of the same size as
<code>train_data</code>, is used to mark the missed values (non-zero elements of the mask).</p>
<p>Usually, the previous model state is cleared by
<a href="#decl_CvStatModel_clear">clear()</a> before running the training procedure.
However, some algorithms may optionally update the model state with the new
training data, instead of resetting it.</a>


<hr><h3><a name="decl_CvStatModel_predict">CvStatModel::predict</a></h3>
<p class="Blurb">Predicts the response for sample</p>
<pre>
float CvStatMode::predict( const CvMat* sample[, &lt;prediction_params&gt;] ) const;
</pre>
<p>
The method is used to predict the response for a new sample. In case of 
classification the method returns the class label, in case of regression - the 
output function value. The input sample must have as many components as the
<code>train_data</code> passed to <a href="#decl_CvStatModel_train">train</a>
contains. If the <code>var_idx</code> parameter is passed to <a href="#decl_CvStatModel_train">train</a>,
it is remembered and then is used to extract only the necessary components from the input sample

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久噜噜亚洲综合| 国产99久久久国产精品潘金| 国产老妇另类xxxxx| 欧美日韩一区高清| 国产欧美日韩麻豆91| 日韩电影在线一区二区三区| 成人短视频下载| 精品处破学生在线二十三| 亚洲国产精品一区二区www在线| 丁香桃色午夜亚洲一区二区三区| 911国产精品| 亚洲成av人影院| 色综合天天综合色综合av| 国产欧美精品一区| 国产精品一区二区三区四区| 日韩欧美国产午夜精品| 亚洲午夜久久久久中文字幕久| 成人18精品视频| 中文字幕欧美激情一区| 国产精品456| 久久久久九九视频| 国内精品自线一区二区三区视频| 欧美一区二区网站| 日本午夜精品一区二区三区电影| 欧美性大战久久久| 一区二区三区中文字幕电影| 99国产精品久久久久久久久久| 国产精品三级在线观看| 国产精品91一区二区| 国产校园另类小说区| 狠狠色狠狠色综合| 精品少妇一区二区| 精品一区二区三区不卡 | 国内精品自线一区二区三区视频| 欧美丰满一区二区免费视频 | 自拍偷自拍亚洲精品播放| 国产成人午夜精品5599| 国产清纯在线一区二区www| 国产一区二区三区日韩| 国产日韩欧美一区二区三区综合| 国产高清成人在线| 国产精品久久久久久久久快鸭 | 8x8x8国产精品| 秋霞午夜鲁丝一区二区老狼| 日韩三级在线免费观看| 精品在线播放免费| 欧美激情一区二区三区蜜桃视频| 成人av网址在线观看| 一区二区三区四区乱视频| 欧美性色黄大片| 蜜桃在线一区二区三区| 久久久美女艺术照精彩视频福利播放| 国产不卡视频一区| 亚洲精品国产精品乱码不99| 欧美日韩精品免费观看视频| 毛片av中文字幕一区二区| 26uuu国产日韩综合| 91在线国内视频| 亚洲成a天堂v人片| 久久久亚洲国产美女国产盗摄| 99久久精品免费看| 亚洲国产成人av| 国产三级欧美三级| 欧美性生活久久| 国产乱码精品一品二品| 亚洲资源在线观看| 久久午夜电影网| 欧美吻胸吃奶大尺度电影| 精品一二三四区| 亚洲综合在线观看视频| 精品第一国产综合精品aⅴ| 一道本成人在线| 韩国女主播成人在线观看| 亚洲蜜臀av乱码久久精品| 日韩欧美一二三四区| 91麻豆swag| 国内精品国产成人| 亚洲一区二区美女| 中文幕一区二区三区久久蜜桃| 欧美日韩aaaaaa| eeuss鲁片一区二区三区在线看| 奇米在线7777在线精品| 亚洲精品乱码久久久久久久久| 精品99999| 欧美精品一卡两卡| 91丨porny丨在线| 国产一区不卡在线| 日韩精品免费专区| 亚洲精品欧美在线| 中文字幕成人av| 日韩亚洲欧美中文三级| 欧美制服丝袜第一页| www.欧美色图| 国产毛片精品国产一区二区三区| 午夜精品久久久久久久久久 | 久久精品免费在线观看| 91麻豆精品国产91久久久更新时间| 91免费版在线| www.欧美亚洲| zzijzzij亚洲日本少妇熟睡| 国产盗摄女厕一区二区三区| 久久综合综合久久综合| 日日夜夜精品视频天天综合网| 一区二区成人在线视频| 综合久久国产九一剧情麻豆| 国产欧美日韩久久| 中文字幕av资源一区| 久久久久久久免费视频了| 精品久久一区二区三区| 日韩欧美123| 欧美va天堂va视频va在线| 欧美一区二区女人| 日韩欧美国产电影| 精品国产乱码久久久久久老虎| 欧美一区日韩一区| 欧美电影免费观看高清完整版在线观看 | 精品一区二区三区欧美| 男女男精品网站| 日韩1区2区3区| 日韩在线一二三区| 视频一区免费在线观看| 亚洲成人激情综合网| 偷拍一区二区三区四区| 日本午夜精品视频在线观看| 免费精品视频在线| 久久精品国产秦先生| 国产黄色精品视频| gogo大胆日本视频一区| 欧美在线啊v一区| 欧美精品在线视频| 精品少妇一区二区三区免费观看| 久久综合给合久久狠狠狠97色69| 国产亚洲欧美色| 中文字幕一区二区三中文字幕| 一区二区高清在线| 蜜臀国产一区二区三区在线播放| 国产乱码精品一区二区三区忘忧草| 波多野结衣中文一区| 日本道在线观看一区二区| 欧美片在线播放| 26uuu国产在线精品一区二区| 国产精品不卡在线| 五月天激情小说综合| 激情五月婷婷综合| 色狠狠av一区二区三区| 在线综合+亚洲+欧美中文字幕| 国产三级精品三级在线专区| 亚洲另类春色国产| 精品一区二区三区香蕉蜜桃| 色猫猫国产区一区二在线视频| 日韩一级精品视频在线观看| 国产精品久久久久久妇女6080| 午夜视频久久久久久| 国产成人一区二区精品非洲| 欧美日韩久久久| 国产精品丝袜一区| 奇米在线7777在线精品| 91在线云播放| 日韩色在线观看| 亚洲夂夂婷婷色拍ww47| 精品一区二区在线免费观看| 色哟哟精品一区| 久久综合九色综合欧美就去吻| 亚洲一区二区三区中文字幕在线| 精品一区二区精品| 欧美色精品天天在线观看视频| 久久久青草青青国产亚洲免观| 日日夜夜免费精品视频| 日本精品一区二区三区四区的功能| 久久亚洲综合色一区二区三区 | 欧美色大人视频| 国产精品久久久久久久久快鸭| 美女一区二区三区| 欧美性一二三区| 亚洲男人的天堂在线aⅴ视频| 国产精品资源在线观看| 欧美一区日本一区韩国一区| 亚洲午夜精品在线| 91一区在线观看| 欧美国产成人在线| 国内成人精品2018免费看| 制服丝袜激情欧洲亚洲| 亚洲一区成人在线| 一本到三区不卡视频| 国产精品久久午夜夜伦鲁鲁| 国产精品影音先锋| 2023国产一二三区日本精品2022| 三级精品在线观看| 91精品国产欧美一区二区| 午夜精品久久久| 欧美电影在哪看比较好| 亚洲一二三区在线观看| 色婷婷狠狠综合| 亚洲精品视频免费看| 日本韩国视频一区二区| 亚洲国产日韩av| 91精品啪在线观看国产60岁| 日韩精品乱码av一区二区| 欧美精品久久一区二区三区| 天堂久久一区二区三区|