亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊(cè)

???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????¤???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????¥???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????|???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????ˉ????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????google???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????¥???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????-???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????¨???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????£????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????twitter

  • 《Qt及Qt Quick開發(fā)實(shí)戰(zhàn)精解》代碼

    《Qt及Qt Quick開發(fā)實(shí)戰(zhàn)精解》代碼。Qt(官方發(fā)音同cute 發(fā)音為/kju:t/,雖然也俗稱為Q.T.發(fā)音為/kju:ti?/")是一個(gè)跨平臺(tái)的C++應(yīng)用程序開發(fā)框架。廣泛用于開發(fā)GUI程序,這種情況下又被稱為部件工具箱。也可用于開發(fā)非GUI程序,比如控制臺(tái)工具和服務(wù)器。Qt使用于OPIE、Skype、VLC media player、Adobe Photoshop Elements、VirtualBox與Mathematica以及被Autodesk 、歐洲空間局、夢(mèng)工廠、Google、HP、KDE、盧卡斯影業(yè)、西門子公司、富豪集團(tuán), 華特迪士尼動(dòng)畫制作公司、三星集團(tuán)、飛利浦、Panasonic 所使用。

    標(biāo)簽: 《Qt及Qt Quick開發(fā)實(shí)戰(zhàn)精解》代碼

    上傳時(shí)間: 2015-12-06

    上傳用戶:filling87

  • TensorFlow 官方文檔中文版 - v1.2.pdf

    Google 機(jī)器學(xué)習(xí)開源 TensorFlow官方文檔中文版。

    標(biāo)簽: TensorFlow pdf v1 文檔

    上傳時(shí)間: 2017-07-25

    上傳用戶:zuqisong

  • 網(wǎng)絡(luò)爬蟲編程

    網(wǎng)絡(luò)爬蟲 網(wǎng)絡(luò)爬蟲在CPP中爬行鏈接到你想要的深度。控制臺(tái)應(yīng)用程序   Ubuntu 14.04 LTS上編譯的程序   用g+編譯器編譯 相依性   卷曲   Boost圖書館 用于編譯的命令   G+爬蟲.cpp-lcurl-lost_regex-o爬蟲 輸入   URL:您想要抓取示例“dirghbuch.com”的URL   鏈接數(shù):要從爬行中提取的每頁鏈接數(shù)   深度:我們想爬多深,在哪里深度可以定義為樹的深度。 輸出量   crawler.txt 限制   鏈接數(shù)最多可達(dá)100。   Does not work for website which has blocked curl crawling for example google.com yahoo.com   由于缺乏并行性,所以速度很慢。   沒有完整URL的鏈接被追加到用戶在大容量中插入的URLwww.xyz.com有/conatct-us的網(wǎng)址將是www.xyz.com/contact-us   唯一的單詞也包含html標(biāo)記。 可能的改進(jìn),但尚未落實(shí)   限制共享變量的使用   改進(jìn)使其易于并行化   比卷曲更有效的爬行方式

    標(biāo)簽: 網(wǎng)絡(luò)爬蟲 編程

    上傳時(shí)間: 2018-06-20

    上傳用戶:1370893801

  • tensorflow

    tensorflow目前作為google發(fā)布的基礎(chǔ)深度學(xué)習(xí)軟件工具包,具有劃時(shí)代的意義,附件為tensorflow的基礎(chǔ)調(diào)用實(shí)例及使用方法,非常適合初學(xué)者

    標(biāo)簽: 人工智能 深度學(xué)習(xí)

    上傳時(shí)間: 2018-07-15

    上傳用戶:gls123

  • JAVA SMPP 源碼

    Introduction jSMPP is a java implementation (SMPP API) of the SMPP protocol (currently supports SMPP v3.4). It provides interfaces to communicate with a Message Center or an ESME (External Short Message Entity) and is able to handle traffic of 3000-5000 messages per second. jSMPP is not a high-level library. People looking for a quick way to get started with SMPP may be better of using an abstraction layer such as the Apache Camel SMPP component: http://camel.apache.org/smpp.html Travis-CI status: History The project started on Google Code: http://code.google.com/p/jsmpp/ It was maintained by uudashr on Github until 2013. It is now a community project maintained at http://jsmpp.org Release procedure mvn deploy -DperformRelease=true -Durl=https://oss.sonatype.org/service/local/staging/deploy/maven2/ -DrepositoryId=sonatype-nexus-staging -Dgpg.passphrase=<yourpassphrase> log in here: https://oss.sonatype.org click the 'Staging Repositories' link select the repository and click close select the repository and click release License Copyright (C) 2007-2013, Nuruddin Ashr uudashr@gmail.com Copyright (C) 2012-2013, Denis Kostousov denis.kostousov@gmail.com Copyright (C) 2014, Daniel Pocock http://danielpocock.com Copyright (C) 2016, Pim Moerenhout pim.moerenhout@gmail.com This project is licensed under the Apache Software License 2.0.

    標(biāo)簽: JAVA SMPP 源碼

    上傳時(shí)間: 2019-01-25

    上傳用戶:dragon_longer

  • Interactivity+in+Social+Media

    When digital media is perceived only as a tool to deliver content the potential for using its affordances to explore meaning is lost. Rather than seeing media only as an access point, we can view it as a way to enhance the expressiveness of content. Today blogs, wikis, messaging, mash-ups, and social media (Facebook, Twitter, YouTube and others) offer authors ways to create narrative meaning that refl ects our new media culture. We can look to the past for similarities and parallels to better understand how to use social media as a creative tool with which to dialogue, collaborate, and create interactive narratives.

    標(biāo)簽: Interactivity Social Media in

    上傳時(shí)間: 2020-05-27

    上傳用戶:shancjb

  • Mobile+Technology+Consumption+Opportunities

    The growth of mobile technologies is remarkable. At a recent Mobile World Congress Conference, Eric Schmidt, CEO of Google predicted that within three years, smart phones will surpass Personal Com- puter sales. The number of mobile phones used worldwide has exceeded 4.6 billion with continued growth expected in the future. In fact, in the United States alone, the numbers of mobile phone users comprise over 80% of the population. 

    標(biāo)簽: Opportunities Consumption Technology Mobile

    上傳時(shí)間: 2020-05-30

    上傳用戶:shancjb

  • Virtualization Essentials

    The information age is exploding around us, giving us access to dizzying amounts of data the instant it becomes available. Smart phones and tablets provide an untethered experience that offers stream- ing video, audio, and other media formats to just about any place on the planet. Even people who are not “computer literate” use Facebook to catch up with friends and family, use Google to research a new restaurant choice and print directions to get there, or Tweet their reactions once they have sampled the fare. The budding Internet-of-things will only catalyze this data eruption. The infrastructure supporting these services is also growing exponentially, and the technology that facilitates this rapid growth is virtualization.

    標(biāo)簽: Virtualization Essentials

    上傳時(shí)間: 2020-06-01

    上傳用戶:shancjb

  • 《Python深度學(xué)習(xí)》2018中文版+源代碼

    這是我在做大學(xué)教授期間推薦給我學(xué)生的一本書,非常好,適合入門學(xué)習(xí)。《python深度學(xué)習(xí)》由Keras之父、現(xiàn)任Google人工智能研究員的弗朗索瓦?肖萊(Franc?ois Chollet)執(zhí)筆,詳盡介紹了用Python和Keras進(jìn)行深度學(xué)習(xí)的探索實(shí)踐,包括計(jì)算機(jī)視覺、自然語言處理、產(chǎn)生式模型等應(yīng)用。書中包含30多個(gè)代碼示例,步驟講解詳細(xì)透徹。作者在github公布了代碼,代碼幾乎囊括了本書所有知識(shí)點(diǎn)。在學(xué)習(xí)完本書后,讀者將具備搭建自己的深度學(xué)習(xí)環(huán)境、建立圖像識(shí)別模型、生成圖像和文字等能力。但是有一個(gè)小小的遺憾:代碼的解釋和注釋是全英文的,即使英文水平較好的朋友看起來也很吃力。本人認(rèn)為,這本書和代碼是初學(xué)者入門深度學(xué)習(xí)及Keras最好的工具。作者在github公布了代碼,本人參照書本,對(duì)全部代碼做了中文解釋和注釋,并下載了代碼所需要的一些數(shù)據(jù)集(尤其是“貓狗大戰(zhàn)”數(shù)據(jù)集),并對(duì)其中一些圖像進(jìn)行了本地化,代碼全部測(cè)試通過。(請(qǐng)按照文件順序運(yùn)行,代碼前后有部分關(guān)聯(lián))。以下代碼包含了全書約80%左右的知識(shí)點(diǎn),代碼目錄:2.1: A first look at a neural network( 初識(shí)神經(jīng)網(wǎng)絡(luò))3.5: Classifying movie reviews(電影評(píng)論分類:二分類問題)3.6: Classifying newswires(新聞分類:多分類問題 )3.7: Predicting house prices(預(yù)測(cè)房?jī)r(jià):回歸問題)4.4: Underfitting and overfitting( 過擬合與欠擬合)5.1: Introduction to convnets(卷積神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介)5.2: Using convnets with small datasets(在小型數(shù)據(jù)集上從頭開始訓(xùn)練一個(gè)卷積網(wǎng)絡(luò))5.3: Using a pre-trained convnet(使用預(yù)訓(xùn)練的卷積神經(jīng)網(wǎng)絡(luò))5.4: Visualizing what convnets learn(卷積神經(jīng)網(wǎng)絡(luò)的可視化)

    標(biāo)簽: python 深度學(xué)習(xí)

    上傳時(shí)間: 2022-01-30

    上傳用戶:

  • Pytorch官方教程中文版

    PyTorch是一個(gè)基于Torch的Python開源機(jī)器學(xué)習(xí)庫,用于自然語言處理等應(yīng)用程序。它主要由Facebookd的人工智能小組開發(fā),不僅能夠 實(shí)現(xiàn)強(qiáng)大的GPU加速,同時(shí)還支持動(dòng)態(tài)神經(jīng)網(wǎng)絡(luò),這一點(diǎn)是現(xiàn)在很多主流框架如TensorFlow都不支持的。 PyTorch提供了兩個(gè)高級(jí)功能: 1.具有強(qiáng)大的GPU加速的張量計(jì)算(如Numpy) 2.包含自動(dòng)求導(dǎo)系統(tǒng)的深度神經(jīng)網(wǎng)絡(luò) 除了Facebook之外,Twitter、GMU和Salesforce等機(jī)構(gòu)都采用了PyTorch。官方教程包含了 PyTorch 介紹,安裝教程;60分鐘快速入門教程,可以迅速從小白階段完成一個(gè)分類器模型;計(jì)算機(jī)視覺常用模型,方便基于自己的數(shù)據(jù)進(jìn)行調(diào)整,不再需要從頭開始寫;自然語言處理模型,聊天機(jī)器人,文本生成等生動(dòng)有趣的項(xiàng)目。

    標(biāo)簽: pytorch

    上傳時(shí)間: 2022-04-16

    上傳用戶:canderile

主站蜘蛛池模板: 工布江达县| 潮安县| 南宁市| 高邮市| 岱山县| 斗六市| 华蓥市| 得荣县| 湖口县| 玉林市| 承德县| 成武县| 方山县| 淮北市| 巫山县| 永清县| 长沙市| 泾源县| 秦皇岛市| 公安县| 永德县| 北流市| 阿尔山市| 睢宁县| 石台县| 赤城县| 通山县| 临邑县| 呼图壁县| 砚山县| 湖南省| 若尔盖县| 武宣县| 揭东县| 习水县| 安宁市| 辰溪县| 利川市| 金湖县| 上思县| 雷波县|