作為嵌入式系統(tǒng)核心的微處理器,是SOC不可或缺的“心臟”,微處理器的性能直接影響著整個SOC的性能。 與國際先進技術相比,我國在這一領域的研究和開發(fā)工作還相當落后,這直接影響到我國信息產(chǎn)業(yè)的發(fā)展。本著趕超國外先進技術,填補我國在該領域的空白以擺脫受制于國外的目的,我國很多科研單位和公司進行了自己的努力和嘗試。經(jīng)過幾年的探索,已經(jīng)有多種自主知識產(chǎn)權的處理器芯片完成了設計驗證并逐漸進入市場化階段。我國已結束無“芯”的歷史,并向設計出更高性能處理器的目標邁進?! “苿?chuàng)新微電子公司的VEGA處理器,是公司憑借自己的技術力量和科研水平設計出的一款64位高性能RSIC微處理器。該處理器基于MIPSISA構架,采用五級流水線的設計,并且使用了高性能處理器所廣泛采用的虛擬內(nèi)存管理技術。設計過程中采用自上而下的方法,根據(jù)其功能將其劃分為取指、譯碼、算術邏輯運算、內(nèi)存管理、流水線控制和cache控制等幾個功能塊,使得我們在設計中能夠按照其功能和時序要求進行。 本文的首先介紹了MIPS微處理器的特點,通過對MIPS指令集和其五級流水線結構的介紹使得對VEGA的設計有了一個直觀的認識。在此基礎上提出了VEGA的結構劃分以及主要模塊的功能。作為采用虛擬內(nèi)存管理技術的處理器,文章的主要部分介紹了VEGA的虛擬內(nèi)存管理技術,將VEGA的內(nèi)存管理單元(MMU)尤其是內(nèi)部兩個翻譯后援緩沖(TLB)的設計作為重點給出了流水線處理器設計的方法。結束總體設計并完成仿真后,并不能代表設計的正確性,它還需要我們在實際的硬件平臺上進行驗證。作為論文的又一重點內(nèi)容,介紹了我們在VEGA驗證過程中使用到的FPGA的主要配置單元,F(xiàn)PGA的設計流程。VEGA的FPGA平臺是一完整的計算機系統(tǒng),我們利用在線調(diào)試軟件XilinxChipscope對其進行了在線調(diào)試,修正其錯誤?! 〗?jīng)過模塊設計到最后的FPGA驗證,VEGA完成了其邏輯設計,經(jīng)過綜合和布局布線等后端流程,VEGA采用0.18工藝流片后達到120MHz的工作頻率,可在其平臺上運行Windows-CE和Linux嵌入式操作系統(tǒng),達到了預計的設計要求?! ?/p>
上傳時間: 2013-07-07
上傳用戶:標點符號
本文首先介紹了利用FPGA設計數(shù)字電路系統(tǒng)的流程和雷達數(shù)字信號處理的主要內(nèi)容?! ≡诘诙轮兄饕U述了FIR數(shù)字濾波器的窗函數(shù)設計方法,并應用FIR濾波器設計數(shù)字動目標顯示和數(shù)字動目標檢測系統(tǒng);脈沖壓縮處理是現(xiàn)代雷達信號處理的一個重要組成部分,線性調(diào)頻信號和二相巴克碼的脈沖壓縮處理方法在第三章做了重點描述?! yclone系列芯片是高性價比,基于1.5V、0.13um采用銅制層的SRAM工藝。它是第一種支持配置數(shù)據(jù)解壓的FPGA芯片。論文設計的最后部分是利用Altera公司Cyclone系列FPGA芯片EP1C6F256C6和EPCS4配置芯片設計設計SD轉換器,在QuartusⅡ4.0下采用VHDL語言和邏輯電路圖結合的設計方法,經(jīng)過仿真并最終實現(xiàn)了硬件設計?! ≡O計結果表明電路性能可靠,SD轉換的精度較高,完全滿足設計的要求。
上傳時間: 2013-06-26
上傳用戶:華華123
JPEG2000是由ISO/ITU-T組織下的IECJTC1/SC29/WG1小組制定的下一代靜止圖像壓縮標準,其優(yōu)良的壓縮特性使得它將具有廣泛的應用領域。JPEG2000算法非常復雜,圖像編碼過程占用了大量的處理器時間開銷和內(nèi)存開銷,因而通過對JPEG2000算法進行優(yōu)化并采用硬件電路來實現(xiàn)JPEG2000標準的部分或全部內(nèi)容,對加快編碼速度從而擴展其應用領域有重要的意義。 本文的研究主要包括兩方面的內(nèi)容,其一是JPEG2000算術編碼器算法的研究與硬件設計,其二是JPEG2000碼率控制算法的研究與優(yōu)化算法的設計。在研究算術編碼器過程中,首先研究了JPEG2000中基于上下文的MQ算術編碼器的編碼原理和編碼流程,之后采用有限狀態(tài)機和二級流水線技術,并在不影響關鍵路徑的情況下通過對算術編碼步驟優(yōu)化采用硬件描述語言對算術編碼器進行了設計,并通過了功能仿真與綜合。實驗證明該設計不但編碼速度快,而且流水線短,硬件設計的復雜度低且易于控制。 在研究碼率控制算法過程中,首先結合率失真理論建立了算法的數(shù)學模型,并驗證了該算法的有效性,之后深入分析了該數(shù)學模型的實現(xiàn)流程,找出影響算法效率的關鍵路徑。在對算法優(yōu)化時采用黃金分割點算法代替原來的二分查找法,并使用了碼塊R-D斜率最值記憶和碼率誤差控制算法。實驗證明,采用優(yōu)化算法在增加少量系統(tǒng)資源的情況下使得計算效率提高了60%以上。之后,分析了率失真理論與JPEG2000中PCRD-opt算法的具體實現(xiàn),又提出了一種失真更低的比特分配方案,即按照“失真/碼長”值從大到小通道編碼順序進行編碼,通過對該算法的仿真驗證,得出在固定碼率條件下新算法將產(chǎn)生更少的失真。
上傳時間: 2013-07-13
上傳用戶:long14578
瑞芯Rknano主要技術參數(shù) ARM + Hardware Accelerator ,最大主頻120M 支持8/16位LCD,支持MCU屏,最大分辨率160x128 支持SD、I2S、I2C接口,內(nèi)置PWM控制器 8bit ECC NAND FLASH控制器,支持4片選,SLC/MCL
上傳時間: 2013-04-24
上傳用戶:christopher
最新的研究進展是OFDM的出現(xiàn),并且在2000年出現(xiàn)了第一個采用此技術的無線標準(HYPERLAN-Ⅱ)。由于它與TDMA及CDMA相比能處理更高數(shù)據(jù)速率,因此可以預想在第四代系統(tǒng)中也將使用此技術。 寬帶應用和高速率數(shù)據(jù)傳輸是OFDM調(diào)制/多址技術通信系統(tǒng)的重要特征之一。作者通過參與國家863計劃項目“OFDM通信系統(tǒng)”一年以來的研發(fā)工作,對OFDM通信系統(tǒng)及相關技術有了深入的理解,積累了大量實際經(jīng)驗,并在相關工作中取得了部分研究成果。 另一方面,關于寬帶自適應均衡技術的研究在近年來也引起了廣泛的關注。它是補償信道畸變的重要的技術之一。作者通過參與該項目FPGA部分的開發(fā)與調(diào)試工作,基于單片F(xiàn)PGA實現(xiàn)了均衡部分;此外,作者在頻域自適應均衡算法方面也取得了一些理論成果。 本文的主體部分就是根據(jù)上述工作的內(nèi)容展開的。 首先介紹了本課題相關技術的發(fā)展情況,主要包括:OFDM系統(tǒng)的技術原理、技術優(yōu)勢、歷史和現(xiàn)狀,均衡技術的特點和發(fā)展等。末尾敘述了本課題的來源和研究意義,并簡介了作者的主要工作和貢獻。確定將WSSUS分布和瑞利衰落作為本文研究的信道模型。主要分析了常用的時域均衡器,均是單載波非擴頻數(shù)字調(diào)制中常用到的均衡器和均衡算法,為接下來的進一步研究作理論參考。 接著,論述了均衡必須用到的信道估計技術。重點就該方案的核心算法(頻域均衡算法)進行了數(shù)學上進行了較深入的研究,建立系統(tǒng)模型,并據(jù)此推導了三種頻域均衡的算法:頻域消除HICI,Gauss-Seidel迭代算法,頻域線性內(nèi)插。采用WSSUS信道模型進行了計算機仿真,得出了采用這些均衡算法在不同條件下的性能曲線。并且系統(tǒng)地、有重點地對該方案的原理和實質(zhì)進行了較深入的討論。歸納比較了各種算法的算法復雜度和能達到的性能,并且結合信道糾錯編解碼進行了細致的分析。進一步嘗試設計了無線局域網(wǎng)OFDM系統(tǒng)的設計,采用典型的歐洲Hyperlan2系統(tǒng)為例,把研究成果引入到實際的整個系統(tǒng)中來看。結合具體的系統(tǒng)指出了該均衡算法在抗衰落和相位偏移方面的應用。 最后,描述了利用Xilinx的xc2v3000-4FG676型號芯片針對OFDM系統(tǒng)實現(xiàn)頻域自適應均衡的方法,主要給出了設計方法、時序仿真結果和處理速度估值等;并結合最新的FPGA發(fā)展動態(tài)和特點,對基于FPGA實現(xiàn)其他均衡算法的升級空間進行了討論。 本文的結束語中,對作者在本文中所作貢獻進行了總結,并指出了仍有待深入研究的幾個問題。
上傳時間: 2013-04-24
上傳用戶:
偏振模色散(PMD)是限制光通信系統(tǒng)向高速率和大容量擴展的主要障礙,尤其是160Gb/s光傳輸系統(tǒng)中,由PMD引起的脈沖畸變現(xiàn)象更加嚴重。為了克服PMD帶來的危害,國內(nèi)外已經(jīng)開始了對PMD補償?shù)难芯?。但是目前的補償系統(tǒng)復雜、成本高且補償效果不理想,因此采用前向糾錯(FEC)和偏振擾偏器配合抑制PMD的方法,可以實現(xiàn)低成本的PMD補償。 在實驗中將擾偏器連入光時分復用系統(tǒng),通過觀察其工作前后的脈沖波形,發(fā)現(xiàn)擾偏器的應用改善了系統(tǒng)的性能。隨著系統(tǒng)速率的提高,對擾偏器速率的要求也隨之提高,目前市場上擾偏器的速率無法滿足160Gb/s光傳輸系統(tǒng)要求。通過對偏振擾偏器原理的分析,決定采用高速控制電路驅動偏振控制器的方法來實現(xiàn)高速擾偏器的設計。擾偏器采用鈮酸鋰偏振控制器,其響應時間小于100ns,是目前偏振控制器能夠達到的最高速率,但是將其用于160Gb/s高速光通信系統(tǒng)擾偏時,這個速率仍然偏低,因此,提出采用多段鈮酸鋰晶體并行擾偏的方法,彌補鈮酸鋰偏振控制器速率低的問題。通過對幾種處理器的分析和比較,選擇DSP+FPGA作為控制端,DSP芯片用于產(chǎn)生隨機數(shù)據(jù),F(xiàn)PGA芯片具有豐富的I/O引腳,工作頻率高,可以實現(xiàn)大量數(shù)據(jù)的快速并行輸出。這樣的方案可以充分發(fā)揮DSP和FPGA各自的優(yōu)勢。另外對數(shù)模轉換芯片也要求響應速度快,本論文以FPGA為核心,完成了FPGA與其它芯片的接口電路設計。在QuartusⅡ集成環(huán)境中進行FPGA的開發(fā),使用VHDL語言和原理圖輸入法進行電路設計。 本文設計的偏振擾偏器在高速控制電路的驅動下,可以實現(xiàn)大量的數(shù)據(jù)處理,采用多段鈮酸鋰晶體并行工作的方法,可以提高偏振擾偏器的速率。利用本方案制作的擾偏器具有高擾偏速率,適合應用于160Gb/s光通信系統(tǒng)中進行PMD補償。
上傳時間: 2013-04-24
上傳用戶:suxuan110425
激光測距是激光技術在軍事上最早和最成熟的應用,自1961.年美國休斯飛機公司研制成功世界上第一臺激光測距機之后,激光測距技術發(fā)展迅速。如今,它已經(jīng)被廣泛運用于軍用領域和民用領域。為了進一步提高我國激光測距水平,研制更高性能激光測距機依然是我國國防科技研究中的重要課題之一。其中,測距精度是激光測距機的一個重要參數(shù)。而激光測距機能否準確的檢測激光回波信號將直接影響測距精度。 脈沖激光測距系統(tǒng)主要包括激光發(fā)射子系統(tǒng)、激光回波探測子系統(tǒng)、回波檢測與主控子系統(tǒng)、終端顯示子系統(tǒng)等組成。其中設計高精度激光回波檢測與主控子系統(tǒng)是實現(xiàn)高精度激光測距的核心問題。傳統(tǒng)激光回波檢測與主控子系統(tǒng)通常采用分立元件和小規(guī)模集成電路設計,電路復雜且精度較低。隨著數(shù)字電路設計技術的發(fā)展,已出現(xiàn)大規(guī)模可編程邏輯器件FPGA(現(xiàn)場可編程門陣列)和CPLD(復雜可編程邏輯器件)。采用FPGA代替?zhèn)鹘y(tǒng)的分立元件和小規(guī)模集成電路來設計激光回波檢測與主控子系統(tǒng),不僅提高了回波檢測精度,同時簡化了整個測距系統(tǒng)的設計。 本文研究了將激光回波信號直接送入FPGA進行檢測的方案。同時,采用這種方案設計了一種激光回波檢測系統(tǒng),并把它成功運用在一引信項目中。這種方案電路設計簡單,易于實現(xiàn)。在實際應用中,由于激光回波探測子系統(tǒng)只是完成由光信號到電信號的轉換及簡單放大,理論分析和試驗結果均表明,采用該方案進行回波檢測的精度較低,這種回波檢測方法也只能應用在測距精度要求低的項目中。 為了滿足另一高精度測距項目的需要,在FPGA直接進行激光回波檢測方案的基礎上,設計了一種高精度激光回波檢測系統(tǒng)。文中介紹了其實現(xiàn)原理,理論上分析了該系統(tǒng)所能達到的回波檢測精度及整機測距系統(tǒng)的測距精度。與第一種方案相比,該方案引入了超高速數(shù)據(jù)采集電路。由于采樣速率高達lGsps,該方案實現(xiàn)的難點在于如何保證數(shù)據(jù)采集電路的穩(wěn)定工作。文中從總體方案的設計,到器件的選型,硬件電路板的實現(xiàn)等方面做了詳細的闡述,最終完成了系統(tǒng)硬件電路設計。接著介紹了系統(tǒng)程序設計。后面給出了試驗測試結果,該系統(tǒng)工作穩(wěn)定,性能良好。系統(tǒng)設計中引入的超高速數(shù)據(jù)采集電路有著廣泛的應用,為其他相關設計提供了參考。最后,對全文做了工作總結,并給出了接下來的后續(xù)工作與展望。 本文在高速FPGA對激光回波信號檢測方向取得了一定的成果,為進一步研究提供了參考價值。
上傳時間: 2013-06-13
上傳用戶:cy1109
本文提出了一種高速Viterbi譯碼器的FPGA實現(xiàn)方案。這種Viterbi譯碼器的設計方案既可以制成高性能的單片差錯控制器,也可以集成到大規(guī)模ASIC通信芯片中,作為全數(shù)字接收的一部分。 本文所設計的Viterbi譯碼器采用了基四算法,與基二算法相比,其譯碼速率在理論上約提升一倍。加一比一選單元是Viterbi譯碼器最主要的瓶頸所在,本文在加一比一選模塊中采用了全并行結構的設計方法,這種方法雖然增加了硬件的使用面積,卻有效的提高了譯碼器的速率。在幸存路徑管理部分采用了兩路并行回溯的設計方法,與寄存器交換法相比,回溯算法更適用于FPGA開發(fā)設計。為了提高譯碼性能,減小譯碼差錯,本文采用較大譯碼深度的回溯算法以保證幸存路徑進行合并。實現(xiàn)了基于FPGA的誤碼測試儀,在FPGA內(nèi)部完成誤碼驗證和誤碼計數(shù)的工作。 與基于軟件實現(xiàn)譯碼過程的DSP芯片不同,F(xiàn)PGA芯片完全采用硬件平臺對Viterbi譯碼器加以實現(xiàn),這使譯碼速率得到很大的提升。針對于具體的FPGA硬件實現(xiàn),本文采用了硬件描述語言VHDL來完成設計。通過對譯碼器的綜合仿真和FPGA實現(xiàn)驗證了該方案的可行性。譯碼器的最高譯碼輸出速率可以達到60Mbps。
上傳時間: 2013-04-24
上傳用戶:181992417
數(shù)字信息在有噪聲的信道中傳輸時,受到噪聲的影響,誤碼總是不可避免的。根據(jù)香農(nóng)信息理論,只要使Es/N0足夠大,就可以達到任意小的誤碼率。采用差錯控制編碼,即信道編碼技術,可以在一定的Es/N0條件下有效地降低誤碼率。按照對信息元處理方式不同,信道編碼分為分組碼與卷積碼兩類。卷積碼的k0和n0較小,實現(xiàn)最佳譯碼與準最佳譯碼更加容易。卷積碼運用廣泛,被ITU選入第三代移動通信系統(tǒng),作為包括WCDMA,CDMA2000和TD-SCDMA在內(nèi)的信道編碼的標準方案。 本文研究了CDMA2000業(yè)務通道中的幀結構,對CDMA2000系統(tǒng)中的卷積碼特性及維特比譯碼的性能限進行了分析,并基于MATLAB平臺做了相應的譯碼性能仿真。我們設計了一種可用于CDMA2000通信系統(tǒng)的通用、高速維特比譯碼器。該譯碼器在設計上具有以下創(chuàng)新之處:(1)采用通用碼表結構,支持可變碼率;幀控制模塊和頻率控制器模塊的設計中采用計數(shù)器、定時器等器件實現(xiàn)了可變幀長、可變數(shù)據(jù)速率的數(shù)據(jù)幀處理方式。(2)結合流水線結構思想,利用四個ACS模塊并行運行,加快數(shù)據(jù)處理速度;在ACS模塊中,將路徑度量值存貯器的存儲結構進行優(yōu)化,防止數(shù)據(jù)讀寫的阻塞,縮短存儲器讀寫時間,使譯碼器的處理速度更快。(3)為了防止路徑度量值和幸存路徑長度的溢出,提出了保護處理策略。我們還將設計結果在APEXEP20K30E芯片上進行了硬件實現(xiàn)。該譯碼器芯片具有可變的碼率和幀長處理能力,可以運行于40MHZ系統(tǒng)時鐘下,內(nèi)部最高譯碼速度可達625kbps。本文所提出的維特比譯碼器硬件結構具有很強的通用性和高速性,可以方便地應用于CDMA2000移動通信系統(tǒng)。
上傳時間: 2013-06-24
上傳用戶:lingduhanya
近年來LED顯示技術發(fā)展迅速,LED全彩顯示屏得到了廣泛的應用.LED顯示技術涵蓋了微機控制、視頻、光學、機械和數(shù)字圖像處理等多種技術.針對現(xiàn)有LED顯示系統(tǒng)數(shù)據(jù)傳輸和顯示存在的缺陷和開發(fā)難度,本文提出并實現(xiàn)了一種新型的LED顯示系統(tǒng)方案.該方案把ARM處理器應用到LED顯示屏中,采用FPGA技術開發(fā)了LED顯示屏系統(tǒng).本文主要討論了利用網(wǎng)絡傳輸LED顯示數(shù)據(jù)的實現(xiàn)方法,包括嵌入式系統(tǒng)的設計以及TCP/IP協(xié)議的實現(xiàn)等分析和設計工作.全文分為七章,首先提出現(xiàn)有LED顯示系統(tǒng)數(shù)據(jù)傳輸和顯示存在的缺陷和開發(fā)難度,然后提出新的LED顯示系統(tǒng)方案,并論證該方案的可行性.接著闡述了作者采用的嵌入式系統(tǒng)的設計方法和過程.第三章和第四章是嵌入式系統(tǒng)的設計和TCP/IP協(xié)議的實現(xiàn),其中包括硬件和軟件的設計以及嵌入式操作系統(tǒng)μ C/OS-Ⅱ的移植.詳細地分析了基于LPC2214芯片的操作系統(tǒng)移植步驟和過程.本文使用的是1wIP網(wǎng)關協(xié)議,把其應用于μ C/OS-Ⅱ,實現(xiàn)了LED顯示屏的網(wǎng)絡通信,還分析了RTL8019芯片的工作過程,編寫了有關驅動代碼.在第五章和第六章中闡述了LED顯示屏顯示原理和利用FPGA實現(xiàn)LED顯示的驅動開發(fā)過程,利用占空比法實現(xiàn)LED顯示屏的灰度顯示,使用VHDL語言描述LED顯示屏的灰度實現(xiàn)邏輯.最后根據(jù)本文的方案實現(xiàn)了LED顯示屏的彩色顯示,通過分析比較,該方案可行并且達到了預定的要求.
標簽: FPGA LED 嵌入式系統(tǒng) 中的應用
上傳時間: 2013-04-24
上傳用戶:yoleeson