單片機系統(tǒng)中的率表算法:近年來,國內許多單位用MOTOROLA 68HC05C8A,68HC05C9A,68HC05L5,68HC05L16等單片機開發(fā)復費率表電表。電力部門也在為開發(fā)中的復費率電表制定一些規(guī)范。復費率電表中有一項功能要求,能給出所謂最大需置。
標簽: 單片機系統(tǒng) 算法
上傳時間: 2013-11-06
上傳用戶:jackgao
MSP430系列flash型超低功耗16位單片機MSP430系列單片機在超低功耗和功能集成等方面有明顯的特點。該系列單片機自問世以來,頗受用戶關注。在2000年該系列單片機又出現(xiàn)了幾個FLASH型的成員,它們除了仍然具備適合應用在自動信號采集系統(tǒng)、電池供電便攜式裝置、超長時間連續(xù)工作的設備等領域的特點外,更具有開發(fā)方便、可以現(xiàn)場編程等優(yōu)點。這些技術特點正是應用工程師特別感興趣的。《MSP430系列FLASH型超低功耗16位單片機》對該系列單片機的FLASH型成員的原理、結構、內部各功能模塊及開發(fā)方法與工具作詳細介紹。MSP430系列FLASH型超低功耗16位單片機 目錄 第1章 引 論1.1 MSP430系列單片機1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 結構概述2.1 引 言2.2 CPU2.3 程序存儲器2.4 數(shù)據(jù)存儲器2.5 運行控制2.6 外圍模塊2.7 振蕩器與時鐘發(fā)生器第3章 系統(tǒng)復位、中斷及工作模式3.1 系統(tǒng)復位和初始化3.1.1 引 言3.1.2 系統(tǒng)復位后的設備初始化3.2 中斷系統(tǒng)結構3.3 MSP430 中斷優(yōu)先級3.3.1 中斷操作--復位/NMI3.3.2 中斷操作--振蕩器失效控制3.4 中斷處理 3.4.1 SFR中的中斷控制位3.4.2 中斷向量地址3.4.3 外部中斷3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗應用的要點23第4章 存儲空間4.1 引 言4.2 存儲器中的數(shù)據(jù)4.3 片內ROM組織4.3.1 ROM 表的處理4.3.2 計算分支跳轉和子程序調用4.4 RAM 和外圍模塊組織4.4.1 RAM4.4.2 外圍模塊--地址定位4.4.3 外圍模塊--SFR4.5 FLASH存儲器4.5.1 FLASH存儲器的組織4.5.2 FALSH存儲器的數(shù)據(jù)結構4.5.3 FLASH存儲器的控制寄存器4.5.4 FLASH存儲器的安全鍵值與中斷4.5.5 經(jīng)JTAG接口訪問FLASH存儲器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序計數(shù)器PC5.1.2 系統(tǒng)堆棧指針SP5.1.3 狀態(tài)寄存器SR5.1.4 常數(shù)發(fā)生寄存器CG1和CG25.2 尋址模式5.2.1 寄存器模式5.2.2 變址模式5.2.3 符號模式5.2.4 絕對模式5.2.5 間接模式5.2.6 間接增量模式5.2.7 立即模式5.2.8 指令的時鐘周期與長度5.3 指令組概述5.3.1 雙操作數(shù)指令5.3.2 單操作數(shù)指令5.3.3 條件跳轉5.3.4 模擬指令的簡短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 無符號數(shù)相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符號數(shù)相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 無符號數(shù)乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符號數(shù)乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的軟件限制6.4.1 尋址模式6.4.2 中斷程序6.4.3 MACS第7章 基礎時鐘模塊7.1 基礎時鐘模塊7.2 LFXT1與XT27.2.1 LFXT1振蕩器7.2.2 XT2振蕩器7.2.3 振蕩器失效檢測7.2.4 XT振蕩器失效時的DCO7.3 DCO振蕩器7.3.1 DCO振蕩器的特性7.3.2 DCO調整器7.4 時鐘與運行模式7.4.1 由PUC啟動7.4.2 基礎時鐘調整7.4.3 用于低功耗的基礎時鐘特性7.4.4 選擇晶振產生MCLK7.4.5 時鐘信號的同步7.5 基礎時鐘模塊控制寄存器7.5.1 DCO時鐘頻率控制7.5.2 振蕩器與時鐘控制寄存器7.5.3 SFR控制位第8章 輸入輸出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中斷控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口邏輯第9章 看門狗定時器WDT9.1 看門狗定時器9.2 WDT寄存器9.3 WDT中斷控制功能9.4 WDT操作第10章 16位定時器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定時器模式控制10.2.2 時鐘源選擇和分頻10.2.3 定時器啟動10.3 定時器模式10.3.1 停止模式10.3.2 增計數(shù)模式10.3.3 連續(xù)模式10.3.4 增/減計數(shù)模式10.4 捕獲/比較模塊10.4.1 捕獲模式10.4.2 比較模式10.5 輸出單元10.5.1 輸出模式10.5.2 輸出控制模塊10.5.3 輸出舉例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕獲/比較控制寄存器CCTLx10.6.4 Timer_A中斷向量寄存器10.7 Timer_A的UART應用 第11章 16位定時器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定時器長度11.2.2 定時器模式控制11.2.3 時鐘源選擇和分頻11.2.4 定時器啟動11.3 定時器模式11.3.1 停止模式11.3.2 增計數(shù)模式11.3.3 連續(xù)模式11.3.4 增/減計數(shù)模式11.4 捕獲/比較模塊11.4.1 捕獲模式11.4.2 比較模式11.5 輸出單元11.5.1 輸出模式11.5.2 輸出控制模塊11.5.3 輸出舉例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕獲/比較控制寄存器CCTLx11.6.4 Timer_B中斷向量寄存器第12章 USART通信模塊的UART功能12.1 異步模式12.1.1 異步幀格式12.1.2 異步通信的波特率發(fā)生器12.1.3 異步通信格式12.1.4 線路空閑多機模式12.1.5 地址位多機通信格式12.2 中斷和中斷允許12.2.1 USART接收允許12.2.2 USART發(fā)送允許12.2.3 USART接收中斷操作12.2.4 USART發(fā)送中斷操作12.3 控制和狀態(tài)寄存器12.3.1 USART控制寄存器UCTL12.3.2 發(fā)送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率選擇和調整控制寄存器12.3.5 USART接收數(shù)據(jù)緩存URXBUF12.3.6 USART發(fā)送數(shù)據(jù)緩存UTXBUF12.4 UART模式,低功耗模式應用特性12.4.1 由UART幀啟動接收操作12.4.2 時鐘頻率的充分利用與UART的波特率12.4.3 多處理機模式對節(jié)約MSP430資源的支持12.5 波特率計算 第13章 USART通信模塊的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的從模式13.2 中斷與控制功能 13.2.1 USART接收/發(fā)送允許位及接收操作13.2.2 USART接收/發(fā)送允許位及發(fā)送操作13.2.3 USART接收中斷操作13.2.4 USART發(fā)送中斷操作13.3 控制與狀態(tài)寄存器13.3.1 USART控制寄存器13.3.2 發(fā)送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率選擇和調制控制寄存器13.3.5 USART接收數(shù)據(jù)緩存URXBUF13.3.6 USART發(fā)送數(shù)據(jù)緩存UTXBUF第14章 比較器Comparator_A14.1 概 述14.2 比較器A原理14.2.1 輸入模擬開關14.2.2 輸入多路切換14.2.3 比較器14.2.4 輸出濾波器14.2.5 參考電平發(fā)生器14.2.6 比較器A中斷電路14.3 比較器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比較器A應用14.4.1 模擬信號在數(shù)字端口的輸入14.4.2 比較器A測量電阻元件14.4.3 兩個獨立電阻元件的測量系統(tǒng)14.4.4 比較器A檢測電流或電壓14.4.5 比較器A測量電流或電壓14.4.6 測量比較器A的偏壓14.4.7 比較器A的偏壓補償14.4.8 增加比較器A的回差第15章 模數(shù)轉換器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC內核15.2.2 參考電平15.3 模擬輸入與多路切換15.3.1 模擬多路切換15.3.2 輸入信號15.3.3 熱敏二極管的使用15.4 轉換存儲15.5 轉換模式15.5.1 單通道單次轉換模式15.5.2 序列通道單次轉換模式15.5.3 單通道重復轉換模式15.5.4 序列通道重復轉換模式15.5.5 轉換模式之間的切換15.5.6 低功耗15.6 轉換時鐘與轉換速度15.7 采 樣15.7.1 采樣操作15.7.2 采樣信號輸入選擇15.7.3 采樣模式15.7.4 MSC位的使用15.7.5 采樣時序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 轉換存儲寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中斷標志寄存器ADC12IFG.x和中斷允許寄存器ADC12IEN.x15.8.5 中斷向量寄存器ADC12IV15.9 ADC12接地與降噪第16章 FLASH型芯片的開發(fā)16.1 開發(fā)系統(tǒng)概述16.1.1 開發(fā)技術16.1.2 MSP430系列的開發(fā)16.1.3 MSP430F系列的開發(fā)16.2 FLASH型的FET開發(fā)方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 標準復位過程和進入BSL過程16.3.2 BSL的UART協(xié)議16.3.3 數(shù)據(jù)格式16.3.4 退出BSL16.3.5 保護口令16.3.6 BSL的內部設置和資源附錄A 尋址空間附錄B 指令說明B.1 指令匯總B.2 指令格式B.3 不增加ROM開銷的模擬指令B.4 指令說明(字母順序)B.5 用幾條指令模擬的宏指令附錄C MSP430系列單片機參數(shù)表附錄D MSP430系列單片機封裝形式附錄E MSP430系列器件命名
上傳時間: 2014-04-28
上傳用戶:sssnaxie
文章提出了一種精簡指令集8 位單片機中, 算術邏輯單元的工作原理。在此基礎上, 對比傳統(tǒng)PIC 方案、以及在ALU 內部再次采用流水線作業(yè)的332 方案、44 方案, 并用Synopsys 綜合工具實現(xiàn)了它們。綜合及仿真結果表明, 根據(jù)該單片機系統(tǒng)要求, 44 方案速度最高, 比332 方案可提高43.9%, 而面積僅比最小的332 方案增加1.6%。在分析性能差異的根本原因之后, 闡明了該方案的優(yōu)越性。關鍵詞: 單片機, 精簡指令集, 算術邏輯單元, 流水線 Abstract: Work principle for ALU in an 8_bit RISC Singlechip microcomputer is described. The traditional PIC scheme, 332 Pipeline scheme and 44 Pipeline scheme are compared on the base of the principle, which are implemented using Synopsys design tools. Results from synthesis and simulation shows that 44 scheme operates the fast, which is 43.9% faster and only 1.6% larger than 332 scheme. The essential reason why the performance is so different is analyzed.Then the advantage of 44 scheme is clarified.Key words: Singlechip, Microcomputer, RISC, ALU, Pipeline
上傳時間: 2013-10-18
上傳用戶:xiaoyaa
本文列舉了單片機在熱處理爐中的一個實際應用,并對設計的WDY-1 溫控儀的組成及主要電路的作用進行了詳細的介紹。關鍵詞:單片機;控制;溫度。單片微型計算機是隨著超大規(guī)模集成電路技術的發(fā)展而誕生的,由于它具有體積小、功能強、性價比高等特點,所以廣泛應用于電子儀表、家用電器、節(jié)能裝置、軍事裝置、機器人、工業(yè)控制等諸多領域,使產品小型化、智能化,既提高了產品的功能和質量,又降低了成本,簡化了設計。本文主要介紹單片機在溫度控制中的應用。東風汽車公司變速箱廠熱工科無罐爐,主要用于變速箱齒輪、軸類零件的滲碳熱處理工序。原來用XWB 型自動平衡記錄儀控制溫度,二位式控溫方式,使得具有大慣量性的無罐爐溫度波動大,誤差達±10℃左右。并且儀表使用環(huán)境教惡劣,油煙、灰塵常使儀表的機械傳動部分卡死,不但維修工作量大,而且產品質量不易保證。隨著國民經(jīng)濟的發(fā)展,汽車工業(yè)不斷壯大,產品市場競爭激烈,優(yōu)勝劣汰。由此,我們經(jīng)過認真的調研和設計,尋求了一種更好的控溫方法,亦即本文介紹的WDY-1 溫控儀取代XWB 型自動平衡記錄儀。
上傳時間: 2013-10-13
上傳用戶:panpanpan
該文介紹89C51 單片機在直流電機轉速控制系統(tǒng)中的應用、實現(xiàn)方法、硬件結構等。本系統(tǒng)采用霍爾元器件測量電動機的轉速,用89C51 單片機對直流電機的轉速進行控制,用DAC0832 芯片實現(xiàn)輸出模擬電壓值來控制直流電動機的轉速。直流電動機具有良好的起動、制動性能,宜于在大范圍內平滑調速,在許多需要調速或快速正反向的電力拖動領域中得到了廣泛的應用。從控制的角度來看,直流調速還是交流拖動系統(tǒng)的基礎[4]。早期直流電動機的控制均以模擬電路為基礎,采用運算放大器、非線性集成電路以及少量的數(shù)字電路組成,控制系統(tǒng)的硬件部分非常復雜,功能單一,而且系統(tǒng)非常不靈活、調試困難,阻礙了直流電動機控制技術的發(fā)展和應用范圍的推廣。隨著單片機技術的日新月異,使得許多控制功能及算法可以采用軟件技術來完成,為直流電動機的控制提供了更大的靈活性,并使系統(tǒng)能達到更高的性能。采用單片機構成控制系統(tǒng),可以節(jié)約人力資源和降低系統(tǒng)成本,從而有效的提高工作效率[1]。
上傳時間: 2013-12-29
上傳用戶:rishian
本文介紹了由單片機控制的基于以太網(wǎng)的數(shù)據(jù)采集電路。該電路采用了美國Microchip公司的8位單片機PIC16F877和臺灣Realtek公司的10M以太網(wǎng)控制芯片RTL8019AS,實現(xiàn)了數(shù)據(jù)采集以及以太網(wǎng)數(shù)據(jù)傳輸?shù)墓δ堋U麄€電路主要包括網(wǎng)絡接口電路,單片機電路,A/D轉換電路,D/A轉換電路,RAM存儲電路,EEPROM存儲電路,DIO電路等。文中簡單闡述了以太網(wǎng)數(shù)據(jù)采集電路的設計原理,并給出了其實現(xiàn)的方法。隨著互聯(lián)網(wǎng)絡軟硬件的迅猛發(fā)展,網(wǎng)絡用戶快速增長。在計算機網(wǎng)絡互聯(lián)的同時,各種儀器儀表、家電設備以及工業(yè)生產中的數(shù)據(jù)采集與控制設備慢慢的走向網(wǎng)絡化,便于共享網(wǎng)絡中豐富的信息資源。另一方面,由于以太網(wǎng)技術越來越成熟,并且擁有高速、大容量、降低成本、簡化結構等特性,使得其在各種領域內迅速發(fā)展。在電子設備日趨網(wǎng)絡化的背景下,通過單片機控制以太網(wǎng)芯片進行數(shù)據(jù)傳輸,是當前令人感興趣的一個研究方向。通過單片機控制芯片編程就可以完全拋開網(wǎng)絡操作系統(tǒng)而實現(xiàn)局域網(wǎng)內任意終端之間或單片機與終端之間的通信,即在脫離PC環(huán)境下實現(xiàn)以太網(wǎng)芯片與其它微處理器之間的接口,從而建立基于非PC平臺的局域網(wǎng)絡。本系統(tǒng)設計了PIC單片機驅動臺灣Realtek公司生產的NE2000兼容以太網(wǎng)控制芯片RTL8019AS,從而構建了一個微型網(wǎng)絡數(shù)據(jù)采集系統(tǒng),性能優(yōu)良,成本低廉。
標簽: PIC 單片機 以太網(wǎng)數(shù)據(jù)采集 控制
上傳時間: 2013-10-16
上傳用戶:CSUSheep
在現(xiàn)代電子設計中EMI是一個主要的問題。為抗干擾,設計者要么除掉干擾源,要么保護受影響的電路,最終的目的都是為了達到電磁兼容的目的。僅僅達到電磁兼容也許還不夠。 雖然電路工作在板級, 但它有可能對系統(tǒng)的其他部件輻射噪音、干擾,從而引起系統(tǒng)級的問題。 此外,系統(tǒng)級或者設備級的EMC不得不滿足某些輻射標準,以便不影響其他設備。
上傳時間: 2013-11-04
上傳用戶:xingyuewubian
基于中穎SH79F164單片機的電子血壓計應用:電子血壓計因具有無創(chuàng)性、操作簡單、攜帶方面等優(yōu)點,目前得到廣泛的應用和推廣。無創(chuàng)檢測血壓的方法很多,如柯氏音法,測振法,超聲法、雙袖帶法、恒定袖帶法、逐拍跟蹤法、張力定測法和恒定容積法等。其中測振法就是我們常說的示波法,由于具有較好的抗干擾能力,能比較可靠地判斷血壓、實現(xiàn)血壓的自動檢測而成為無創(chuàng)血壓的主流。目前國內外大多數(shù)電子血壓計都采用示波法。示波法的原理同柯氏音法,也需要充氣袖套來阻斷動脈流,但在放氣過程中不是檢測柯氏音,而是檢測氣袖內氣體的振蕩波(測振法由此得名),這些振蕩波是袖帶與動脈耦合的結果,源于心血管周期內血管壁由于收縮舒張引起的壓力脈動。理論計算和實踐均證明此振蕩波的幅度有一定的規(guī)律,與動脈收縮壓、平均壓以及舒張壓有一定的函數(shù)關系。針對示波法,本文將詳細介紹基于中穎電子SH79F164 單片機的血壓計系統(tǒng)方案與軟硬件實現(xiàn)。 在硬件電路設計方面,筆者參考了大量的資料,最終選定SH79F164 單片機作為主控IC。其理由是SH79F164 內建資源豐富,既能節(jié)省大量外圍器件,又方便系統(tǒng)調試。SH79F164 內建資源主要有:可編程儀表放大器(PGA)、帶通濾波器、固定增益放大器、恒流源放大器、10 位A/D 轉換器、時基定時器(RTC)。硬件部分構成:壓力傳感器、SH79F164 單片機、LCD、袖套、充氣泵、放氣閥、按鍵等(見圖3)。
上傳時間: 2013-10-23
上傳用戶:muhongqing
這里介紹的一款多功能編程器,功能強大,支持大多數(shù)常用的EPROM, EEPROM, FLASH, I2C,PIC, MCS-51,AVR, 93Cxx等系列芯片(超過400種)。硬件成本較低,性價比很高。既適合于電子和電腦愛好者使用,也適合家電維修人員維修家電和單片機開發(fā)人員使用。圖1為多功能編程器的主機,中間是32腳ZIF(零插力)鎖緊插座, 用于27系列、28系列、29系列、39/49系列等BIOS芯片。左邊是25芯并口插座,通過并口電纜連接計算機并口。左下方是電源插座。32腳ZIF插座下方是12位的DIP開關,對EPROM芯片進行讀寫等操作前,需將此開關撥至相應位置。具體開關位置可以參照軟件提示。鎖緊插座右側依次排列3個DIP8插座和一個DIP18插座,分別用于25系列、24系列、93系列存儲器和PIC系列單片機等;綠色電源指示燈(Power)用于指示編程器電源狀態(tài);紅色指示燈(Vpp)用于指示芯片Vpp電源狀態(tài);黃色指示燈(Vcc)用于指示芯片編程狀態(tài)。 一、 主要功能: ★ 可用此編程器升級、維修電腦主板,顯卡等BIOS芯片。可支持3.3V低電壓BIOS芯片。 ★ 用來寫網(wǎng)卡啟動芯片:用于組建無盤站寫網(wǎng)卡啟動芯片或制作硬盤還原卡等。 ★ 可用于復印機、傳真機、打印機主板維護和維修。★ 可用于讀寫用來寫汽車儀表、安全氣囊、里程表數(shù)據(jù)。★ 可用于維修顯示器、彩電、VCD、DVD 上面的存儲芯片。可修改開機畫面。 ★ 用來開發(fā)單片機: 通過添加不同適配器,可以支持 MCS-51 系列, AVR 系列和 PIC 系列的MCU。 ★ 用來寫大容量存儲芯片:大容量的存儲芯片,一般在衛(wèi)星接收機上使用較多,可以用編程器直接來升級或改寫。 二、電路簡介圖2是這臺編程器的完整電路圖,可以看到編程器電路由完全分離的兩部分組成:串行部分和并行EPROM部分電路。限于篇幅,原理部分不再詳述。對原理感興趣的讀者可以參考本文配套文件包中的“電路原理參考.PDF”文件。圖2三、電路板設計與制作 圖3是編程器參考元件布局圖,雙面PCB尺寸為160X100毫米,厚度1.6毫米。具體的PCB設計可以參考配套文件中的“PCB參考設計.PDF”。這個文件中包括電路板的頂層和低層布線和頂層絲印層。如果業(yè)余自制電路板,建議使用雙面感光電路板制作,以確保精度。
標簽: 多功能編程器
上傳時間: 2013-10-14
上傳用戶:問題問題
匯編語言在數(shù)據(jù)處理中應用(自學)1、數(shù)值轉換中應用 數(shù)據(jù)輸入/輸出時的轉換2、串操作中應用 串移動、串搜索、串比較、 串插入、串刪除3、代碼轉換中應用 ASCII碼 BCD碼 二進數(shù) BCD碼 4、算術運算 在這一部分,我們將匯編語言在數(shù)據(jù)處理中的應用集中起來給大家,其中有些程序在11章中已經(jīng)介紹過。
標簽: 匯編語言 數(shù)據(jù)處理 中的應用
上傳時間: 2013-10-23
上傳用戶:qwer0574