I2C(Inter Integrated Circuits)是Philips公司開發的用于芯片之間連接的串行總線,以其嚴格的規范、卓越的性能、簡便的操作和眾多帶I2C接口的外圍器件而得到廣泛的應用并受到普遍的歡迎。 現場可編程門陣列(FPGA)設計靈活、速度快,在數字專用集成電路的設計中得到了廣泛的應用。本論文主要討論了如何利用Verilog/FPGA來實現一個隨機讀/寫的I2C接口電路,實現與外圍I2C接口器件E2PROM進行數據通信,實現讀、寫等功能,傳輸速率實現為100KBps。在Modelsim6.0仿真軟件環境中進行仿真,在Xilinx公司的ISE9.li開發平臺上進行了下載,搭建外圍電路,用Agilem邏輯分析儀進行數據采集,分析測試結果。 首先,介紹了微電子設計的發展概況以及設計流程,重點介紹了HDL/FPGA的設計流程。其次,對I2C串行總線進行了介紹,重點說明了總線上的數據傳輸格式并對所使用的AT24C02 E2PROM存儲器的讀/寫時序作了介紹。第三,基于Verilog _HDL設計了隨機讀/寫的I2C接口電路、測試模塊和顯示電路;接口電路由同步有限狀態機(FSM)來實現;測試模塊首先將數據寫入到AT24C02的指定地址,接著將寫入的數據讀出,并將兩個數據顯示在外圍LED數碼管和發光二極管上,從而直觀地比較寫入和輸出的數據的正確性。FPGA下載芯片為Xilinx SPARTAN Ⅲ XC3S200。第四,用Agilent邏輯分析儀進行傳輸數據的采集,分析數據傳輸的時序,從而驗證電路設計的正確性。最后,論文對所取得的研究成果進行了總結,并展望了下一步的工作。
上傳時間: 2013-06-08
上傳用戶:再見大盤雞
介紹了西門子S7–200 系列 PLC 的自由口通信模式及在Windows 環境下應用VC++6.0 實現PC 機與PLC串行通信的編程方法,開發了玻璃器皿沖壓機上位機監控系統。實際運行證明,該監控系
上傳時間: 2013-06-28
上傳用戶:branblackson
基于FPGA的串行通信UART控制器,采用VHDL語言編寫,包含多個子模塊。\r\n在ISE或FPGA的其它開發環境下新建一個工程,然后將文檔中的各個模塊程序添加進去,即可運行仿真。源程序已經過本人的仿真驗證。
上傳時間: 2013-09-03
上傳用戶:xieguodong1234
通用串行接口 UART90 系列單片機帶有一個全雙工的通用串行異步收發器UART 主要特征如下1 波特率發生器可以生成多種波特率2 在XTAL 低頻率下仍可產生較高的波特率3 8 位和9 位數據4 噪聲濾波5 過速的檢測6 幀錯誤檢測7 錯誤起始位的檢測8 三個獨立的中斷發送TX 完成發送數據寄存器空接收RX 完成
上傳時間: 2014-12-27
上傳用戶:yulg
介紹一種運用PIC16F84單片機實現與PC機串行通信的方法,并給出其硬件接口電路及通信源程序。關鍵詞 異步串行通信 發送與接收 VB4 Win95 串口查詢法 1 前言 美國Microchip公司的PIC16系列單片機是一種新型的CMOS工藝的8位單片機。其中,PIC16FXX單片機的程序存儲器為電可擦除閃速存儲器(flash),可多次修改程序,甚至可以在線編程。PIC16F83和PIC16F84片內數據存儲器除RAM外,還有64字節的EEPROM,可以當作一般的或非易失性的數據存儲器使用,簡單方便。它還具有片內上電復位、延時電路、看門狗電路等。另外,PIC16系列單片機功耗極低,因而是一種非常適合在各種便攜式設備中使用的高性價比的單片機,并已經得到了越來越廣泛的應用。 但是在許多需要大量計算的運用中,還必須借助微機的強大數據處理能力。這樣必須通過通信電路實現PIC單片機與微機間的可靠數據傳輸。有的PIC16單片機內并沒有提供串行口,所以串行通信必須通過自己設計的硬件電路和通信軟件來實現。 下面介紹用查詢法實現異步串行通訊的方法。同時給出了用PIC16F84單片機的兩個I/O口模擬2線串行口的硬件接口電路、程序流程框圖、單片機內通信程序以及微機內的通信程序等。2 硬件實現方法與電路 PIC16F84的程序存儲器由1K×14的閃速(flash)存儲器構成,它只有13條I/O口,1個定時器,為了盡量節省單片機的軟硬件資源,采用下述異步串行通信的實現方法。 如圖1所示,PIC16F84在4MHz時鐘下,采用半雙工方式,可實現9600波特率的異步串行數據通信,1位停止位,8位數據位,無校驗位。接收和發送以低位在先(一般模式),采用軟件延時。為節省篇幅,單片機內的通信程序中未提供任何握手協議,用戶可根據自己的需要在軟件中加入握手方式。
上傳時間: 2014-12-27
上傳用戶:偷心的海盜
單片機串行通信發射機 我所做的單片機串行通信發射機主要在實驗室完成,參考有關的書籍和資料,個人完成電路的設計、焊接、檢查、調試,再根據自己的硬件和通信協議用匯編語言編寫發射和顯示程序,然后加電調試,最終達到準確無誤的發射和顯示。在這過程中需要選擇適當的元件,合理的電路圖扎實的焊接技術,基本的故障排除和糾正能力,會使用基本的儀器對硬件進行調試,會熟練的運用匯編語言編寫程序,會用相關的軟件對自己的程序進行翻譯,并燒進芯片中,要與對方接收機統一通信協議,要耐心的反復檢查、修改和調試,直到達到預期目的。單片機串行通信發射機采用串行工作方式,發射并顯示兩位數字信息,既顯示00-99,使數據能夠在不同地方傳遞。硬件部分主要分兩大塊,由AT89C51和多個按鍵組成的控制模塊,包括時鐘電路、控制信號電路,時鐘采用6MHZ晶振和30pF的電容來組成內部時鐘方式,控制信號用手動開關來控制,P1口來控制,P2、P3口產生信號并通過共陽極數碼管來顯示,軟件采用匯編語言來編寫,發射程序在通信協議一致的情況下完成數據的發射,同時顯示程序對發射的數據加以顯示。畢業設計的目的是了解基本電路設計的流程,豐富自己的知識和理論,鞏固所學的知識,提高自己的動手能力和實驗能力,從而具備一定的設計能力。我做得的畢業設計注重于對單片機串行發射的理論的理解,明白發射機的工作原理,以便以后單片機領域的開發和研制打下基礎,提高自己的設計能力,培養創新能力,豐富自己的知識理論,做到理論和實際結合。本課題的重要意義還在于能在進一步層次了解單片機的工作原理,內部結構和工作狀態。理解單片機的接口技術,中斷技術,存儲方式,時鐘方式和控制方式,這樣才能更好的利用單片機來做有效的設計。我的畢業設計分為兩個部分,硬件部分和軟件部分。硬件部分介紹:單片機串行通信發射機電路的設計,單片機AT89C51的功能和其在電路的作用。介紹了AT89C51的管腳結構和每個管腳的作用及各自的連接方法。AT89C51 與MCS-51 兼容,4K字節可編程閃爍存儲器,壽命:1000次可擦,數據保存10年,全靜態工作:0HZ-24HZ,三級程序存儲器鎖定,128*8 位內部RAM,32 跟可編程I/O 線,兩個16 位定時/計數器,5 個中斷源,5 個可編程串行通道,低功耗的閑置和掉電模式,片內震蕩和時鐘電路,P0和P1 可作為串行輸入口,P3口因為其管腳有特殊功能,可連接其他電路。例如P3.0RXD 作為串行輸出口,其中時鐘電路采用內時鐘工作方式,控制信號采用手動控制。數據的傳輸方式分為單工、半雙工、全雙工和多工工作方式;串行通信有兩種形式,異步和同步通信。介紹了串行串行口控制寄存器,電源管理寄存器PCON,中斷允許寄存器IE,還介紹了數碼顯示管的工作方式、組成,共陽極和共陰極數碼顯示管的電路組成,有動態和靜態顯示兩種方式,說明了不同顯示方法與單片機的連接。再后來還介紹了硬件的焊接過程,及在焊接時遇到的問題和應該注意的方面。硬件焊接好后的檢查電路、不裝芯片上電檢查及上電裝芯片檢查。軟件部分:在了解電路設計原理后,根據原理和目的畫出電路流程圖,列出數碼顯示的斷碼表,計算波特率,設置串行口,在與接受機設置相同的通信協議的基礎上編寫顯示和發射程序。編寫完程序還要進行編譯,這就必須會使用編譯軟件。介紹了編譯軟件的使用和使用過程中遇到的問題,及在編譯后燒入芯片使用的軟件PLDA,后來的加電調試,及遇到的問題,在沒問題后與接受機連接,發射數據,直到對方準確接收到。在軟件調試過程中將詳細介紹調試遇到的問題,例如:通信協議是否相同,數碼管是否與芯片連接對應,計數器是否開始計數等。
上傳時間: 2013-10-19
上傳用戶:uuuuuuu
自動檢測80C51串行通訊中的波特率:本文介紹一種在80C51 串行通訊應用中自動檢測波特率的方法。按照經驗,程序起動后所接收到的第1 個字符用于測量波特率。這種方法可以不用設定難于記憶的開關,還可以免去在有關應用中使用多種不同波特率的煩惱。人們可以設想:一種可靠地實現自動波特檢測的方法是可能的,它無須嚴格限制可被確認的字符。問題是:在各種的條件下,如何可以在大量允許出現的字符中找出波特率定時間隔。顯然,最快捷的方法是檢測一個單獨位時間(single bit time),以確定接收波特率應該是多少??墒?,在RS-232 模式下,許多ASCII 字符并不能測量出一個單獨位時間。對于大多數字符來說,只要波特率存在合理波動(這里的波特率是指標準波特率),從起始位到最后一位“可見”位的數據傳輸周期就會在一定范圍內發生變化。此外,許多系統采用8 位數據、無奇偶校驗的格式傳輸ASCII 字符。在這種格式里,普通ASCII 字節不會有MSB 設定,并且,UART總是先發送數據低位(LSB),后發送數據高位(MSB),我們總會看見數據的停止位。在下面的波特率檢測程序中,先等待串行通訊輸入管腳的起始信號(下降沿),然后起動定時器T0。在其后的串行數據的每一個上升沿,將定時器T0 的數值捕獲并保存。當定時器T0溢出時,其最后一次捕獲的數值即為從串行數據起始位到最后一個上升沿(我們假設是停止位)過程所持續的時間。
上傳時間: 2014-08-22
上傳用戶:dajin
串行編程器源程序(Keil C語言)//FID=01:AT89C2051系列編程器//實現編程的讀,寫,擦等細節//AT89C2051的特殊處:給XTAL一個脈沖,地址計數加1;P1的引腳排列與AT89C51相反,需要用函數轉換#include <e51pro.h> #define C2051_P3_7 P1_0#define C2051_P1 P0//注意引腳排列相反#define C2051_P3_0 P1_1#define C2051_P3_1 P1_2#define C2051_XTAL P1_4#define C2051_P3_2 P1_5#define C2051_P3_3 P1_6#define C2051_P3_4 P1_7#define C2051_P3_5 P3_5 void InitPro01()//編程前的準備工作{ SetVpp0V(); P0=0xff; P1=0xff; C2051_P3_5=1; C2051_XTAL=0; Delay_ms(20); nAddress=0x0000; SetVpp5V();} void ProOver01()//編程結束后的工作,設置合適的引腳電平{ SetVpp5V(); P0=0xff; P1=0xff; C2051_P3_5=1; C2051_XTAL=1;} BYTE GetData()//從P0口獲得數據{ B_0=P0_7; B_1=P0_6; B_2=P0_5; B_3=P0_4; B_4=P0_3; B_5=P0_2; B_6=P0_1; B_7=P0_0; return B;} void SetData(BYTE DataByte)//轉換并設置P0口的數據{ B=DataByte; P0_0=B_7; P0_1=B_6; P0_2=B_5; P0_3=B_4; P0_4=B_3; P0_5=B_2; P0_6=B_1; P0_7=B_0;} void ReadSign01()//讀特征字{ InitPro01(); Delay_ms(1);//----------------------------------------------------------------------------- //根據器件的DataSheet,設置相應的編程控制信號 C2051_P3_3=0; C2051_P3_4=0; C2051_P3_5=0; C2051_P3_7=0; Delay_ms(20); ComBuf[2]=GetData(); C2051_XTAL=1; C2051_XTAL=0; Delay_us(20); ComBuf[3]=GetData(); ComBuf[4]=0xff;//----------------------------------------------------------------------------- ProOver01();} void Erase01()//擦除器件{ InitPro01();//----------------------------------------------------------------------------- //根據器件的DataSheet,設置相應的編程控制信號 C2051_P3_3=1; C2051_P3_4=0; C2051_P3_5=0; C2051_P3_7=0; Delay_ms(1); SetVpp12V(); Delay_ms(1); C2051_P3_2=0; Delay_ms(10); C2051_P3_2=1; Delay_ms(1);//----------------------------------------------------------------------------- ProOver01();} BOOL Write01(BYTE Data)//寫器件{//----------------------------------------------------------------------------- //根據器件的DataSheet,設置相應的編程控制信號 //寫一個單元 C2051_P3_3=0; C2051_P3_4=1; C2051_P3_5=1; C2051_P3_7=1; SetData(Data); SetVpp12V(); Delay_us(20); C2051_P3_2=0; Delay_us(20); C2051_P3_2=1; Delay_us(20); SetVpp5V(); Delay_us(20); C2051_P3_4=0; Delay_ms(2); nTimeOut=0; P0=0xff; nTimeOut=0; while(!GetData()==Data)//效驗:循環讀,直到讀出與寫入的數相同 { nTimeOut++; if(nTimeOut>1000)//超時了 { return 0; } } C2051_XTAL=1; C2051_XTAL=0;//一個脈沖指向下一個單元//----------------------------------------------------------------------------- return 1;} BYTE Read01()//讀器件{ BYTE Data;//----------------------------------------------------------------------------- //根據器件的DataSheet,設置相應的編程控制信號 //讀一個單元 C2051_P3_3=0; C2051_P3_4=0; C2051_P3_5=1; C2051_P3_7=1; Data=GetData(); C2051_XTAL=1; C2051_XTAL=0;//一個脈沖指向下一個單元//----------------------------------------------------------------------------- return Data;} void Lock01()//寫鎖定位{ InitPro01();//先設置成編程狀態//----------------------------------------------------------------------------- //根據器件的DataSheet,設置相應的編程控制信號 if(ComBuf[2]>=1)//ComBuf[2]為鎖定位 { C2051_P3_3=1; C2051_P3_4=1; C2051_P3_5=1; C2051_P3_7=1; Delay_us(20); SetVpp12V(); Delay_us(20); C2051_P3_2=0; Delay_us(20); C2051_P3_2=1; Delay_us(20); SetVpp5V(); } if(ComBuf[2]>=2) { C2051_P3_3=1; C2051_P3_4=1; C2051_P3_5=0; C2051_P3_7=0; Delay_us(20); SetVpp12V(); Delay_us(20); C2051_P3_2=0; Delay_us(20); C2051_P3_2=1; Delay_us(20); SetVpp5V(); }//----------------------------------------------------------------------------- ProOver01();} void PreparePro01()//設置pw中的函數指針,讓主程序可以調用上面的函數{ pw.fpInitPro=InitPro01; pw.fpReadSign=ReadSign01; pw.fpErase=Erase01; pw.fpWrite=Write01; pw.fpRead=Read01; pw.fpLock=Lock01; pw.fpProOver=ProOver01;}
上傳時間: 2013-11-12
上傳用戶:gut1234567
帶I2C串行CMOS EEPROM、精密復位控制器和看門狗定時器的監控電路 特性 看門狗監控SDA信號 (CAT1161) 兼容400KHz 的I2C總線 操作電壓范圍為2.7V~6.0V 低功耗CMOS 技術 16 字節的頁寫緩沖區 內置誤寫保護電路-Vcc鎖定-寫保護管腳WP 復位高電平或低電平有效-精確的電源電壓監控-支持5V,3.3V 和3V 的系統-5個復位門檻電壓可供選擇 1,000,000個編程/擦除周期 手動復位 數據可保存100 年 8 腳DIP 封裝或8 腳SOIC 封裝 商業和工業級溫度范圍描述CAT1161/2 為基于微控器的系統提供了一個完整的存儲器和電源監控解決方案。它們利用低功耗CMOS技術將16k帶硬件存儲器寫保護功能的串行EEPROM 存儲器、用于掉電保護的電源監控電路和一個看門狗定時器集成到一塊芯片上。存儲器采用I2C 總線接口。當系統由于軟件或硬件干擾而被終止或“掛起”時,1.6 秒的看門狗電路將復位系統,使系統恢復正常。CAT1161的看門狗電路監控著SDA,這就可以省去額外的PC板跟蹤電路。低價位的CAT1162不含看門狗定時器。電源監控和復位電路可在系統上電/下電時保護存儲器和系統控制器,防止掉電條件的產生。CAT1161/2的5個門檻電壓可支持5V、3.3V和3V的系統。一旦電源電壓超出范圍,復位信號有效,禁止微控制器、ASIC或外圍器件繼續工作。復位信號在電源電壓超過復位門檻電壓后的200ms內仍保持有效。由于帶有高電平和低電平復位信號,因此CAT1161/2可以很方便地連接到微控制器和其它IC。另外,復位管腳還可用作手動按鍵復位的去抖輸入。 CAT1161/2 的存儲器構造成16字節的頁。除此之外,寫保護管腳WP和VCC 檢測電路提供的硬件數據保護功能可防止在Vcc降到低于復位門檻電壓或上電時Vcc上升到復位門檻電壓之前對存儲器的寫操作。器件包含8腳DIP和表貼8腳SOIC兩種封裝形式。
上傳時間: 2014-03-19
上傳用戶:蟲蟲蟲蟲蟲蟲
RS-232-C 是PC 機常用的串行接口,由于信號電平值較高,易損壞接口電路的芯片,與TTL電平不兼容故需使用電平轉換電路方能與TTL 電路連接。本產品(轉接器),可以實現任意電平下(0.8~15)的UART串行接口到RS-232-C/E接口的無源電平轉接, 使用非常方便可靠。 什么是RS-232-C 接口?采用RS-232-C 接口有何特點?傳輸電纜長度如何考慮?答: 計算機與計算機或計算機與終端之間的數據傳送可以采用串行通訊和并行通訊二種方式。由于串行通訊方式具有使用線路少、成本低,特別是在遠程傳輸時,避免了多條線路特性的不一致而被廣泛采用。 在串行通訊時,要求通訊雙方都采用一個標準接口,使不同 的設備可以方便地連接起來進行通訊。 RS-232-C接口(又稱 EIA RS-232-C)是目前最常用的一種串行通訊接口。它是在1970 年由美國電子工業協會(EIA)聯合貝爾系統、 調制解調器廠家及計算機終端生產廠家共同制定的用于串行通訊的標準。它的全名是“數據終端設備(DTE)和數據通訊設備(DCE)之間串行二進制數據交換接口技術標準”該標準規定采用一個25 個腳的 DB25 連接器,對連接器的每個引腳的信號內容加以規定,還對各種信號的電平加以規定。(1) 接口的信號內容實際上RS-232-C 的25 條引線中有許多是很少使用的,在計算機與終端通訊中一般只使用3-9 條引線。(2) 接口的電氣特性 在RS-232-C 中任何一條信號線的電壓均為負邏輯關系。即:邏輯“1”,-5— -15V;邏輯“0” +5— +15V 。噪聲容限為2V。即 要求接收器能識別低至+3V 的信號作為邏輯“0”,高到-3V的信號 作為邏輯“1”(3) 接口的物理結構 RS-232-C 接口連接器一般使用型號為DB-25 的25 芯插頭座,通常插頭在DCE 端,插座在DTE端. 一些設備與PC 機連接的RS-232-C 接口,因為不使用對方的傳送控制信號,只需三條接口線,即“發送數據”、“接收數據”和“信號地”。所以采用DB-9 的9 芯插頭座,傳輸線采用屏蔽雙絞線。(4) 傳輸電纜長度由RS-232C 標準規定在碼元畸變小于4%的情況下,傳輸電纜長度應為50 英尺,其實這個4%的碼元畸變是很保守的,在實際應用中,約有99%的用戶是按碼元畸變10-20%的范圍工作的,所以實際使用中最大距離會遠超過50 英尺,美國DEC 公司曾規定允許碼元畸變為10%而得出附表2 的實驗結果。其中1 號電纜為屏蔽電纜,型號為DECP.NO.9107723 內有三對雙絞線,每對由22# AWG 組成,其外覆以屏蔽網。2 號電纜為不帶屏蔽的電纜。 2. 什么是RS-485 接口?它比RS-232-C 接口相比有何特點?答: 由于RS-232-C 接口標準出現較早,難免有不足之處,主要有以下四點:(1) 接口的信號電平值較高,易損壞接口電路的芯片,又因為與TTL 電平不兼容故需使用電平轉換電路方能與TTL 電路連接。(2) 傳輸速率較低,在異步傳輸時,波特率為20Kbps。(3) 接口使用一根信號線和一根信號返回線而構成共地的傳輸形式, 這種共地傳輸容易產生共模干擾,所以抗噪聲干擾性弱。(4) 傳輸距離有限,最大傳輸距離標準值為50 英尺,實際上也只能 用在50 米左右。針對RS-232-C 的不足,于是就不斷出現了一些新的接口標準,RS-485 就是其中之一,它具有以下特點:1. RS-485 的電氣特性:邏輯“1”以兩線間的電壓差為+(2—6) V 表示;邏輯“0”以兩線間的電壓差為-(2—6)V 表示。接口信號電平比RS-232-C 降低了,就不易損壞接口電路的芯片, 且該電平與TTL 電平兼容,可方便與TTL 電路連接。2. RS-485 的數據最高傳輸速率為10Mbps3. RS-485 接口是采用平衡驅動器和差分接收器的組合,抗共模干能力增強,即抗噪聲干擾性好。4. RS-485 接口的最大傳輸距離標準值為4000 英尺,實際上可達 3000 米,另外RS-232-C接口在總線上只允許連接1 個收發器, 即單站能力。而RS-485 接口在總線上是允許連接多達128 個收發器。即具有多站能力,這樣用戶可以利用單一的RS-485 接口方便地建立起設備網絡。因RS-485 接口具有良好的抗噪聲干擾性,長的傳輸距離和多站能力等上述優點就使其成為首選的串行接口。 因為RS485 接口組成的半雙工網絡,一般只需二根連線,所以RS485接口均采用屏蔽雙絞線傳輸。 RS485 接口連接器采用DB-9 的9 芯插頭座,與智能終端RS485接口采用DB-9(孔),與鍵盤連接的鍵盤接口RS485 采用DB-9(針)。3. 采用RS485 接口時,傳輸電纜的長度如何考慮?答: 在使用RS485 接口時,對于特定的傳輸線經,從發生器到負載其數據信號傳輸所允許的最大電纜長度是數據信號速率的函數,這個 長度數據主要是受信號失真及噪聲等影響所限制。下圖所示的最大電纜長度與信號速率的關系曲線是使用24AWG 銅芯雙絞電話電纜(線 徑為0.51mm),線間旁路電容為52.5PF/M,終端負載電阻為100 歐 時所得出。(曲線引自GB11014-89 附錄A)。由圖中可知,當數據信 號速率降低到90Kbit/S 以下時,假定最大允許的信號損失為6dBV 時, 則電纜長度被限制在1200M。實際上,圖中的曲線是很保守的,在實 用時是完全可以取得比它大的電纜長度。 當使用不同線徑的電纜。則取得的最大電纜長度是不相同的。例 如:當數據信號速率為600Kbit/S 時,采用24AWG 電纜,由圖可知最 大電纜長度是200m,若采用19AWG 電纜(線徑為0。91mm)則電纜長 度將可以大于200m; 若采用28AWG 電纜(線徑為0。32mm)則電纜 長度只能小于200m。
上傳時間: 2013-10-11
上傳用戶:時代電子小智