1、該控制板是基于modbus協議RTU模式進行通訊,是一種工業標準協議,具有穩定性高,使用廣泛,從而可以兼容其他設備 2、三十路帶光電隔離輸出控制繼電器。 3、標準的11.0592M晶振。(便于設置串口波特率) 4、具有上電復位和手動復位。 5、支持51系列DIP40封裝單片機。
標簽: modbus_RTU 模式 工控板 存儲
上傳時間: 2013-11-10
上傳用戶:niumeng16
文中介紹了一種主從模式的蓄電池遠程監測系統終端。以Si1015為主控芯片,該終端主要完成了蓄電池組的內阻、電壓、環境溫度的測量,主從模塊之間通過無線方式傳輸數據,主模塊通過GPRS實現終端與監控中心的數據傳輸。
上傳時間: 2013-11-04
上傳用戶:竺羽翎2222
IO口模擬I2C(主 從)
上傳時間: 2013-11-18
上傳用戶:ynsnjs
硬件電路設計之主芯片選型 平臺的選擇很多時候和系統選擇的算法是相關的,所以如果要提高架構,平臺的設計能力,得不斷提高自身的算法設計,復雜度評估能力,帶寬分析能力。 常用的主處理器芯片有:單片機,ASIC,RISC(DEC Alpha、ARC、ARM、MIPS、PowerPC、SPARC和SuperH ),DSP和FPGA等,這些處理器的比較在網上有很多的文章,在這里不老生常談了,這里只提1個典型的主處理器選型案例
上傳時間: 2013-11-05
上傳用戶:HGH77P99
CANopen主節點除具備CANopen設備的基本條件外,還需具備NMTMaster的功能,即對CANopen網絡進行管理。對CANopen主節點的實現提出三種方案:方案1:在CANopen-Chip基礎上開發CANopen主站。方案2:通過對CANopen協議棧源代碼的二次開發在單片機上實現嵌入式CANopen主站。方案3:利用CANopenMasterAPI在PC機上實現CANopen主節點。
上傳時間: 2013-11-02
上傳用戶:luke5347
提出了采用兩段式同軸波紋慢波結構實現雙頻高功率微波輸出的相對論返波振蕩器, 推導了該結構的TM0n模式色散方程,數值求解了兩段式同軸波紋慢波結構TM0n模色散曲線,分析了該器件X波段雙頻高功率微波輸出的產生機理, 分析中考慮了電子注在慢波結構第二段工作效率不變和下降時的雙頻工作點情況,并運用2.5 維全電磁粒子模擬程序驗證了雙頻微波信號的可靠性。關鍵詞高功率微波;雙頻;X 波段;相對論返波振蕩器 當前, 應用于高功率微波效應的微波器件只有一個主頻率,已有的實驗結果表明,在現有條件下,單頻高功率微波用于攻擊敵方的電子系統所需的功率遠遠大于單只高功率微波源所能產生的功率,即破壞閾值很高[1]。但是,如果用兩個或多個頻率相近的高功率微波波束產生拍頻后用于攻擊電子系統,那么所需的功率密度將大大減小,即效應閾值大大下降, 采用這種方式將有可能在現有的技術下使高功率微波實用化[2],但是雙頻及多頻高功率微波源器件的研究目前是十分前沿的課題,處于剛起步階段,在國內外極少有報道[2~4],因而,用單個微波源器件產生穩定輸出的雙頻甚至多頻高功率微波具有重要的實際應用價值和學術價值,是高功率微波領域又一個新興的研究方向, 在高功率微波武器和新體制雷達等方面將有良好的應用前景。
上傳時間: 2013-10-31
上傳用戶:kxyw404582151
LM3S系列單片機主要有3種工作模式:運行模式(Run-Mode)、睡眠模式(Sleep-Mode)、深度睡眠模式(Deep-Sleep-Mode)。某些型號還具有單獨的極為省電的冬眠模塊(Hibernation Module)。而對各個模式下的外設時鐘選通以及系統時鐘源的控制主要由表 2.1中的寄存器來完成。 運行模式是正常的工作模式,處理器內核將積極地執行代碼。在睡眠模式下,系統時鐘不變,但處理器內核不再執行代碼(內核因不需要時鐘而省電)。在深度睡眠模式下,系統時鐘可變,處理器內核同樣也不再執行代碼。深度睡眠模式比睡眠模式更為省電。有關這3種工作模式的具體區別請參見表 2.2的描述。調用函數SysCtlSleep( )可使處理器立即進入睡眠模式,而調用函數SysCtlDeepSleep( )可使處理器立即進入深度睡眠模式。任一中斷都可以將處理器從睡眠或深度睡眠模式喚醒,并使處理器恢復到睡眠前的運行狀態。因此在進入睡眠或深度睡眠之前,必須配置某個片內外設的中斷并允許其在睡眠或深度睡眠模式下繼續工作,如果不這樣,則只有復位或重新上電才能結束睡眠或深度睡眠狀態。
上傳時間: 2013-11-08
上傳用戶:ArmKing88
LPC900 FLASH單片機,是PHILIPS公司推出的一款高性能、微功耗51內核單片機,主要集成了字節方式的I2C總線、SPI總線、增強型UART接口、實時時鐘、E2PROM、A/D轉換器、ISP/IAP在線編程和遠程編程方式等一系列有特色的功能部件。LPC900系列單片機提供從8腳DIP到28腳的PLCC等豐富的封裝形式,可以滿足各種對成本、線路板空間有限制而又要求高性能、高可靠性的應用。且其具有高速率(6倍于普通51單片機),低功耗(完全掉電模式功耗僅為1uA),高穩定性,小封裝,多功能(內嵌眾多流行的功能模塊),多選擇等特點(該系列有多款不同封裝,不同價位,不同功能的型號供用戶選擇)。
上傳時間: 2013-10-19
上傳用戶:hanbeidang
MPLAB C18使用指南 簡介本文檔論述MPLAB® C18 編譯器的技術細節,并講解MPLAB C18 編譯器的所有功能。 這里假定讀者已經具備如下基本素質:• 知道如何編寫C 程序• 知道如何使用MPLAB 集成開發環境創建和調試項目• 已經閱讀并理解了所使用單片機的數據手冊 文檔內容編排如下:• 第1 章:簡介 — 提供對MPLAB C18 編譯器的概述以及有關調用編譯器的信息。• 第2 章:語法說明 — 論述MPLAB C18 編譯器與ANSI 標準的不同之處。• 第3 章:運行時模型 — 論述MPLAB C18 編譯器如何利用 PIC18 PICmicro® 單片機的資源。• 第4 章:優化 — 論述MPLAB C18 編譯器執行的優化功能。• 第5 章:示例應用程序 — 給出一個示例應用程序,并就本用戶指南中論述的各主題,對源代碼進行了說明。• 附錄A:COFF 文件格式 — 詳細闡述了Microchip 的COFF 格式。• 附錄B:采用ANSI 定義的方式 — 論述按照ANSI 標準的要求,MPLAB C18 實現所定義的執行方式。• 附錄C:命令行概述 — 列出了命令行選項以及論述每個命令行選項的參考章節。• 附錄D:MPLAB C18 診斷 — 列出了錯誤、警告和消息。• 附錄E:擴展模式 — 論述非擴展模式和擴展模式之間的區別。
上傳時間: 2013-10-30
上傳用戶:1583060504
at91rm9200啟動過程教程 系統上電,檢測BMS,選擇系統的啟動方式,如果BMS為高電平,則系統從片內ROM啟動。AT91RM9200的ROM上電后被映射到了0x0和0x100000處,在這兩個地址處都可以訪問到ROM。由于9200的ROM中固化了一個BOOTLOAER程序。所以PC從0X0處開始執行這個BOOTLOAER(準確的說應該是一級BOOTLOADER)。這個BOOTLOER依次完成以下步驟: 1、PLL SETUP,設置PLLB產生48M時鐘頻率提供給USB DEVICE。同時DEBUG USART也被初始化為48M的時鐘頻率; 2、相應模式下的堆棧設置; 3、檢測主時鐘源(Main oscillator); 4、中斷控制器(AIC)的設置; 5、C 變量的初始化; 6、跳到主函數。 完成以上步驟后,我們可以認為BOOT過程結束,接下來的就是LOADER的過程,或者也可以認為是裝載二級BOOTLOER。AT91RM9200按照DATAFLASH、EEPROM、連接在外部總線上的8位并行FLASH的順序依次來找合法的BOOT程序。所謂合法的指的是在這些存儲設備的開始地址處連續的存放的32個字節,也就是8條指令必須是跳轉指令或者裝載PC的指令,其實這樣規定就是把這8條指令當作是異常向量表來處理。必須注意的是第6條指令要包含將要裝載的映像的大小。關于如何計算和寫這條指令可以參考用戶手冊。一旦合法的映像找到之后,則BOOT程序會把找到的映像搬到SRAM中去,所以映像的大小是非常有限的,不能超過16K-3K的大小。當BOOT程序完成了把合法的映像搬到SRAM的任務以后,接下來就進行存儲器的REMAP,經過REMAP之后,SRAM從映設前的0X200000地址處被映設到了0X0地址并且程序從0X0處開始執行。而ROM這時只能在0X100000這個地址處看到了。至此9200就算完成了一種形式的啟動過程。如果BOOT程序在以上所列的幾種存儲設備中找到合法的映像,則自動初始化DEBUG USART口和USB DEVICE口以準備從外部載入映像。對DEBUG口的初始化包括設置參數115200 8 N 1以及運行XMODEM協議。對USB DEVICE進行初始化以及運行DFU協議。現在用戶可以從外部(假定為PC平臺)載入你的映像了。在PC平臺下,以WIN2000為例,你可以用超級終端來完成這個功能,但是還是要注意你的映像的大小不能超過13K。一旦正確從外部裝載了映像,接下來的過程就是和前面一樣重映設然后執行映像了。我們上面講了BMS為高電平,AT91RM9200選擇從片內的ROM啟動的一個過程。如果BMS為低電平,則AT91RM9200會從片外的FLASH啟動,這時片外的FLASH的起始地址就是0X0了,接下來的過程和片內啟動的過程是一樣的,只不過這時就需要自己寫啟動代碼了,至于怎么寫,大致的內容和ROM的BOOT差不多,不同的硬件設計可能有不一樣的地方,但基本的都是一樣的。由于片外FLASH可以設計的大,所以這里編寫的BOOTLOADER可以一步到位,也就是說不用像片內啟動可能需要BOOT好幾級了,目前AT91RM9200上使用較多的bootloer是u-boot,這是一個開放源代碼的軟件,用戶可以自由下載并根據自己的應用配置??偟恼f來,筆者以為AT91RM9200的啟動過程比較簡單,ATMEL的服務也不錯,不但提供了片內啟動的功能,還提供了UBOOT可供下載。筆者寫了一個BOOTLODER從片外的FLASHA啟動,效果還可以。 uboot結構與使用uboot是一個龐大的公開源碼的軟件。他支持一些系列的arm體系,包含常見的外設的驅動,是一個功能強大的板極支持包。其代碼可以 http://sourceforge.net/projects/u-boot下載 在9200上,為了啟動uboot,還有兩個boot軟件包,分別是loader和boot。分別完成從sram和flash中的一級boot。其源碼可以從atmel的官方網站下載。 我們知道,當9200系統上電后,如果bms為高電平,則系統從片內rom啟動,這時rom中固化的boot程序初始化了debug口并向其發送'c',這時我們打開超級終端會看到ccccc...。這說明系統已經啟動,同時xmodem協議已經啟動,用戶可以通過超級終端下載用戶的bootloader。作為第一步,我們下載loader.bin.loader.bin將被下載到片內的sram中。這個loder完成的功能主要是初始化時鐘,sdram和xmodem協議,為下載和啟動uboot做準備。當下載了loader.bin后,超級終端會繼續打印:ccccc....。這時我們就可以下在uboot了。uboot將被下載到sdram中的一個地址后并把pc指針調到此處開始執行uboot。接著我們就可以在終端上看到uboot的shell啟動了,提示符uboot>,用戶可以uboot>help 看到命令列表和大概的功能。uboot的命令包含了對內存、flash、網絡、系統啟動等一些命令。 如果系統上電時bms為低電平,則系統從片外的flash啟動。為了從片外的flash啟動uboot,我們必須把boot.bin放到0x0地址出,使得從flash啟動后首先執行boot.bin,而要少些boot.bin,就要先完成上面我們講的那些步驟,首先開始從片內rom啟動uboot。然后再利用uboot的功能完成把boot.bin和uboot.gz燒寫到flash中的目的,假如我們已經啟動了uboot,可以這樣操作: uboot>protect off all uboot>erase all uboot>loadb 20000000 uboot>cp.b 20000000 10000000 5fff uboot>loadb 21000000 uboot>cp.b 210000000 10010000 ffff 然后系統復位,就可以看到系統先啟動boot,然后解壓縮uboot.gz,然后啟動uboot。注意,這里uboot必須壓縮成.gz文件,否則會出錯。 怎么編譯這三個源碼包呢,首先要建立一個arm的交叉編譯環境,關于如何建立,此處不予說明。建立好了以后,分別解壓源碼包,然后修改Makefile中的編譯器項目,正確填寫你的編譯器的所在路徑。 對loader和boot,直接make。對uboot,第一步:make_at91rm9200dk,第二步:make。這樣就會在當前目錄下分別生成*.bin文件,對于uboot.bin,我們還要壓縮成.gz文件。 也許有的人對loader和boot搞不清楚為什么要兩個,有什么區別嗎?首先有區別,boot主要完成從flash中啟動uboot的功能,他要對uboot的壓縮文件進行解壓,除此之外,他和loader并無大的區別,你可以把boot理解為在loader的基礎上加入了解壓縮.gz的功能而已。所以這兩個并無多大的本質不同,只是他們的使命不同而已。 特別說名的是這三個軟件包都是開放源碼的,所以用戶可以根據自己的系統的情況修改和配置以及裁減,打造屬于自己系統的bootloder。
上傳時間: 2013-10-27
上傳用戶:wsf950131