目前運動控制主要有兩種實現(xiàn)方式,一是使用PLC加運動控制模塊來實現(xiàn):二是使用PC加運動控制卡來實現(xiàn)。兩者各有優(yōu)缺點,但兩者有以下共同的缺點:一是由于它們兒乎都是采用通用微控制器(MCU和DSP)來實現(xiàn)電機控制,由于受CPU速度的限制,以及CPU的多個進程同時處理,故無法在控制精度和控制速度比較高的場合中應(yīng)用。二是它們的設(shè)計只是把運動控制部件當(dāng)作系統(tǒng)的一個部分,如果要完成一個機械設(shè)備的完整控制,還需要輔助有其他的數(shù)字量/模擬量控制設(shè)備。這樣在提高了系統(tǒng)成本的同時,也降低了系統(tǒng)的可靠性。 論文設(shè)計了一種基于ARM+CPLD的高速運動控制器,該控制器采用高速的CPLD處理器來完成電機的閉環(huán)控制,輔助以NXP的32位ARM7TDMI處理器LPC231X來實現(xiàn)復(fù)雜的運動規(guī)劃,使得運動控制精度更高、速度更快、運動更加平穩(wěn);同時為系統(tǒng)擴展了常規(guī)運動控制卡不具備的通用I/O接口,除開4軸運動控制所需要的8點高速脈沖輸入和8點高速脈沖輸出外,系統(tǒng)具有24點數(shù)字量輸入(可選共陰或共陽),25點繼電器輸出,僅一臺這樣的專用設(shè)備就可以完成4軸運動控制和設(shè)備上其它開關(guān)量控制。 系統(tǒng)采用可移植的軟、硬件設(shè)計。硬件上以運動控制部件為核心,可以方便的在ARM處理器預(yù)留的資源上擴展出數(shù)字輸入,數(shù)字輸出,AD輸入,DA輸出等常用功能模塊。系統(tǒng)軟件構(gòu)架如下:在最上層,系統(tǒng)采用μC/OS-Ⅱ操作系統(tǒng)來完成系統(tǒng)任務(wù)調(diào)度;在底層,將底層設(shè)備的操作打包編寫成底層驅(qū)動的形式,可直接供用戶程序調(diào)用;在中間層,可根據(jù)不同的用戶要求編寫用戶程序,再將其傳遞給μC/OS-Ⅱ來調(diào)度該用戶程序。 將該運動控制器應(yīng)用于工業(yè)應(yīng)用中的套標(biāo)機,在對套標(biāo)機進行運動分解之后,結(jié)合套標(biāo)機的電氣特性,很好的實現(xiàn)了運動控制器在套標(biāo)機上的二次開發(fā),滿足了套標(biāo)機在現(xiàn)場中的應(yīng)用。
上傳時間: 2013-04-24
上傳用戶:牛津鞋
作為世界上最優(yōu)秀的操作系統(tǒng)之一,Linux不僅在服務(wù)器領(lǐng)域有著不可撼動的地位,而且正在嵌入式領(lǐng)域發(fā)揮著越來越重要的作用。有專家預(yù)測,Linux將是未來最主要的嵌入式操作系統(tǒng)之一,將廣泛應(yīng)用在各種消費電子和通信設(shè)備中。因此,產(chǎn)生并逐漸形成了嵌入式Linux這項技術(shù)。然而,面對嵌入式系統(tǒng)多樣化的硬件平臺以及多樣化的應(yīng)用,如何更快更好地建立基于Linux的軟件平臺成為一個必須解決的問題。 本文正是針對這個問題,以Linux相關(guān)的基礎(chǔ)軟件為主要研究對象,在深入分析引導(dǎo)加載程序、Linux與處理器相關(guān)的代碼、文件系統(tǒng)以及設(shè)備驅(qū)動的基礎(chǔ)上,對基于ARM的Linux軟件平臺進行了創(chuàng)新性和探索性的研究。主要內(nèi)容為:在理解ARM體系結(jié)構(gòu)的基礎(chǔ)上,通過分析uboot源碼,詳細(xì)研究ARM處理器在上電后的啟動過程和加載引導(dǎo)Iinux的過程;分析并總結(jié)Linux與處理器相關(guān)的接口,以中斷控制器、定時器以及串口為主,提出了移植Linux到新型處理器的思路和方法;研究Iinux文件系統(tǒng)的內(nèi)容、制作和使用;分析Linux的設(shè)備驅(qū)動體系結(jié)構(gòu)以及設(shè)備驅(qū)動的調(diào)用方式;在學(xué)習(xí)和研究的基礎(chǔ)之上,針對STMP36xx這款處理器,設(shè)計并實現(xiàn)引導(dǎo)加載程序,完成Linux的移植、配置、編譯,解決Linux啟動過程遇到的問題,然后通過制作根文件系統(tǒng)和實現(xiàn)NandFlash、LCD的驅(qū)動,完整地搭建起以Linux為核心的軟件平臺,并進行了應(yīng)用驗證。 在實際應(yīng)用中,嵌入式系統(tǒng)會使用很多不同類型的處理器,因此迫切希望能夠找到一個準(zhǔn)則解決移植帶來的問題。本文最重要的成果就是為Linux在新型處理器上的移植提出了一個準(zhǔn)則,根據(jù)該準(zhǔn)則可以更加快速、更加準(zhǔn)確地將Linux應(yīng)用到不同的處理器上,因此具有重要的現(xiàn)實意義。同時,本文將項目實踐貫穿于理論研究之中,涉及到Linux平臺關(guān)鍵技術(shù)的分析、相關(guān)工具的使用以及開發(fā)經(jīng)驗的分享,對學(xué)習(xí)嵌入式Linux和設(shè)計嵌入式Linux系統(tǒng)具有較高的參考和指導(dǎo)價值。此外,成功移植的STMP36xx已經(jīng)初具規(guī)模,可以通過二次開發(fā)以形成完善的嵌入式產(chǎn)品。
上傳時間: 2013-06-01
上傳用戶:sa123456
嵌入式網(wǎng)絡(luò)視頻監(jiān)控系統(tǒng)是一種以嵌入式技術(shù)、視頻編碼技術(shù)和網(wǎng)絡(luò)傳輸技術(shù)為核心的新型視頻監(jiān)控系統(tǒng),它在穩(wěn)定性、實時性、處理速度、功能、價格、擴展性等方面和傳統(tǒng)的視頻監(jiān)控系統(tǒng)相比有著突出的優(yōu)勢,同時也代表著目前視頻監(jiān)控系統(tǒng)研究和發(fā)展的方向。 本文研究并實現(xiàn)了以微處理器S3C2440和嵌入式Linux操作系統(tǒng)為核心的嵌入式網(wǎng)絡(luò)視頻監(jiān)控系統(tǒng)。論文首先介紹了嵌入式視頻監(jiān)控技術(shù)的發(fā)展趨勢和研究現(xiàn)狀,而后闡述了該系統(tǒng)硬件總體設(shè)計方案,討論了基于嵌入式Linux操作系統(tǒng)的開發(fā)平臺的構(gòu)建,詳細(xì)論述了視頻采集、編碼、存儲、傳輸?shù)葐卧能浻布O(shè)計,重點論述了基于AL9V576的視頻編碼模塊和基于TW2835的視頻處理模塊的設(shè)計。 本文研究的主要內(nèi)容如下: 1、研究視頻采集單元的優(yōu)化方法,設(shè)計采用音視頻控制器TW2835采集四路模擬視頻輸入信號并疊加OSD環(huán)境信息顯示,提高了視頻處理的功能和視頻質(zhì)量; 2、研究雙核構(gòu)架,采用混合信號系統(tǒng)級芯片C8051F340控制TW2835、采集環(huán)境信息并與S3C2440串口通信,使視頻采集單元模塊化設(shè)計,增加了產(chǎn)品設(shè)計的靈活性,減小了主控芯片的負(fù)擔(dān)和軟件設(shè)計的復(fù)雜性,便于產(chǎn)品功能的擴展和二次開發(fā); 3、研究并分析了MPEG-4的硬件實現(xiàn)方式,采用高品質(zhì)、高性能、低功率視頻壓縮芯片AL9V576進行MPEG-4編碼,大幅提升了壓縮效率,另外還設(shè)計了SRAM主機接口與主控芯片通信,突破了傳統(tǒng)芯片大多采用的PCI接口的限制,方便模塊的組合; 4、研究并設(shè)計了CF卡存儲方案,實現(xiàn)了一種在嵌入式視頻服務(wù)器上的視頻檢索和存儲方法。
標(biāo)簽: ARM 嵌入式遠(yuǎn)程 視頻監(jiān)控系統(tǒng)
上傳時間: 2013-05-16
上傳用戶:cuicuicui
根據(jù)機械電子工程類專業(yè)測控實驗教學(xué)平臺數(shù)據(jù)采集的需要,在綜合考慮成本和性能基礎(chǔ)上,提出以為主處理芯片的數(shù)據(jù)采集卡設(shè)計方案。 該方案的主要特點是,使用基于ARM7TDMI內(nèi)核的,工作主頻最高可達44MHz;內(nèi)置高性能的ADC和DAC模塊,采樣速度最高可達1MSPS,采樣精度為12位;模擬信號輸入通道最多可達16路,模擬信號輸出通道最高可達4路;具有豐富的外設(shè)資源可以使用,GPIO口數(shù)目最高可達40個。 在設(shè)計中采用了模塊化思想,將系統(tǒng)分為四個功能模塊:主模塊的功能是控制ADC進行信號采集和DAC進行模擬信號輸出;模擬信號模塊的作用是對傳感器輸入信號和DAC輸出波形進行簡單的調(diào)理;數(shù)字信號模塊引出32路數(shù)字I/O口,可用于需要采集數(shù)字量的場合;JTAG模塊可進行程序的調(diào)試和下載,對于數(shù)據(jù)采集卡的二次開發(fā)有很大的作用。 在本數(shù)據(jù)采集卡上,嘗試進行了μC/OSⅡ操作系統(tǒng)的移植,成功實現(xiàn)了四個任務(wù)的管理。在實際應(yīng)用中,工作數(shù)小時仍可保持正常的運行。 為檢驗數(shù)據(jù)采集卡的串口通訊能力,利用LabVIEW程序讀取下位機串口發(fā)送的已采集到的數(shù)據(jù),進行波形圖繪制。 為檢驗本數(shù)據(jù)采集卡的ADC和DAC精度,設(shè)計實驗利用DAC輸出波形,并利用ADC將采集到的波形通過LabVIEW顯示,測量結(jié)果顯示兩者電壓值誤差均在可允許的3LSB(Least Significant Bit)范圍內(nèi),表明本數(shù)據(jù)采集卡已基本實現(xiàn)預(yù)期設(shè)計指標(biāo)。
標(biāo)簽: ARM 數(shù)據(jù)采集卡
上傳時間: 2013-04-24
上傳用戶:bruce
正交頻分復(fù)用(OnIlogonaJ Frequency Division Multiplexing,OFDM)技術(shù)通過將整個信道分為多個帶寬相等并行傳輸?shù)淖有诺溃ㄟ^將信息經(jīng)過子信道獨立傳輸來實現(xiàn)通信,子信道的正交性可以保證最大限度的利用頻譜資源。OFDM系統(tǒng)通過循環(huán)前綴來消除符號間干擾(ISI),通過IDFT/DFT調(diào)制解調(diào)降低了系統(tǒng)實現(xiàn)的復(fù)雜度。由于其頻譜利用率高,抗多徑能力強,在多種通信場合中都得到了應(yīng)用。雖然有著上述優(yōu)點,但為了準(zhǔn)確的恢復(fù)信號,信道估計是OFDM系統(tǒng)中必須實現(xiàn)的一環(huán)。 本文正是針對OFDM接收機中的信道估計模塊的運算部件的實現(xiàn)進行了研究。首先,研究了OFDM信道估計的LS算法,一階線性插值算法,二次多項式插值算法,建立了適用于寬帶通信系統(tǒng)的信道估計模塊模型。其次研究了加法器電路和乘法器電路的實現(xiàn),包括進位行波加法器,曼徹斯特進位鏈,超前進位加法器和乘法原理,陣列乘法器,wallace樹乘法器及BOOTH編碼算法,并分析了各種電路的特性及優(yōu)缺點。接著研究了幾種主要的除法器設(shè)計算法,包括數(shù)字循環(huán)算法,基于函數(shù)迭代的算法,以及CORDIC算法,結(jié)合信道估計的特點選擇了函數(shù)迭代和CORDIC算法作為具體實現(xiàn)的方法。最后,在前面的設(shè)計的基礎(chǔ)上在FPGA芯片上實現(xiàn)了前面的設(shè)計方案。
上傳時間: 2013-06-06
上傳用戶:yyyyyyyyyy
隨著通信網(wǎng)的發(fā)展和用戶需求的提高,光纖通信中的PDH體系逐漸被SDH體系所取代.SDH光纖通信系統(tǒng)以其通信容量大、傳輸性能好、接口標(biāo)準(zhǔn)、組網(wǎng)靈活方便、管理功能強大等優(yōu)點獲得越來越廣泛的應(yīng)用.但是在某些對傳輸容量需求不大的場合,SDH的巨大潛力和優(yōu)越性無法發(fā)揮出來,反而還會造成帶寬浪費.相反,PDH因其容量適中,配置靈活,成本低廉和功能齊全,可針對客戶不同需要設(shè)計不同的方案,在某些特定的接入場合具有一定的優(yōu)勢.本課題根據(jù)現(xiàn)實的需要,提出并設(shè)計了一種基于PDH技術(shù)的多業(yè)務(wù)單片F(xiàn)PGA傳輸系統(tǒng).系統(tǒng)可以同時提供12路E1的透明傳輸和一個線速為100M以太網(wǎng)通道,主要由一塊FPGA芯片實現(xiàn)大部分功能,該解決方案在集成度、功耗、成本以及靈活性等方面都具有明顯的優(yōu)勢.本文首先介紹數(shù)字通信以及數(shù)字復(fù)接原理和以太網(wǎng)的相關(guān)知識,然后詳細(xì)闡述了本系統(tǒng)的方案設(shè)計,對所使用的芯片和控制芯片F(xiàn)PGA做了必要的介紹,最后具體介紹了系統(tǒng)硬件和FPGA編碼設(shè)計,以及后期的軟硬件調(diào)試.歸納起來,本文主要具體工作如下:1.實現(xiàn)4路E1信號到1路二次群信號的復(fù)分接,主要包括全數(shù)字鎖相環(huán)、HDB3-NRZ編解碼、正碼速調(diào)整、幀頭檢測和復(fù)分接等.2.將以太網(wǎng)MII接口來的25M的MII信號通過碼速變換到25.344M,進行映射.3.將三路二次群信號和變換過的以太網(wǎng)MII信號進行5b6b編解碼,以利于在光纖上傳輸.4.高速時提取時鐘采用XILINX的CDR方案.并對接收到的信號經(jīng)過5b6b解碼后,分接出各路信號.
標(biāo)簽: FPGA PDH 多業(yè)務(wù) 方案
上傳時間: 2013-07-23
上傳用戶:lansedeyuntkn
隨著電子設(shè)備的迅猛發(fā)展,“讓全部設(shè)備接入網(wǎng)絡(luò)”已經(jīng)成為一種發(fā)展趨勢。通過嵌入式串口服務(wù)器,可以讓現(xiàn)有的串行設(shè)備擁有聯(lián)網(wǎng)功能,避免了投資大量人力、物力,有利于對傳統(tǒng)串行設(shè)備進行更換或者升級。 本文設(shè)計的串口服務(wù)器采用嵌入式處理器和Linux操作系統(tǒng),把現(xiàn)有的基于串行接口的數(shù)據(jù)轉(zhuǎn)化成以太網(wǎng)數(shù)據(jù),然后進行數(shù)據(jù)存取,將傳統(tǒng)的串行數(shù)據(jù)送往網(wǎng)絡(luò)。 論文主要研究了以下內(nèi)容: 第一,在研究串口服務(wù)器網(wǎng)關(guān)工作機理的基礎(chǔ)上,分析高性能串口網(wǎng)絡(luò)服務(wù)器的功能需求。 第二,基于AT91ARM9200微處理器及LXT971ALE網(wǎng)絡(luò)接口芯片等構(gòu)建嵌入式系統(tǒng),完成RS232-TCP/IP轉(zhuǎn)換網(wǎng)關(guān)的軟硬件設(shè)計,實現(xiàn)最多32路串行終端同時接入以太網(wǎng)的高性能串口服務(wù)器。 第三,在RH Linux 9.0為ARM處理器提供的交叉開發(fā)工具下移植Linux,為嵌入式串口服務(wù)器設(shè)計服務(wù)器端與客戶端工作模式,同時設(shè)計實現(xiàn)系統(tǒng)參數(shù)的在線配置功能。 第四,在客戶端和服務(wù)器端分別設(shè)計串口服務(wù)器的基本API函數(shù),為系統(tǒng)二次開發(fā)打下良好的基礎(chǔ)。
標(biāo)簽: ARM 嵌入式 多串口 網(wǎng)絡(luò)服務(wù)器
上傳時間: 2013-04-24
上傳用戶:mqien
隨著計算機與信息技術(shù)的發(fā)展,生物特征識別技術(shù)受到了廣泛的關(guān)注。指紋識別是生物特征識別中的一項重要內(nèi)容,一直以來是國內(nèi)外的研究熱點。 嵌入式自動指紋識別是指指紋識別技術(shù)在嵌入式系統(tǒng)上的應(yīng)用。傳統(tǒng)的嵌入式自動指紋識別系統(tǒng)多采用單片DSP或MIPS處理器來完成算法,由于DSP或MIPS處理器只能根據(jù)程序順序執(zhí)行,在指紋匹配過程中只能和整個庫中的指紋進行一一匹配,因此這類系統(tǒng)在處理較大指紋庫時下匹配時間相當(dāng)長。為了克服這個缺點,本文構(gòu)建了浮點DSP和FPGA協(xié)同處理構(gòu)架的硬件平臺,充分利用DSP在計算上的精確度和FPGA并行處理的特點,由DSP和FPGA共同處理匹配算法。 本文的主要工作如下: 1.設(shè)計了一個硬件系統(tǒng),包括DSP處理器、FPGA、指紋傳感器、人機交互接口和USB1.1接口。同時,還設(shè)計了各硬件模塊的驅(qū)動程序,為應(yīng)用程序提供控制接口。由于系統(tǒng)中DSP工作頻率為300MHz,其中某些器件的工作頻率達到了100MHz,因此本文還給出了一些信號完整性分析和PCB設(shè)計經(jīng)驗。 2.編寫了Verilog程序,在FPGA中實現(xiàn)了9路指紋的并行匹配。由于FPGA本身的局限性,實現(xiàn)原有匹配算法有很大困難。在簡化原有匹配算法的基礎(chǔ)上本文提出了便于FPGA實現(xiàn)“粗匹配”算法。此外,還設(shè)計了用于和DSP通信的接口模塊設(shè)計。 3.完成了系統(tǒng)應(yīng)用程序設(shè)計。在使用uC/OS-Ⅱ?qū)崟r操作系統(tǒng)的基礎(chǔ)上設(shè)計了各系統(tǒng)任務(wù),通過調(diào)用驅(qū)動程序控制和協(xié)調(diào)各硬件模塊,實現(xiàn)了自動指紋識別功能。為了便于存放指紋特征信息,設(shè)計了指紋庫數(shù)據(jù)結(jié)構(gòu),實現(xiàn)了指紋庫添加、刪除、編輯的功能。 最終,本系統(tǒng)實現(xiàn)了高效、快速的進行指紋識別,各模塊工作穩(wěn)定。同時,模塊化的軟硬件設(shè)計使本系統(tǒng)便于進行二次開發(fā),快速應(yīng)用于各種場合。
標(biāo)簽: FPGA DSP 自動 指紋識別系統(tǒng)
上傳時間: 2013-06-05
上傳用戶:guanliya
傳感器是測控系統(tǒng)的重要組成部分,但有些傳感器,如增量式或絕對式旋轉(zhuǎn)編碼器,因無配套的二次儀表,給使用帶來不便。有些傳感器雖然可以買到配套的儀表,但價格昂貴,功能單一且功能無法擴展。為此,本課題以設(shè)計一種通用性強,功能擴展方便的測量儀表為目的,將計算機技術(shù)與嵌入式微處理器技術(shù)用于測量儀表當(dāng)中,設(shè)計一種基于ARM的嵌入式智能儀表。課題主要研究工作包括: 1.在分析比較各種二次儀表功能的基礎(chǔ)上,提出了基于ARM的嵌入式智能儀表設(shè)計方案。搭建了儀表的硬件平臺。 2.軟件設(shè)計實現(xiàn)了μC/OS-Ⅱ嵌入式系統(tǒng)在ARM7微控制器上的移植。在此基礎(chǔ)上,對嵌入式系統(tǒng)進行了一定的擴展,編寫了LCD驅(qū)動程序,調(diào)用了串口通信,A/D轉(zhuǎn)換等模塊的API函數(shù),建立了多任務(wù)環(huán)境,使儀表兼具PWM脈寬調(diào)制功能、數(shù)據(jù)采集、顯示和傳輸功能。 3.通過增量式、絕對式旋轉(zhuǎn)編碼器實驗、轉(zhuǎn)矩轉(zhuǎn)速傳感器實驗、輸出模擬信號的角度傳感器實驗和PWM輸出實驗驗證儀表的功能。 RTOS平臺的構(gòu)建,降低了軟件設(shè)計的復(fù)雜度,提高了系統(tǒng)的實時性和靈活性,縮短了開發(fā)周期。經(jīng)過實驗驗證,該儀表能夠準(zhǔn)確測定頻率信號、模擬信號及數(shù)字信號。
上傳時間: 2013-04-24
上傳用戶:1234567890qqq
當(dāng)代科學(xué)技術(shù)突飛猛進,極大促進了自動識別技術(shù)的發(fā)展——條形碼、光學(xué)字符識別、磁條(卡)、工C卡、語音識別、視覺識別、RFID等,其中,RFID無疑是最為前沿的自動識別技術(shù),是一種非接觸式的識別技術(shù);同時,隨著另外一項技術(shù)——嵌入式技術(shù)的飛速發(fā)展,機構(gòu)小巧、性能優(yōu)越、價格便宜、操作簡便的手持式數(shù)據(jù)自動讀寫設(shè)備發(fā)展尤為迅速。具體說來,一款好的手持式RFID讀寫器適用于工作現(xiàn)場,可以供工作人員對現(xiàn)場物品信息進行自動收集,而隨著嵌入式操作系統(tǒng)和網(wǎng)絡(luò)技術(shù)的應(yīng)用,使讀寫器不僅有數(shù)據(jù)采集功能,而且可以對數(shù)據(jù)進行分析以供管理決策。在這其中,操作系統(tǒng)、芯片、總線、接口技術(shù)成為讀寫器的內(nèi)核,嵌入式系統(tǒng)成為技術(shù)的代表。 隨著嵌入式操作系統(tǒng)(如linux、wirice.net)的出現(xiàn),使得軟件開發(fā)人員在嵌入式系統(tǒng)和普通pc機上進行應(yīng)用軟件開發(fā)不會感到太大的差別(借助于交叉開發(fā)環(huán)境,即在pc機上編譯連接,但生成的是目標(biāo)機代碼)。但是,對于那些應(yīng)用軟件開發(fā)者,往往對某一行業(yè)軟件開發(fā)比較熟悉卻對硬件有些陌生,熟悉硬件原理(嵌入式處理器架構(gòu)、部件工作原理等)恰恰是構(gòu)建一個嵌入式系統(tǒng)所必須的。因此,構(gòu)建一個性能穩(wěn)定、持續(xù)工作時間長、完善數(shù)據(jù)接口、方便讀寫器接口的手持式設(shè)備成為了當(dāng)今一個比較熱門的技術(shù)領(lǐng)域。本項目就是根據(jù)以上事實,先分析了國內(nèi)外研究現(xiàn)狀,再根據(jù)項目需求、生產(chǎn)成本以及RFID應(yīng)用開發(fā)者的要求,決定采用以ARM920T為內(nèi)核的$3C2410為嵌入式處理器、微軟公司力推的wiIice.net為嵌入式操作系統(tǒng),設(shè)計開發(fā)了供RFID應(yīng)用軟件開發(fā)者使用的手持式RFID讀寫器。針對手持式設(shè)備的特點和實際要求,對讀寫器軟硬件系統(tǒng)整體結(jié)構(gòu)進行了規(guī)劃,完成了時鐘電路、nand flash存儲器接口電路、SDRAM電路、串行接口電路、RFID讀寫模塊接口電路、USB接口電路、無線通信模塊接口電路、LCD/觸摸屏接口電路的設(shè)計,并開發(fā)了讀寫器的二次發(fā)API;在wince.net平臺下,利用platform builder工具定制了適于讀寫器的操作系統(tǒng),實現(xiàn)了嵌入式操作系統(tǒng)的設(shè)計,最后對整個系統(tǒng)進行了測試。
上傳時間: 2013-06-21
上傳用戶:yatouzi118
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1