亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

低通濾波器

  • STM32變頻器方案 產品級 含詳細軟硬件設計說明

    系統原理說明:結構上,該逆變器采用模塊化的設計思想,分別為升壓模塊、逆變模塊、低通濾波器等。通過升壓模塊M1進行DC/DC變化,將輸入110VDC電壓轉換350VDC,然后通過逆變模塊M2進行DC/AC變換,輸出三相200VAC的SPWM波,最后經過輸出濾波器濾波后輸出三相200V正弦波。逆變器僅在緊急情況下使用,系統上采用了簡潔、可靠的設計思想,對外接口只有電壓110V輸入一組,3相交流輸出一組,啟動信號一組和故障指示一組,見圖2:110V+為110V電源輸入正極;110VG為110V電源輸入負極;START1與START2為緊急逆變器啟動控制;FAULT1與FAULT2為緊急逆變器故障報警信號端口;U、V、W為逆變器的3相200V輸出端。逆變器長期處于冷待機狀態,當接收到啟動信號之后,緊急逆變器開始工作。當空調主電源無法為空調提供電源的時候,地鐵車輛內的控制器將吸合內部的無源觸頭作為緊急逆變器的啟動信號(即圖2中START1與START2閉合導通時,緊急逆變器啟動)。緊急逆變器啟動信號回路形成后,如果輸入電壓正常、逆變器無故障時,緊急逆變器將在20s內完成啟動并開始穩定工作。緊急逆變器正常工作時,故障報警觸點處于吸合狀態;緊急逆變器出現故障時,三相輸出停止,故障報警觸點斷開。(即:正常時,FAULT1與FAULT2閉合導通;故障時,FAULT1與FAULT2開路。)

    標簽: stm32 變頻器

    上傳時間: 2022-07-01

    上傳用戶:

  • 基于DSP和FPGA的數字化開關電源的實用化研究.rar

    文章開篇提出了開發背景。認為現在所廣泛應用的開關電源都是基于傳統的分立元件組成的。它的特點是頻率范圍窄、電力小、功能少、器件多、成本較高、精度低,對不同的客戶要求來“量身定做”不同的產品,同時幾乎沒有通用性和可移植性。在電子技術飛速發展的今天,這種傳統的模擬開關電源已經很難跟上時代的發展步伐。 隨著DSP、ASIC等電子器件的小型化、高速化,開關電源的控制部分正在向數字化方向發展。由于數字化,使開關電源的控制部分的智能化、零件的共通化、電源的動作狀態的遠距離監測成為了可能,同時由于它的智能化、零件的共通化使得它能夠靈活地應對不同客戶的需求,這就降低了開發周期和成本。依靠現代數字化控制和數字信號處理新技術,數字化開關電源有著廣闊的發展空間。 在數字化領域的今天,最后一個沒有數字化的堡壘就是電源領域。近年來,數字電源的研究勢頭與日俱增,成果也越來越多。雖然目前中國制造的開關電源占了世界市場的80%以上,但都是傳統的比較低端的模擬電源。高端市場上幾乎沒有我們份額。 本論文研究的主要內容是在傳統開關電源模擬調節器的基礎上,提出了一種新的數字化調節器方案,即基于DSP和FPGA的數字化PID調節器。論文對系統方案和電路進行了較為具體的設計,并通過測試取得了預期結果。測試證明該方案能夠適合本行業時代發展的步伐,使系統電路更簡單,精度更高,通用性更強。同時該方案也可用于相關領域。 本文首先分析了國內外開關電源發展的現狀,以及研究數字化開關電源的意義。然后提出了數字化開關電源的總體設計框圖和實現方案,并與傳統的開關電源做了較為詳細的比較。本論文的設計方案是采用DSP技術和FPGA技術來做數字化PID調節,通過數字化PID算法產生PWM波來控制斬波器,控制主回路。從而取代傳統的模擬PID調節器,使電路更簡單,精度更高,通用性更強。傳統的模擬開關電源是將電流電壓反饋信號做PID調節后--分立元器件構成,采用專用脈寬調制芯片實現PWM控制。電流反饋信號來自主回路的電流取樣,電壓反饋信號來自主回路的電壓采樣。再將這兩個信號分別送至電流調節器和電壓調節器的反相輸入端,用來實現閉環控制。同時用來保證系統的穩定性及實現系統的過流過壓保護、電流和電壓值的顯示。電壓、電流的給定信號則由單片機或電位器提供。再次,文章對各個模塊從理論和實際的上都做了仔細的分析和設計,并給出了具體的電路圖,同時寫出了軟件流程圖以及設計中應該注意的地方。整個系統由DSP板和ADC板組成。DSP板完成PWM生成、PID運算、環境開關量檢測、環境開關量生成以及本地控制。ADC板主要完成前饋電壓信號采集、負載電壓信號采集、負載電流信號采集、以及對信號的一階數字低通濾波。由于整個系統是閉環控制系統,要求采樣速率相當高。本系統采用FPGA來控制ADC,這樣就避免了高速采樣占用系統資源的問題,減輕了DSP的負擔。DSP可以將讀到的ADC信號做PID調節,從而產生PWM波來控制逆變橋的開關速率,從而達到閉環控制的目的。 最后,對數字化開關電源和模擬開關電源做了對比測試,得出了預期結論。同時也提出了一些需要改進的地方,認為該方案在其他相關行業中可以廣泛地應用。模擬控制電路因為使用許多零件而需要很大空間,這些零件的參數值還會隨著使用時間、溫度和其它環境條件的改變而變動并對系統穩定性和響應能力造成負面影響。數字電源則剛好相反,同時數字控制還能讓硬件頻繁重復使用、加快上市時間以及減少開發成本與風險。在當前對產品要求體積小、智能化、共通化、精度高和穩定度好等前提條件下,數字化開關電源有著廣闊的發展空間。本系統來基本上達到了設計要求。能夠滿足較高精度的設計要求。但對于高精度數字化電源,系統還有值得改進的地方,比如改進主控器,提高參考電壓的精度,提高采樣器件的精度等,都可以提高系統的精度。 本系統涉及電子、通信和測控等技術領域,將數字PID算法與電力電子技術、通信技術等有機地結合了起來。本系統的設計方案不僅可以用在電源控制器上,只要是相關的領域都可以采用。

    標簽: FPGA DSP 數字化

    上傳時間: 2013-06-29

    上傳用戶:dreamboy36

  • 基于軟件無線電的16QAM調制解調器設計與FPGA實現.rar

    本文將高效數字調制方式QAM和軟件無線電技術相結合,在大規??删幊踢壿嬈骷﨔PGA上對16QAM算法實現。在當今頻譜資源日趨緊缺的情況下有很大現實意義。 論文對16QAM軟件實現的基礎理論,帶通采樣理論、變速率數字信號處理相關抽取內插技術做了推導和分析;深入研究了軟件無線電核心技術數字下變頻原理和其實現結構;對CIC、半帶等高效數字濾波器原理結構和性能作了研究;16QAM調制和解調系統設計采用自項向下設計思想;采用硬件描述語言VerilogHDL在EDA工具QuartusII環境下實現代碼輸入;對系統調試采用了算法仿真和在系統實測調試相結合方法。 論文首先對16QAM調制解調算法進行系統級仿真,并對實現的各模塊的可行性仿真驗證,在此基礎上,完成了調制端16QAM信號的時鐘分頻模塊、串并轉換模塊、星座映射、8倍零值內插、低通濾波以及FPGA和AD9857接口等模塊;解調器主要完成帶通采樣、16倍CIC抽取濾波,升余弦滾降濾波,以及16QAM解碼等模塊,實現了16QAM調制器;給出了中頻信號時域測試波形和頻譜圖。本系統在200KHz帶寬下實現了512Kbps的高速數據數率傳輸。論文還對增強型數字鎖相環EPLL的實現結構進行了研究和性能分析。

    標簽: FPGA QAM 16

    上傳時間: 2013-07-10

    上傳用戶:kennyplds

  • 基于FPGA的調制解調器的研究和設計.rar

    當今電子系統的設計是以大規模FPGA為物理載體的系統芯片的設計,基于FPGA的片上系統可稱為可編程片上系統(SOPC)。SOPC的設計是以知識產權核(IPCore)為基礎,以硬件描述語言為主要設計手段,借助以計算機為平臺的EDA工具進行的。 本文在介紹了FPGA與SOPC相關技術的基礎上,給出了SOPC技術開發調制解調器的方案。在分析設計軟件Matlab/DSP(Digital Signal Processing)。builder以及Quartus Ⅱ開發軟件進行SOPC(System On a Programmable Chip)設計流程后,依據調制解調算法提出了一種基于DSP Builder調制解調器的SOPC實現方案,模塊化的設計方法大大縮短了調制解調器的開發周期。 在SOPC技術開發調制解調器的過程中,用MATLAB/Simulink的圖形方式調用Altera DSP Builder和其他Simulink庫中的圖形模塊(Block)進行系統建模,在Simulink中仿真通過后,利用DSP Builder將Simulink的模型文件(.mdl)轉化成通用的硬件描述語言VHDL文件,從而避免了VHDL語言手動編寫系統的煩瑣過程,將精力集中于算法的優化上。 基于DSP Builder的開發功能,調制解調器電路中的低通濾波器可直接調用FIRIP Core,進一步提高了開發效率。 在進行編譯、仿真調試成功后,經過QuartusⅡ將編譯生成的編程文件下載到ALTERA公司Cyclone Ⅱ系列的FPGA芯片EP2C5F256C6,完成器件編程,從而給出了一種調制解調器的SOPC系統實現方案。

    標簽: FPGA 調制解調器

    上傳時間: 2013-06-24

    上傳用戶:liuchee

  • 基于DSP和FPGA的數字化開關電源

    文章開篇提出了開發背景。認為現在所廣泛應用的開關電源都是基于傳統的分立元件組成的。它的特點是頻率范圍窄、電力小、功能少、器件多、成本較高、精度低,對不同的客戶要求來“量身定做”不同的產品,同時幾乎沒有通用性和可移植性。在電子技術飛速發展的今天,這種傳統的模擬開關電源已經很難跟上時代的發展步伐。 隨著DSP、ASIC等電子器件的小型化、高速化,開關電源的控制部分正在向數字化方向發展。由于數字化,使開關電源的控制部分的智能化、零件的共通化、電源的動作狀態的遠距離監測成為了可能,同時由于它的智能化、零件的共通化使得它能夠靈活地應對不同客戶的需求,這就降低了開發周期和成本。依靠現代數字化控制和數字信號處理新技術,數字化開關電源有著廣闊的發展空間。 在數字化領域的今天,最后一個沒有數字化的堡壘就是電源領域。近年來,數字電源的研究勢頭與日俱增,成果也越來越多。雖然目前中國制造的開關電源占了世界市場的80%以上,但都是傳統的比較低端的模擬電源。高端市場上幾乎沒有我們份額。 本論文研究的主要內容是在傳統開關電源模擬調節器的基礎上,提出了一種新的數字化調節器方案,即基于DSP和FPGA的數字化PID調節器。論文對系統方案和電路進行了較為具體的設計,并通過測試取得了預期結果。測試證明該方案能夠適合本行業時代發展的步伐,使系統電路更簡單,精度更高,通用性更強。同時該方案也可用于相關領域。 本文首先分析了國內外開關電源發展的現狀,以及研究數字化開關電源的意義。然后提出了數字化開關電源的總體設計框圖和實現方案,并與傳統的開關電源做了較為詳細的比較。本論文的設計方案是采用DSP技術和FPGA技術來做數字化PID調節,通過數字化PID算法產生PWM波來控制斬波器,控制主回路。從而取代傳統的模擬PID調節器,使電路更簡單,精度更高,通用性更強。傳統的模擬開關電源是將電流電壓反饋信號做PID調節后--分立元器件構成,采用專用脈寬調制芯片實現PWM控制。電流反饋信號來自主回路的電流取樣,電壓反饋信號來自主回路的電壓采樣。再將這兩個信號分別送至電流調節器和電壓調節器的反相輸入端,用來實現閉環控制。同時用來保證系統的穩定性及實現系統的過流過壓保護、電流和電壓值的顯示。電壓、電流的給定信號則由單片機或電位器提供。再次,文章對各個模塊從理論和實際的上都做了仔細的分析和設計,并給出了具體的電路圖,同時寫出了軟件流程圖以及設計中應該注意的地方。整個系統由DSP板和ADC板組成。DSP板完成PWM生成、PID運算、環境開關量檢測、環境開關量生成以及本地控制。ADC板主要完成前饋電壓信號采集、負載電壓信號采集、負載電流信號采集、以及對信號的一階數字低通濾波。由于整個系統是閉環控制系統,要求采樣速率相當高。本系統采用FPGA來控制ADC,這樣就避免了高速采樣占用系統資源的問題,減輕了DSP的負擔。DSP可以將讀到的ADC信號做PID調節,從而產生PWM波來控制逆變橋的開關速率,從而達到閉環控制的目的。 最后,對數字化開關電源和模擬開關電源做了對比測試,得出了預期結論。同時也提出了一些需要改進的地方,認為該方案在其他相關行業中可以廣泛地應用。模擬控制電路因為使用許多零件而需要很大空間,這些零件的參數值還會隨著使用時間、溫度和其它環境條件的改變而變動并對系統穩定性和響應能力造成負面影響。數字電源則剛好相反,同時數字控制還能讓硬件頻繁重復使用、加快上市時間以及減少開發成本與風險。在當前對產品要求體積小、智能化、共通化、精度高和穩定度好等前提條件下,數字化開關電源有著廣闊的發展空間。本系統來基本上達到了設計要求。能夠滿足較高精度的設計要求。但對于高精度數字化電源,系統還有值得改進的地方,比如改進主控器,提高參考電壓的精度,提高采樣器件的精度等,都可以提高系統的精度。 本系統涉及電子、通信和測控等技術領域,將數字PID算法與電力電子技術、通信技術等有機地結合了起來。本系統的設計方案不僅可以用在電源控制器上,只要是相關的領域都可以采用。

    標簽: FPGA DSP 數字化 開關電源

    上傳時間: 2013-06-21

    上傳用戶:498732662

  • 基于FPGA的調制解調器

    當今電子系統的設計是以大規模FPGA為物理載體的系統芯片的設計,基于FPGA的片上系統可稱為可編程片上系統(SOPC)。SOPC的設計是以知識產權核(IPCore)為基礎,以硬件描述語言為主要設計手段,借助以計算機為平臺的EDA工具進行的。 本文在介紹了FPGA與SOPC相關技術的基礎上,給出了SOPC技術開發調制解調器的方案。在分析設計軟件Matlab/DSP(Digital Signal Processing)。builder以及Quartus Ⅱ開發軟件進行SOPC(System On a Programmable Chip)設計流程后,依據調制解調算法提出了一種基于DSP Builder調制解調器的SOPC實現方案,模塊化的設計方法大大縮短了調制解調器的開發周期。 在SOPC技術開發調制解調器的過程中,用MATLAB/Simulink的圖形方式調用Altera DSP Builder和其他Simulink庫中的圖形模塊(Block)進行系統建模,在Simulink中仿真通過后,利用DSP Builder將Simulink的模型文件(.mdl)轉化成通用的硬件描述語言VHDL文件,從而避免了VHDL語言手動編寫系統的煩瑣過程,將精力集中于算法的優化上。 基于DSP Builder的開發功能,調制解調器電路中的低通濾波器可直接調用FIRIP Core,進一步提高了開發效率。 在進行編譯、仿真調試成功后,經過QuartusⅡ將編譯生成的編程文件下載到ALTERA公司Cyclone Ⅱ系列的FPGA芯片EP2C5F256C6,完成器件編程,從而給出了一種調制解調器的SOPC系統實現方案。

    標簽: FPGA 調制解調器

    上傳時間: 2013-05-28

    上傳用戶:koulian

  • 16QAM調制解調器設計與FPGA實現

    本文將高效數字調制方式QAM和軟件無線電技術相結合,在大規??删幊踢壿嬈骷﨔PGA上對16QAM算法實現。在當今頻譜資源日趨緊缺的情況下有很大現實意義。 論文對16QAM軟件實現的基礎理論,帶通采樣理論、變速率數字信號處理相關抽取內插技術做了推導和分析;深入研究了軟件無線電核心技術數字下變頻原理和其實現結構;對CIC、半帶等高效數字濾波器原理結構和性能作了研究;16QAM調制和解調系統設計采用自項向下設計思想;采用硬件描述語言VerilogHDL在EDA工具QuartusII環境下實現代碼輸入;對系統調試采用了算法仿真和在系統實測調試相結合方法。 論文首先對16QAM調制解調算法進行系統級仿真,并對實現的各模塊的可行性仿真驗證,在此基礎上,完成了調制端16QAM信號的時鐘分頻模塊、串并轉換模塊、星座映射、8倍零值內插、低通濾波以及FPGA和AD9857接口等模塊;解調器主要完成帶通采樣、16倍CIC抽取濾波,升余弦滾降濾波,以及16QAM解碼等模塊,實現了16QAM調制器;給出了中頻信號時域測試波形和頻譜圖。本系統在200KHz帶寬下實現了512Kbps的高速數據數率傳輸。論文還對增強型數字鎖相環EPLL的實現結構進行了研究和性能分析。

    標簽: FPGA QAM 16 調制

    上傳時間: 2013-07-29

    上傳用戶:hwl453472107

  • 2012TI電子設計大賽——微弱信號檢測裝置

    微弱信號檢測裝置 四川理工學院 劉鵬飛、梁天德、曾學明 摘要: 本設計以TI的Launch Pad為核心板,采用鎖相放大技術設計并制作了一套微弱信號檢測裝置,用以檢測在強噪聲背景下已知頻率微弱正弦波信號的幅度值,并在液晶屏上數字顯示出所測信號相應的幅度值。實驗結果顯示其抗干擾能力強,測量精度高。 關鍵詞:強噪聲;微弱信號;鎖相放大;Launch Pad Abstract: This design is based on the Launch Pad of TI core board, using a lock-in amplifier technique designed and produced a weak signal detection device, to measure the known frequency sine wave signal amplitude values of the weak in the high noise background, and shows the measured signal amplitude of the corresponding value in the liquid crystal screen. Test results showed that it has high accuracy and strong anti-jamming capability. Keywords: weak signal detection; lock-in-amplifier; Launch Pad  1、引言 隨著現代科學技術的發展,在科研與生產過程中人們越來越需要從復雜高強度的噪聲中檢測出有用的微弱信號,因此對微弱信號的檢測成為當前科研的熱點。微弱信號并不意味著信號幅度小,而是指被噪聲淹沒的信號,“微弱”也僅是相對于噪聲而言的。只有在有效抑制噪聲的條件下有選擇的放大微弱信號的幅度,才能提取出有用信號。微弱信號檢測技術的應用相當廣泛,在生物醫學、光學、電學、材料科學等相關領域顯得愈發重要。 2、方案論證 針對微弱信號的檢測的方法有很多,比如濾波法、取樣積分器、鎖相放大器等。下面就針對這幾種方法做一簡要說明。 方案一:濾波法。 在大部分的檢測儀器中都要用到濾波方法對模擬信號進行一定的處理,例如隔離直流分量,改善信號波形,防止離散化時的波形混疊,克服噪聲的不利影響,提高信噪比等。常用的噪聲濾波器有:帶通、帶阻、高通、低通等。但是濾波方法檢測信號不能用于信號頻譜與噪聲頻譜重疊的情況,有其局限性。雖然可以對濾波器的通頻帶進行調節,但其噪聲抑制能力有限,同時其準確性與穩定性將大打折扣。

    標簽: 2012 TI 電子設計大賽 微弱信號

    上傳時間: 2013-11-04

    上傳用戶:lty6899826

  • 水聲信號功率放大器的設計與實現

    設計了水聲信號發生系統中的功率放大電路,可將前級電路產生的方波信號轉換為正弦信號,同時進行濾波、功率放大,使其滿足換能器對輸入信號的要求。該電路以單片機AT89C52,集成6階巴特沃思低通濾波芯片MF6以及大功率運算放大器LM12為核心,通過標準RS232接口與PC進行通信,實現信號增益的程控調節,對干擾信號具有良好的抑制作用。經調試該電路工作穩定正常,輸出波形無失真,在輸出功率以及放大增益、波紋系數等方面均滿足設計要求。    This paper presented a design and implementation of underwater acoustic power amplifer. This circuit converted the rectangle signal generated by frontend circuit into the sine signal, then filtered and power amplification, it meets the requirements of the transducer.Included AT89C52, 6th order Butterworth filter MF6, hipower amplififier LM12.Communication with PC through the RS232 port. The signal gain is adjustable and could be remote controlled. It has a good inhibitory effect on the interference signal. After debugged, this circuit works stable, the output waveform has no distortion, it meets the design requirement in outprt power, amplifier gain and ripple factor.

    標簽: 水聲信號 功率放大器

    上傳時間: 2013-11-20

    上傳用戶:qwe1234

  • 低功耗高速跟隨器的設計

    提出了一種應用于CSTN-LCD系統中低功耗、高轉換速率的跟隨器的實現方案?;贕SMC±9V的0.18 μm CMOS高壓工藝SPICE模型的仿真結果表明,在典型的轉角下,打開2個輔助模塊時,靜態功耗約為35 μA;關掉輔助模塊時,主放大器的靜態功耗為24 μA。有外接1 μF的大電容時,屏幕上的充放電時間為10 μs;沒有外接1μF的大電容時,屏幕上的充放電時間為13μs。驗證表明,該跟隨器能滿足CSTN-LCD系統低功耗、高轉換速率性能要求。

    標簽: 低功耗 跟隨器

    上傳時間: 2013-11-18

    上傳用戶:kxyw404582151

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲精品1234| 亚洲一区久久| 国产精品久久久久久久第一福利| 欧美一区国产二区| 欧美一区二区日韩| 亚洲永久字幕| 欧美一级在线播放| 久久综合久久久| 欧美成人免费播放| 欧美日韩成人激情| 欧美日韩国产成人在线观看| 免费美女久久99| 欧美美女喷水视频| 国产精品国产三级国产专播品爱网 | 免费在线成人av| 美女图片一区二区| 国产一区二区久久精品| 日韩亚洲精品电影| 欧美精品v日韩精品v国产精品| 国产日韩欧美一区| 亚洲视频中文字幕| 欧美激情区在线播放| 亚洲国产另类久久久精品极度| 久久av红桃一区二区小说| 国产精品久久久久久久久借妻| 一区二区激情小说| 免费成人高清视频| 1024日韩| 国产精品久久97| 午夜欧美大片免费观看| 国产欧美精品一区二区色综合| 久久精品成人一区二区三区| 国产美女精品在线| 久久婷婷av| 欧美日韩日本国产亚洲在线| 极品日韩久久| 美日韩丰满少妇在线观看| 国产精品亚洲综合一区在线观看| 亚洲国产第一| 久久伊人一区二区| 在线精品高清中文字幕| 另类春色校园亚洲| 精品福利电影| 久久精品人人做人人爽| 国产精品一区三区| 亚洲一区二区三区精品视频| 欧美日韩高清在线| 99国产精品久久久| 免费试看一区| 亚洲伦伦在线| 欧美日韩视频在线一区二区| 亚洲国产精品va在线看黑人动漫| 久久精品视频网| 在线观看日韩一区| 欧美成人综合网站| 亚洲尤物精选| 亚洲高清在线视频| 国产精品高清在线| 久久精品亚洲精品| 一区二区欧美激情| 狠狠久久五月精品中文字幕| 久久午夜色播影院免费高清| 亚洲综合国产激情另类一区| 韩国精品一区二区三区| 欧美日韩视频一区二区| 亚洲一区二区三区高清不卡| 一区二区在线观看视频在线观看 | 国产伦精品一区二区三区高清版 | 精品福利电影| 久久久精品午夜少妇| 一本色道久久综合精品竹菊| 国产一区二区在线免费观看| 欧美日韩伦理在线免费| 午夜在线观看欧美| 亚洲精品免费一区二区三区| 激情成人中文字幕| 国产一区二区精品久久99| 国产欧美精品xxxx另类| 欧美午夜免费电影| 国产精品国产亚洲精品看不卡15 | 中文在线不卡| 在线精品国产成人综合| 国产一区二区三区黄视频| 国产精品日日做人人爱| 欧美激情综合五月色丁香小说| 欧美怡红院视频一区二区三区| 亚洲看片一区| 亚洲欧洲精品成人久久奇米网| 1204国产成人精品视频| 在线观看91久久久久久| 日韩视频在线观看一区二区| 日韩视频免费观看| 亚洲视频香蕉人妖| 午夜一区二区三区不卡视频| 亚洲影院污污.| 久久精品一二三区| 欧美人与禽猛交乱配| 亚洲精品国产精品久久清纯直播 | 黄色国产精品一区二区三区| 日韩网站在线看片你懂的| 欧美mv日韩mv国产网站app| 亚洲精品三级| 欧美日韩免费一区二区三区| 久久免费国产| 欧美乱人伦中文字幕在线| 国产中文一区二区| 亚洲欧美精品在线观看| 国产毛片一区二区| 精品动漫一区| 亚洲国产成人91精品| 国产精品初高中精品久久| 亚洲欧美国产日韩天堂区| 日韩视频永久免费观看| 亚洲成色999久久网站| 国产精品午夜电影| 欧美日韩精品欧美日韩精品 | 理论片一区二区在线| 亚洲精品国产精品国自产在线| 狠狠狠色丁香婷婷综合激情| 国产精品久久久久久久久婷婷| 亚洲电影在线播放| 免费短视频成人日韩| 1000部精品久久久久久久久| 美女久久一区| 一区二区三区欧美在线观看| 国产精品白丝jk黑袜喷水| 亚洲一区二区三区精品动漫| 国产欧美在线视频| 欧美国产日韩视频| 亚洲欧洲av一区二区| 亚洲电影天堂av| 欧美午夜在线| 久久综合精品国产一区二区三区| 日韩亚洲视频| 有码中文亚洲精品| 国产精品劲爆视频| 欧美福利一区| 久久久噜噜噜久久中文字免| 日韩亚洲欧美中文三级| 国内外成人免费激情在线视频| 欧美日韩国语| 欧美日韩一区二区视频在线 | 日韩视频―中文字幕| 亚洲最新中文字幕| 欧美一激情一区二区三区| 欧美日韩1080p| 国内久久精品| 羞羞色国产精品| 翔田千里一区二区| 亚洲欧美电影在线观看| 欧美理论大片| 一区二区三区亚洲| 久久精品国产亚洲高清剧情介绍| 久久综合中文色婷婷| 国产字幕视频一区二区| 亚洲主播在线观看| 在线看片第一页欧美| 一区二区三区亚洲| 亚洲高清自拍| 国产三级精品在线不卡| 欧美一区二区三区在| 蜜桃伊人久久| 亚洲精品网站在线播放gif| 麻豆成人在线观看| 国产日韩欧美综合| 久久久久久久成人| 国产亚洲精品久| 欧美成人蜜桃| 一个人看的www久久| 久久精品动漫| 国产有码在线一区二区视频| 久久婷婷色综合| 午夜久久tv| 樱桃国产成人精品视频| 国产精品日韩高清| 国产精品日本| 狠狠色狠狠色综合日日小说| 在线观看三级视频欧美| 亚洲桃花岛网站| 久久精品国产亚洲5555| 欧美激情一区二区三区高清视频 | 亚洲国产成人精品女人久久久 | 欧美日韩免费观看一区| 国产乱码精品一区二区三区不卡 | 韩国精品久久久999| 亚洲乱码一区二区| 免费高清在线视频一区·| 国产精品欧美经典| aⅴ色国产欧美| 欧美精品导航| 亚洲欧洲在线播放| 欧美国产第一页| 亚洲精品小视频| 欧美激情偷拍| 99国产精品私拍| 欧美日韩免费高清一区色橹橹| 一区视频在线看| 久久久亚洲综合| 国产视频亚洲| 久久久福利视频|