亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

便攜式產(chǎn)品

  • 電子式互感器的關鍵技術及其相關理論研究.rar

    電子式互感器與傳統(tǒng)電磁式互感器相比,在帶寬、絕緣和成本等方面具有優(yōu)勢,因而代表了高電壓等級電力系統(tǒng)中電流和電壓測量的一種極具吸引力的發(fā)展方向。隨著信息技術的發(fā)展和電力市場中競爭機制的形成,電子式互感器成為人們研究的熱點;越來越多的新技術被引入到電子式互感器設計中,以提高其工作可靠性,降低運行總成本,減小對生態(tài)環(huán)境的壓力。本文圍繞電子式互感器實用化中的關鍵技術而展開理論與實驗研究,具體包括新型傳感器、雙傳感器的數(shù)據(jù)融合算法、數(shù)字接口、組合式電源、低功耗技術和自監(jiān)測功能的實現(xiàn)等。 目前電子式電流互感器(ECT)大多數(shù)采用單傳感器開環(huán)結構,對每個環(huán)節(jié)的精度和可靠性的要求都很高,嚴重制約了ECT整體性能的提高,影響其實用化。本文介紹了新型傳感器~鐵心線圈式低功率電流傳感器(LPET)和印刷電路板(PCB)空心線圈及其數(shù)字積分器,在此基礎上設計了一種基于LPCT和PCB空心線圈的組合結構的新型電流傳感器。該結構具有并聯(lián)的特點,結合了這兩種互感器的優(yōu)點,采用數(shù)據(jù)融合算法來處理兩路信號,實現(xiàn)高精度測量和提高系統(tǒng)可靠性,并探索出辨別LPET飽和的新方法。試驗和仿真結果表明,這種新型電流傳感器可以覆蓋較大的電流測量范圍,達到IEC 60044-8標準中關于測量(幅值誤差)、保護(復合誤差)和暫態(tài)響應(峰值)的準確度要求,能夠作為多用途電流傳感器使用。 在電子式電壓互感器方面,基于精密電阻分壓器的新型傳感器在原理、結構和輸出信號等方面與傳統(tǒng)的電壓互感器有很大不同,本文設計了一種可替代10kV電磁式電壓互感器的精密電阻分壓器。通過試驗研究與計算分析,得出其性能主要受電阻特性和雜散電容的影響,并給出了減小其誤差的方法。測試結果表明,設計的10kV精密電阻分壓器的準確度滿足IEC 60044-7標準要求,可達0.2級。 電子式互感器的關鍵技術之一是內部的數(shù)字化以及其標準化接口,本文以10kV組合型電子式互感器為對象設計了一種實用化的數(shù)字系統(tǒng)。以精密電阻分壓器作為電壓傳感器,電流傳感器則采用基于數(shù)據(jù)融合算法的LPCT和PCB空心線圈的組合結構。本文首先解決了互感器間的同步與傳感器間的內部同步問題,進而依照IEC61850-9-1標準,實現(xiàn)了組合型電子式互感器的100M以太網接口。 電子式電流互感器在高電壓等級的應用研究中,ECT高壓側的電源問題是關鍵技術之一。論文首先分析了兩種電源方案:取電CT電源和激光電源。取電CT電源通過一個特制的電流互感器(取電CT),直接從高壓側母線電流中獲取電能。在取電CT和整流橋之間設計一個串聯(lián)電感,大大降低了施加在整流橋上的的感應電壓并限制了取電CT的輸出電流,起到了穩(wěn)定電壓和保護后續(xù)電路的作用。激光電源方案以先進的光電轉換器、半導體激光二極管和光纖為基礎,單獨一根上行光纖同時完成供能和控制信號的傳輸,在不影響光供能穩(wěn)定性的情況下,數(shù)據(jù)通信完成在短暫的供能間隔中。在高電位端控制信號通過在能量變換電路中增加一個比較器電路被提取出來。本文還提出了一種將兩種供能方式結合使用的組合電源,并設計了這兩種電源之間的切換方法,解決了取電CT電源的死區(qū)問題,延長了激光器的使用壽命。作為綜合應用實例,設計并完成了以LPCT為傳感器、由組合電源供能、采用低功耗技術的高壓電子式電流互感器。互感器高壓側的一次轉換器能夠提供兩路傳感器數(shù)據(jù)通道,并且具有溫度補償和采集通道的自校正功能,在更寬溫度、更大電流范圍內保證了極高的測量精度:互感器低電位端的二次轉換器具有數(shù)字和模擬接口,可以接收數(shù)據(jù)并發(fā)送命令來控制一次轉換器,包括同步和校正命令在內的數(shù)據(jù)信號可以通過同一根供能光纖傳送到一次轉換器。該互感器具有在線監(jiān)測功能,這種預防性維護和自檢測功能夠提示維護或提出警告,提高了可靠性。系統(tǒng)測試表明:具有低功耗光纖發(fā)射驅動電路的一次轉換器平均功耗在40mw以下:上行光纖中通信波特率可以達到200kb/s,下行光纖中更是高達2Mb/s;系統(tǒng)準確度同時滿足IEC6044-8標準對0.2S級測量和5TPE級保護電子式互感器的要求。

    標簽: 電子式互感器 關鍵技術

    上傳時間: 2013-06-09

    上傳用戶:handless

  • 電子式電流互感器的組合式電源系統(tǒng).rar

    電流互感器是電力系統(tǒng)中最重要的高壓設備之一。它被廣泛應用于繼電保護、系統(tǒng)監(jiān)測、電力系統(tǒng)分析之中,關系到電力系統(tǒng)的安全性與可靠性。隨著電力系統(tǒng)向高電壓、大容量和數(shù)字化方向的發(fā)展,傳統(tǒng)的電磁式電流互感器很難滿足電力系統(tǒng)發(fā)展的進一步要求。因此,研究基于計算機技術、現(xiàn)代通信技術及數(shù)字處理技術的以電子式電流互感器(ECT)為代表的、新型的高精度電流互感器成了大勢所趨。在電子式電流互感器的應用研究中,ECT高壓側的電源問題是關鍵技術之一。 本文對國內外電子式電流互感器發(fā)展的現(xiàn)狀進行了描述,并對已有的電子式電流互感器的高壓側供能方式進行了總結。論文根據(jù)本課題組所研究的電子式電流互感器的特點,對電子式電流互感器的高壓側供能系統(tǒng)的設計進行了研究,提出一種將兩種供能方式結合使用的組合電源,并設計了這兩種電源之間的切換方法。 本文首先設計了一種應用于高壓電子式電流互感器的數(shù)字化激光電源,包括大功率激光器的驅動電路、基于16位低功耗單片機MSP430的過流保護電路和恒溫控制電路、輸入電路、顯示電路、以及高壓側變換電路。其供能部分由低電位側的大功率激光光源產生激光輸出,經光纖將激光能量傳輸?shù)竭_高電位側的光電池,再由光電池進行光功率到電功率的光電變換后,形成滿足光電電流互感器傳感頭部分所需的電壓輸出。實驗結果表明,該電源可以提供穩(wěn)定的6V電壓,其功率不少于300mW。 本文又設計了了一種應用于高壓側電子裝置中的CT電源方案:通過一個特制的電流互感器(CT),直接從高壓側一次母線電流獲取電能,憑借在CT和整流橋之間串聯(lián)的一個電感,大大降低了施加在整流橋上的的感應電壓并限制了CT的輸出電流,起到了穩(wěn)定電壓和保護后續(xù)電路的作用。實驗結果表明,該電源能輸出穩(wěn)定的5V直流電壓,紋波不超過25mV。 最后,本文提出了一種將兩種供能方式結合使用的組合電源,并設計了這兩種電源之間的切換方法,解決了取電CT電源的死區(qū)問題,延長了激光器的使用壽命。

    標簽: 電子式 電流互感器 組合式

    上傳時間: 2013-06-05

    上傳用戶:chuandalong

  • 旋轉變壓器及其R2D電路的研究.rar

    在伺服系統(tǒng)中,為了實現(xiàn)高精度的控制,往往需要實時地檢測出電動機轉子的位置。用來檢測電動機轉子位置的角度傳感器主要有光電編碼器和旋轉變壓器。光電編碼器雖然能夠達到很高的精度,但是它的抗干擾性差,不宜應用在條件惡劣的場合中;相比較而言,旋轉變壓器(簡稱旋變)由于結構簡單,堅固耐用,抗干擾性強,能夠應用在各種條件惡劣的場合中,所以獲得了越來越廣泛的應用。 本文采用的旋變樣機是一種新型的磁阻式旋轉變壓器。分析了它的定轉子結構、定子繞組的連接方式以及轉子形狀的優(yōu)化;并在此基礎上,推導出了它的正余弦輸出反電勢的表達式;最后在電磁場分析軟件Ansoft中,以樣機為原型建立了仿真模型,分析了它內部的電磁場分布以及正余弦輸出反電勢的波形。 其次,本文設計了一種以DSP為核心的R2D電路系統(tǒng)。它以振蕩電路產生的正弦波電壓信號作為旋變的激勵信號,加上相關的外圍電路,構成了旋轉變壓器一數(shù)字轉換器,解算出了旋變的軸角θ;并在此基礎上,分析了產生角度解算誤差的各種因素,同時計算出了旋變的轉速n。 最后,在上述解算方案的基礎上,本文又給出了第二種解算方案,即:DSP產生的方波經過濾波之后作為旋變的激勵信號,解算出了旋變的軸角θ;然后比較了這兩種解算方案的優(yōu)缺點,重點分析了激勵信號中的諧波分量對正余弦輸出反電勢以及角度解算的影響。

    標簽: R2D 旋轉變壓器 電路

    上傳時間: 2013-04-24

    上傳用戶:pioneer_lvbo

  • 基于DSP在線式UPS不間斷電源控制系統(tǒng)的研究.rar

    基于DSP在線式UPS不間斷電源控制系統(tǒng)的研究

    標簽: DSP UPS 不間斷電源

    上傳時間: 2013-07-08

    上傳用戶:yangbo69

  • 電子式互感器數(shù)據(jù)采集系統(tǒng)的研究與設計.rar

    在電力系統(tǒng)容量日益擴大和電網電壓運行等級不斷提高的潮流下,傳統(tǒng)電磁式互感器在運行中暴露出越來越多的弊端,難以滿足電力系統(tǒng)向自動化、標準化和數(shù)字化的發(fā)展需求,電子式互感器取代傳統(tǒng)電磁式互感器已經成為一種必然的趨勢,并成為人們研究的熱點。本文圍繞電子式電流互感器高壓側數(shù)據(jù)采集系統(tǒng)進行了研究與設計。 Rogowski線圈是電流傳感元件,本文總紿了Rogowski線圈的基本原理,其中包括線圈的等效電路和相量圖,線圈的電磁參數(shù)計算。在理論研究的基礎上,結合實際設計一款高精度PCBRogowski線圈。電容分壓器是電壓傳感元件,文章中介紹了傳感器的原理、傳感器的模型結構,針對其自身結構缺陷和工作環(huán)境的電磁干擾,提出具有針對性的電磁兼容設計方法。 積分器的性能一直是影響Rogowski線圈電流傳感器的精度和穩(wěn)定性的重要因素之一。模擬積分器具有結構簡單、響應速度快、輸入動態(tài)范圍大等優(yōu)點;數(shù)字積分器具有性能穩(wěn)定,精度高等優(yōu)點。后者的優(yōu)勢使其成為近年來Rogowski線圈電流互感器實用化研究的一個熱點問題。本文設計了一套數(shù)字積分器設計的方法,其中包括了積分算法的選擇,積分輸入采樣率和分辨率的確定,數(shù)字積分器的通用結構,積分初值的選擇方法等。 為了保證系統(tǒng)的運行穩(wěn)定,文章中的系統(tǒng)只采用激光供電模式,降低數(shù)據(jù)采集系統(tǒng)的功耗就成了系統(tǒng)設計的一個重要環(huán)節(jié)。文章中介紹了一些實用的低功耗處理方法,分析了激光器的特性,光電池的特性和光電轉換器件的特性,并根據(jù)這些器件的特性,改進了數(shù)據(jù)發(fā)送激光器的驅動電路,大幅度降低了系統(tǒng)的功耗,保證了系統(tǒng)在較低供電功率條件下的正常運行。 論文最后對全文工作進行總結,提出進一步需要解決的問題。

    標簽: 電子式互感器 數(shù)據(jù)采集系統(tǒng)

    上傳時間: 2013-07-10

    上傳用戶:zsjzc

  • 電容式觸摸傳感器設計技巧.rar

    電容式觸摸傳感器設計技巧:針對電容式觸摸技術的一些知識原理說明與技術設計討論.

    標簽: 電容式 觸摸傳感器 設計技巧

    上傳時間: 2013-07-16

    上傳用戶:hainan_256

  • 逆變式交流方波埋弧焊系統(tǒng)研究.rar

    本文介紹了埋弧焊的特點、發(fā)展過程、國內外的研究現(xiàn)狀;分析了軟開關逆變式主回路的優(yōu)點、模擬電路控制系統(tǒng)和數(shù)字化控制系統(tǒng)的優(yōu)缺點,指出數(shù)字化控制是逆變埋弧焊機控制的發(fā)展方向;對埋弧焊接工作原理和埋弧焊機控制系統(tǒng)進行分析,介紹了交流方波埋弧焊的優(yōu)點;論述了變動送絲電弧控制系統(tǒng)的原理及影響因素,并且分析了變動送絲情況下焊接電弧的穩(wěn)定性,為逆變式交流方波埋弧焊系統(tǒng)的設計提供了理論依據(jù)。 在分析傳統(tǒng)交流方波埋弧焊主回路的基礎上設計了主回路結構,對主回路中一次、二次逆變回路的軟開關工作方式進行分析并做了簡單仿真。IGBT是逆變電源的核心部件,文中論述了IGBT功率器件的選型和各種保護措施以保證系統(tǒng)的可靠工作。焊機工作發(fā)熱量很大,本文介紹了整機和關鍵器件的熱設計。 數(shù)字化控制方式是逆變埋弧焊機控制的發(fā)展方向,本文采用“MCU+DSP”的控制結構,對埋弧焊的整個焊接過程進行精確控制。文中詳細介紹了主控制板的設計思路和電源、電流與電壓反饋、控制芯片最小系統(tǒng)、通信與保護工作電路。焊機的工作中,各種干擾不可避免,對各種可能干擾分析的基礎上在硬件電路設計和PCB板的制作中采取了相應的抗干擾措施。軟件設計是焊接穩(wěn)定進行的關鍵因素,文中介紹了控制系統(tǒng)中關鍵步驟的軟件設計思路和流程并在軟件的實現(xiàn)中采用抗干擾措施。 最后,對采用本控制系統(tǒng)的埋弧焊機進行初步實驗,結果表明本文所設計的埋弧焊機控制系統(tǒng)能夠滿足逆變埋弧自動焊的要求,具有電路簡單,控制精度高,抗干擾能力強、操作方便、工作穩(wěn)定可靠等優(yōu)點,提高了焊機的綜合性能及自動化程度。 本課題所設計的逆變式交流方波埋弧焊電源具有良好的輸出特性和控制性能,可滿足埋弧自動焊和手工焊的要求。采用交流方波的焊接波形、對焊接整個過程進行實時軟件控制,電弧穩(wěn)定,焊接效果好。 關鍵詞:埋弧焊;交流方波;逆變;軟開關

    標簽: 逆變式 交流 方波

    上傳時間: 2013-06-08

    上傳用戶:mingaili888

  • 能饋式交流電子模擬負載的研究.rar

    隨著電力電子技術的發(fā)展,各類電力電子裝置應運而生,這些產品在出廠前需要根據(jù)不同的需要進行相應的測試和校驗。傳統(tǒng)的負載測試存在著能耗大、靈活性差等諸多缺點,已經越來越不能滿足各種測試場合的要求,特別是一些要求用動態(tài)變化的負載、非線性負載、具有負阻特性的負載以及有源負載等測試場合。因此針對這一問題,本文利用電力電子技術結合計算機技術、控制技術等設計了一種通用的交流電子負載模擬裝置,以滿足各種測試場合的要求。 @@ 交流電子負載是一種可以模擬真實負載的電力電子裝置,它不但可以模擬傳統(tǒng)的線性負載,也可以模擬各種非線性負載、有源負載等其他形式的負載。目前國內外對電子負載的研究還不成熟,有些是使交流電源按照一定的功率放電,但是輸出電流卻與真實負載測試下的電流有較大的差別;而有些雖然能夠準確控制電源的放電電流取得和真實負載一樣的效果,但試驗電能完全被消耗掉,造成很大的浪費。本文研究的新型交流電子負載克服了以上電子負載方案的缺點,可以滿足各種試驗場合的測試需求,能夠在很大程度上減少能量浪費,豐富試驗樣式且節(jié)約試驗成本。 @@ 本文分析了能饋式交流電子負載的模擬原理,確定了采用中間直流環(huán)節(jié)的交-直-交主電路結構,其一端接待測交流電源,另一端接低壓交流電網。前級負載模擬環(huán)節(jié)和后級能量回饋環(huán)節(jié)均采用可四象限運行的電壓型PWM(Pulse Width Modulation)變換器。負載模擬環(huán)節(jié)直接與待測電源連接,采用電流滯環(huán)瞬時值比較方式,使電源輸出的實際電流信號準確、快速的跟蹤其指令電流信號值,使得電子負載對待測電源呈現(xiàn)設定的負載形式,完成電子負載的模擬功能;能量回饋環(huán)節(jié)與電網連接,通過控制輸出電流與電網電壓同頻、同相位,實現(xiàn)試驗電能的單位功率因數(shù)回饋電網的目的,變換器的控制采用常規(guī)的雙閉環(huán)控制方式,電流內環(huán)控制實際電流跟蹤指令值的變化,電壓外環(huán)通過控制輸出電流的大小使直流側母線電壓穩(wěn)定為設定指令值。 @@ 電子負載系統(tǒng)在負載模擬部分通過人機接口設定具體負載形式和負載屬性,為了更加準確快速的得到電流指令信號值,文中采用更加直接的數(shù)值計算方 法,由數(shù)字信號處理器實時計算出該給定負載模式下的指令電流值。使用交流小信號分析法得到了系統(tǒng)的頻域方塊圖,并對主電路元件參數(shù)以及調節(jié)器進行了優(yōu)化設計。針對大功率開關管開關頻率存在的限制,本文提出了幾種提高電流跟蹤精度的改進方法,取得了良好的效果。整個系統(tǒng)在PSIM平臺上進行了不同工作模式下的仿真,仿真結果表明方案切實可行。最后依據(jù)仿真方案設計基于TMS320F2812的控制系統(tǒng)和功率電路,使用PROTEL軟件進行了原理圖的繪制。@@關鍵詞:電子負載;能量回饋;電壓型變換器;滯環(huán)PWM電流控制;雙閉環(huán);PWM整流器

    標簽: 能饋式 交流電子 模擬負載

    上傳時間: 2013-05-26

    上傳用戶:saharawalker

  • 三相橋式整流的功率因數(shù)校正技術的研究.rar

    隨著電力電子技術的發(fā)展,交流電源系統(tǒng)的電能質量問題受到越來越多的關注。傳統(tǒng)的整流環(huán)節(jié)廣泛采用二極管不控整流和晶閘管相控整流電路,向電網注入了大量的諧波及無功,造成了嚴重的污染。提高電網側功率因數(shù)以及降低輸入電流諧波成為一個研究熱點。功率因數(shù)校正技術是減小用電設備對電網造成的諧波污染,提高功率因數(shù)的一項有力措施。本文所做的主要工作包括以下幾部分: 1.分析了單位功率因數(shù)三相橋式整流的工作原理,這種整流拓撲從工作原理上可以分成兩部分:功率因數(shù)補償網絡和常規(guī)整流網絡。在此基礎上,為整流電路建立了精確的數(shù)學模型。 2.這種單位功率因數(shù)三相橋式整流的輸入電感是在額定負載下計算出的,當負載發(fā)生變化時,其功率因數(shù)會降低。針對這種情況,提出了一種新的控制方法。常規(guī)整流網絡向電網注入的諧波可以由功率因數(shù)補償網絡進行補償,所以輸入功率因數(shù)相應提高。負載消耗的有功由電網提供,補償網絡既不消耗有功也不提供任何有功。根據(jù)功率平衡理論,可以確定參考補償電流。雙向開關的導通和關斷由滯環(huán)電流控制確定。在這一方法的控制下,雙向開關工作在高頻下,因此輸入電感值相應降低。仿真和實驗結果都表明:新的控制方法下,負載變化時,輸入電流仍接近于正弦,功率因數(shù)接近1。 3.根據(jù)IEEE-519標準對諧波電流畸變率的要求,為單位功率因數(shù)三相橋式整流提出了另一種控制方法。該方法綜合考慮單次諧波電流畸變率、總諧波畸變率、功率因數(shù)、有功消耗等性能指標,并進行優(yōu)化,推導出最優(yōu)電流補償增益和相移。將三相負載電流通過具有最優(yōu)電流補償增益和相移的電流補償濾波器,得到補償后期望的電網電流,驅動雙向開關導通和關斷。仿真和實驗都收到了滿意的效果,使這一整流橋可以工作在較寬的負載范圍內。 4.單位功率因數(shù)三相橋式整流中直流側電容電壓隨負載的波動而波動,為提高其動、靜態(tài)性能,將簡單自適應控制應用到了直流側電容電壓的控制中,并提出利用改進的二次型性能指標修改自適應參數(shù)的方法,可以在實現(xiàn)對參考模型跟蹤的同時又不使控制增量過大,與常規(guī)的PI型簡單自適應控制相比在適應律的計算中引入了控制量的增量和狀態(tài)誤差在k及k+1時刻的采樣值。利用該方法為直流側電壓設計了控制器,并進行了仿真與實驗研究,結果表明與PI型適應律相比,新的控制器能提高系統(tǒng)的動態(tài)響應性能,負載變化時系統(tǒng)的魯棒性更強。

    標簽: 三相橋式 整流 功率因數(shù)

    上傳時間: 2013-06-15

    上傳用戶:WS Rye

  • 級聯(lián)式流饋推挽DCDC變換器的研究.rar

    由于下一代微處理器的工作電壓越來越低,所需電流越來越大,現(xiàn)有的5V、12V輸入的電壓調節(jié)模塊(VRM)已經不能滿足它的要求了,因此把VRM的輸入母線電壓提高到48V是必然的趨勢。這樣做能夠減小輸入電流從而使得母線損耗減小,有利于效率提高,同時可以大大減小輸入濾波器體積。 本課題首先分析了VRM的發(fā)展現(xiàn)狀和常用拓撲,以及未來的發(fā)展趨勢,并在此基礎上介紹了級聯(lián)式流饋推挽DC/DC變換器的概念。接著,具體分析了Buck與推挽級聯(lián)式流饋DC/DC變換器、雙通道交錯并聯(lián)型Buck與推挽級聯(lián)式流饋DC/DC變換器的原理和工作過程。再接著,分別介紹了Buck與推挽級聯(lián)式流饋DC/DC變換器、雙通道交錯并聯(lián)型Buck與推挽級聯(lián)式流饋DC/DC變換器及其控制同路的建模和設計方法,并給出設計實例。最后,分別用這兩種拓撲結構制作了兩臺48V輸入、3.3V/10A輸出的樣機,并對兩者進行了一定的實驗比較研究,以驗證設計的有效性。

    標簽: DCDC 級聯(lián) 變換器

    上傳時間: 2013-07-29

    上傳用戶:gxrui1991

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
免费观看30秒视频久久| 欧美精品综合| 校园激情久久| 国产精品videossex久久发布| 国产精品日韩高清| 国产精品v日韩精品v欧美精品网站| 国产乱子伦一区二区三区国色天香| 亚洲性色视频| 国产精品高清一区二区三区| 99精品久久免费看蜜臀剧情介绍| 欧美激情综合网| 狠狠爱成人网| 99热这里只有精品8| 亚洲电影下载| 亚洲一区www| 欧美视频免费| 一区二区三区免费观看| 国产一区欧美| 欧美精品aa| 亚洲一区二区三区三| 国产欧美精品日韩精品| 欧美一区在线视频| 国产精品高潮粉嫩av| 久久视频一区二区| 日韩视频久久| 国产精品入口尤物| 久久夜色精品一区| 亚洲靠逼com| 依依成人综合视频| 欧美日本簧片| 性欧美暴力猛交69hd| 一区在线电影| 久久国产手机看片| 亚洲天堂av图片| 一色屋精品视频在线看| 欧美精品 日韩| 亚洲欧美日韩在线综合| 黑人极品videos精品欧美裸| 国产精品日韩高清| 欧美大尺度在线| 欧美一级播放| 日韩一级精品| 一区二区在线免费观看| 欧美精品少妇一区二区三区| 蜜桃久久av一区| 亚洲电影av在线| 国产精品久久久久久亚洲毛片| 欧美粗暴jizz性欧美20| 亚洲欧美综合国产精品一区| 国产永久精品大片wwwapp| 国产裸体写真av一区二区| 亚洲少妇自拍| 亚洲区一区二区三区| 国产婷婷97碰碰久久人人蜜臀| 欧美日韩免费看| 久久婷婷成人综合色| 午夜精品区一区二区三| 在线视频欧美日韩精品| 亚洲黄色免费电影| 亚洲特级片在线| 久久久久九九视频| 欧美精品七区| 国内精品**久久毛片app| 亚洲国产美女久久久久| 欧美中文在线观看| 欧美一区视频| 亚洲欧美日韩天堂一区二区| 亚洲一区自拍| 亚洲色图自拍| 欧美一区二区日韩一区二区| 欧美本精品男人aⅴ天堂| 亚洲国产精品久久91精品| 国产精品一区毛片| 亚洲日本欧美| 在线视频成人| 亚洲精品久久久一区二区三区| 黄色亚洲网站| 亚洲日本成人| 在线亚洲精品| 久久国产精品高清| 女女同性女同一区二区三区91| 麻豆成人在线观看| 国内精品99| 一区二区三区成人 | 欧美在线一区二区三区| 欧美精品福利视频| 欧美韩国日本综合| 亚洲肉体裸体xxxx137| 欧美xx69| 极品中文字幕一区| 亚洲人成网站影音先锋播放| 亚洲先锋成人| 久久成人精品一区二区三区| 嫩草影视亚洲| 国产精品久久久久婷婷| 国产亚洲制服色| 日韩一二三在线视频播| 欧美一区二区三区在线| 欧美另类综合| 狠狠色狠狠色综合日日tαg| 亚洲伦理自拍| 久久精品国产v日韩v亚洲| 欧美日韩亚洲一区二区三区在线观看| 国产欧美日韩综合精品二区| 日韩视频在线观看免费| 狼人社综合社区| 国产日产高清欧美一区二区三区| 亚洲精品永久免费| 久久免费视频这里只有精品| 国产精品成人免费精品自在线观看| 18成人免费观看视频| 新狼窝色av性久久久久久| 欧美日韩美女一区二区| 亚洲国产精品ⅴa在线观看| 欧美有码视频| 国产精品腿扒开做爽爽爽挤奶网站 | 国产伦精品一区| 中文精品在线| 欧美精品麻豆| 亚洲第一页在线| 欧美激情亚洲自拍| 亚洲区第一页| 在线视频国内自拍亚洲视频| 国产精品亚洲综合色区韩国| 国产精品mm| 欧美日韩人人澡狠狠躁视频| 欧美黄网免费在线观看| 免费观看亚洲视频大全| 亚洲天堂第二页| 一本综合精品| 亚洲欧美激情视频| aaa亚洲精品一二三区| 欧美1区2区| 一区在线播放视频| 久久亚洲图片| 亚洲国产精品一区二区第四页av | 亚洲一区二三| 国产精品jizz在线观看美国| 中文在线不卡视频| 欧美日韩蜜桃| 亚洲欧美网站| 国产亚洲一级| 玖玖在线精品| 日韩一级黄色av| 国产精品入口麻豆原神| 欧美在线亚洲综合一区| 黄色日韩精品| 欧美极品在线视频| 亚洲视频免费观看| 国产情人综合久久777777| 久久久久久尹人网香蕉| 亚洲国内精品在线| 欧美日韩视频一区二区| 亚洲伊人观看| 好吊妞这里只有精品| 蜜臀va亚洲va欧美va天堂| 中日韩午夜理伦电影免费| 国产精品乱码妇女bbbb| 久久精品国产一区二区电影 | 国外精品视频| 欧美大片91| 亚洲欧美国产日韩天堂区| 国产日韩成人精品| 久久综合九色99| 一区二区三区精品在线 | 亚洲一区欧美一区| 国产精品国产一区二区| 欧美成人小视频| 国产精品一区视频| 黄色精品在线看| 久久久久成人精品| 国产精品资源| 午夜精品久久久久久久99热浪潮| 久久综合狠狠综合久久综合88| 国产精品久久久久影院色老大| 日韩亚洲欧美综合| 国产精品自在欧美一区| 国产日韩在线一区| 久久嫩草精品久久久精品| 99国产精品视频免费观看| 国产日韩1区| 欧美日韩亚洲一区二| 久久精品道一区二区三区| 亚洲精品永久免费精品| 国产三级欧美三级| 欧美日韩在线电影| 久久久另类综合| 亚洲一区二区视频在线| 在线日韩电影| 国产精品拍天天在线| 欧美激情欧美激情在线五月| 欧美中文字幕在线观看| 中文国产一区| 亚洲精品视频在线播放| 在线观看91久久久久久| 国产精品一卡二卡| 欧美视频一区在线| 欧美激情一二三区| 久久综合伊人77777麻豆| 久久国产88|