亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

信號強(qiáng)度掃描儀

  • Turbo碼編碼譯碼算法與FPGA實現方法的研究

    本文主要研究Turbo碼的編碼和譯碼算法及其FPGA硬件實現.在概述信道編碼理論及其發展歷程之后,簡要地論述了Turbo碼的原理.然后分別對Turbo碼的MAP譯碼算法,LOG-MAP算法進行推導,在給出LOG-MAP的推導之后,提出了對于LOG-MAP譯碼算法的兩點改進,采用三階牛頓插值函數對校驗函數進行擬合,采用雙滑動窗口技術取代傳統的單滑動窗口技術.Turb碼還有一種譯碼復雜度相對較低的算法——SOVA算法,本文也給出了SOVA算法的詳細推導過程.在對LOG-MAP和SOVA算法的詳細推導之后,本文給出Turbo碼的軟件仿真,采用Matlab語言編寫Turbo碼仿真系統程序,仿真系統比較了單滑動窗口技術和雙滑動窗口技術在不同的信噪比下的譯碼性能.在軟件仿真的基礎上,本文給出了Turbo碼編碼器和采用LOG-MAP譯碼算法譯碼器的FPGA硬件實現方法.

    標簽: Turbo FPGA 編碼譯碼 算法

    上傳時間: 2013-06-19

    上傳用戶:plsee

  • 華為7號信令教材

    華為7號信令教材,最詳細版本,學習者最想要找的就是這個啦。

    標簽: 華為 信令 教材

    上傳時間: 2013-07-20

    上傳用戶:wanghui2438

  • 基于ARM的遠程數據采集終端的研究及實現

    隨著嵌入式技術和網絡技術的發展和應用,充分結合兩種技術優勢的遠程數據采集終端正在不斷地被研究和開發。本文即是此背景下,綜合以往遠程數據采集終端的優缺點,對基于ARM的遠程數據采集智能終端予以研究和實現,該終端具備GPRS和INTERNET兩種接入方式。可通過RS232或A/D模塊采集用戶終端設備數據信息;在GPRS接入方式下使用GPRS無線數據終端通過GPRS網絡接入互聯網,在INTERNET接入方式下則直接接入互聯網;接入后則可向遠程控制中心上傳用戶終端據信息。本文研制的遠程數據采集終端可廣泛地應用包括環保數據采集在內的多種數據遠程采集場合。 本文主要做了以下研究工作: 1、對硬件資源進行了外圍擴展,對S3C44BOX處理器芯片的外圍硬件進行了擴展設計,使之具備了滿足使用需求的最小系統硬件資源。包括外圍存儲、LCD、鍵盤、以太網卡和GPRSi匿信模塊等。 2、運用多任務操作系統可以有效的組織并行任務的處理,本文對μc/os-Ⅱ操作系統進行了移植,對原有μc/os-Ⅱ操作系統的搶占式調度機制進行了改造,使之成為整體搶占,局部輪詢的調度機制;使之較好地滿足了實際要求。 3、無論采用GPRS方式還是INTERNET方式,設備終端與INTERNET實現通信都必須具備相應的協議。本文實現了TCP/IP有關網絡協議棧的建立,對協議進行了簡化設計,實現了兩種方式的接入,滿足了嵌入式終端的要求。 4、為了使終端具備較好的人機交互能力,構建了嵌入式圖形界面,實現了LCD圖形顯示和鍵盤輸入控制的交互功能。 通過以上工作,建立了一個功能齊全,實時可靠,基于嵌入式系統的遠程數據采集終端。

    標簽: ARM 遠程數據 采集終端

    上傳時間: 2013-07-17

    上傳用戶:ljmwh2000

  • LDPC碼編碼器FPGA實現研究

    LDPC(低密度奇偶校驗碼)編碼是提高通信質量和數據傳輸速率的關鍵技術。LDPC碼應用于實際通信系統是本課題的研究重點。實際通信要求在LDPC碼長盡量短、碼率盡量高及硬件可實現的前提下,結合連續相位MSK調制,滿足歸一化信噪比SNR=2dB時,系統誤碼率低于10-4。根據課題背景,本文主要研究基于FPGA的LDPC編碼器設計與實現。 LDPC碼的編碼復雜度往往與其幀長的平方成正比,編碼復雜度大,成為編碼硬件實現的一個障礙;論文針對實際系統的預期指標,通過對多種矩陣構造算法的預選方案及影響LDPC碼性能參數仿真分析,基于1/2碼率,1024和2048兩種幀長,設計了三種編碼器的備選方案,分別為直接下三角編碼器,串行準循環編碼器和二階準循環編碼器。 對于每種編碼器,分別設計了其整體結構,并對每種編碼器的功能模塊進行深入研究,設計完成后利用第3方軟件MODELSIM對編碼器進行了時序仿真;根據時序仿真結果和綜合報告對三種編碼方案進行比較,最終選擇串行準循環編碼器作為硬件實現的編碼方案。 最后,在FPGA中硬件實現了串行準循環編碼器并對其進行測試,利用MATLAB仿真程序和串口通信工具最終驗證了這種編碼器的正確性和硬件可實現性。

    標簽: LDPC FPGA 編碼器 實現研究

    上傳時間: 2013-08-02

    上傳用戶:林魚2016

  • 海信HDP2919彩電電路圖

    海信HDP2919彩電電路圖海信HDP2919彩色電視機電路圖,海信HDP2919彩電圖紙,海信HDP2919原理圖。

    標簽: 2919 HDP 海信 彩電電路圖

    上傳時間: 2013-06-18

    上傳用戶:黃華強

  • TTC側音測距關鍵技術研究及FPGA實現

    航天測控通信網是航天工程的重要組成部分。迄今為止,我國已建成“C頻段測控網”,及正在建設的“S頻段測控網”和“TDRSS測控網”。測距單元是測控系統基帶設備中的重要功能單元,為航天飛行器提供定位元素。目前,在航天測距系統中側音測距技術具有最高的測距精度。本文以中國電子科技集團第十研究所某項目為背景,對側音測距系統中的關鍵技術進行了詳細的研究,提出了一些改進測距精度的方法,最后用FPGA實現了側音測距功能單元。 本論文主要完成以下工作: 1)完成了直接數字頻率合成的雜散分析。采用嚴格的信號分析方法,運用離散傅立葉變換(DFT)和傅立葉變換(FT),推導了理想狀態和相位截短條件下的DDS輸出頻譜的數學表達式,并利用systemview仿真軟件建立了DDS相位截短模型,通過仿真驗證了分析結論的正確性。 2)改進了TT&C系統中經典的FFT頻率引導算法,增加了頻譜對稱性分析,在實現頻率引導的同時完成了防載波頻率錯鎖的功能。 3)首次采用基于正交雙通道相關原理的數字相關相位估計法來實現次側音匹配和解模糊,降低了設備復雜度,提高了測距精度。針對低信噪比的情況,提出了基于平滑濾波的數據處理方法,提高了相位測量精度。對測距信道中加限幅器導致的測距信號信噪比惡化程度做了深入的理論分析。最后,分析了測距誤差,并對其中一些引起測距誤差的因素提出了改善方法。 通過本論文的工作,成功的完成了TT&C側音測距終端的研制,系統現已通過測試,達到系統任務書的各項指標要求。

    標簽: FPGA TTC 關鍵技術

    上傳時間: 2013-04-24

    上傳用戶:assss

  • 常模算法的FPGA實現

    常模信號是一類非常重要的信號,而專門應用于常模信號的常模算法[1]具有復雜度較低、實現起來比較簡單、對陣列模型的偏差不敏感等顯著的優點。因此,常模算法引起了眾多學者的廣泛關注。近年來,常模算法在多用戶檢測領域[2]的研究越來越受到諸多學者的關注。不僅如此,常模算法在其他領域也是備受矚目,如常模算法在盲均衡以及波束形成等領域的應用也是目前研究的熱點。除此之外,常模算法已經不僅僅局限在應用于常模信號,也可應用于多模信號[3]等。 本文對常模算法在多用戶檢測領域的應用以及FPGA[4]實現作了較多的研究工作,共分六章進行闡述。第一章為緒論,介紹了論文相關背景和本文的結構;第二章首先對常模算法作了理論分析,并改進了傳統的2-2型常模算法,我們稱之為M2-2CMA,它在誤碼率性能上有一些改善;之后在MATLAB平臺上搭建了仿真平臺,分析了常模算法在多用戶檢測中的應用;第三章研究了相關文獻,簡單介紹了FPGA概念及其設計流程和設計方法,并對VerilogHDL以及Quartus軟件做了簡要介紹;第四章則詳細介紹了常模算法的FPGA實現,用一種基于統計數據的方法確定了數據位長及精度,提出了其實現的系統框圖,并詳細闡述了各主要模塊的設計與實現,同時給出了最后的報告文件以及最高數據處理速度;第五章則在MATLAB平臺和QuartuslI的基礎上搭建了一個仿真平臺,借助于平臺分析了2-2型常模算法移植到FPGA平臺后的性能,對不同的精度對系統性能的影響做了討論,也統計了不同信噪比、多址干擾下的誤碼率性能。最后一章是對全文的總結和對未來的展望。

    標簽: FPGA 算法

    上傳時間: 2013-06-23

    上傳用戶:hzy5825468

  • 高吞吐量LDPC碼編碼構造及其FPGA實現

    低密度校驗碼(LDPC,Low Density Parity Check Code)是一種性能接近香農極限的信道編碼,已被廣泛地采用到各種無線通信領域標準中,包括我國的數字電視地面傳輸標準、歐洲第二代衛星數字視頻廣播標準(DVB-S2,Digital Video Broadcasting-Satellite 2)、IEEE 802.11n、IEEE 802.16e等。它是3G乃至將來4G通信系統中的核心技術之一。 當今LDPC碼構造的主流方向有兩個,分別是結合準循環(QC,Quasi Cyclic)移位結構的單次擴展構造和類似重復累積(RA,Repeat Accumulate)碼構造。相應地,主要的LDPC碼編碼算法有基于生成矩陣的算法和基于迭代譯碼的算法。基于生成矩陣的編碼算法吞吐量高,但是需要較多的寄存器和ROM資源;基于迭代譯碼的編碼算法實現簡單,但是吞吐量不高,且不容易構造高性能的好碼。 本文在研究了上述幾種碼構造和編碼算法之后,結合編譯碼器綜合實現的復雜度考慮,提出了一種切實可行的基于二次擴展(Dex,Duplex Expansion)的QC-LDPC碼構造方法,以實現高吞吐量的LDPC碼收發端;并且充分利用該類碼校驗矩陣準循環移位結構的特點,結合RU算法,提出了一種新編碼器的設計方案。 基于二次擴展的QC-LDPC碼構造方法,是通過對母矩陣先后進行亂序擴展(Pex,Permutation Expansion)和循環移位擴展(CSEx,Cyclic Shift Expansion)實現的。在此基礎上,為了實現可變碼長、可變碼率,一般編譯碼器需同時支持多個亂序擴展和循環移位擴展的擴展因子。本文所述二次擴展構造方法的特點在于,固定循環移位擴展的擴展因子大小不變,支持多個亂序擴展的擴展因子,使得譯碼器結構得以精簡;構造得到的碼字具有近似規則碼的結構,便于硬件實現;(偽)隨機生成的循環移位系數能夠提高碼字的誤碼性能,是對硬件實現和誤碼性能的一種折中。 新編碼器在很大程度上考慮了資源的復用,使得實現復雜度近似與碼長成正比。考慮到吞吐量的要求,新編碼器結構完全拋棄了RU算法中串行的前向替換(FS,Forward Substitution)模塊,同時簡化了流水線結構,由原先RU算法的6級降低為4級;為了縮短編碼延時,設計時安排每一級流水線計算所需的時鐘數大致相同。 這種碼字構造和編碼聯合設計方案具有以下優勢:相比RU算法,新方案對可變碼長、可變碼率的支持更靈活,吞吐量也更大;相比基于生成矩陣的編碼算法,新方案節省了50%以上的寄存器和ROM資源,單位資源下的吞吐量更大;相比類似重復累積碼結構的基于迭代譯碼的編碼算法,新方案使高性能LDPC碼的構造更為方便。以上結果都在Xilinx Virtex II pro 70 FPGA上得到驗證。 通過在實驗板上實測表明,上述基于二次擴展的QC-LDPC碼構造和相應的編碼方案能夠實現高吞吐量LDPC碼收發端,在實際應用中具有很高的價值。 目前,LDPC碼正向著非規則、自適應、信源信道及調制聯合編碼方向發展。跨層聯合編碼的構造方法,及其對應的編碼算法,也必將成為信道編碼理論未來的研究重點。

    標簽: LDPC FPGA 吞吐量 編碼

    上傳時間: 2013-07-26

    上傳用戶:qoovoop

  • 新型并行Turbo編譯碼器的FPGA實現

    可靠通信要求消息從信源到信宿盡量無誤傳輸,這就要求通信系統具有很好的糾錯能力,如使用差錯控制編碼。自仙農定理提出以來,先后有許多糾錯編碼被相繼提出,例如漢明碼,BCH碼和RS碼等,而C。Berrou等人于1993年提出的Turbo碼以其優異的糾錯性能成為通信界的一個里程碑。 然而,Turbo碼迭代譯碼復雜度大,導致其譯碼延時大,故而在工程中的應用受到一定限制,而并行Turbo譯碼可以很好地解決上述問題。本論文的主要工作是通過硬件實現一種基于幀分裂和歸零處理的新型并行Turbo編譯碼算法。論文提出了一種基于多端口存儲器的并行子交織器解決方法,很好地解決了并行訪問存儲器沖突的問題。 本論文在現場可編程門陣列(FPGA)平臺上實現了一種基于幀分裂和籬笆圖歸零處理的并行Turbo編譯碼器。所實現的并行Turbo編譯碼器在時鐘頻率為33MHz,幀長為1024比特,并行子譯碼器數和最大迭代次數均為4時,可支持8.2Mbps的編譯碼數掘吞吐量,而譯碼時延小于124us。本文還使用EP2C35FPGA芯片設計了系統開發板。該開發板可提供高速以太網MAC/PHY和PCI接口,很好地滿足了通信系統需求。系統測試結果表明,本文所實現的并行Turbo編譯碼器及其開發板運行正確、有效且可靠。 本論文主要分為五章,第一章為緒論,介紹Turbo碼背景和硬件實現相關技術。第二章為基于幀分裂和歸零的并行Turbo編碼的設計與實現,分別介紹了編碼器和譯碼器的RTL設計,還提出了一種基于多端口存儲器的并行子交織器和解交織器設計。第三章討論了使用NIOS處理器的SOC架構,使用SOC架構處理系統和基于NIOSII處理器和uC/0S一2操作系統的架構。第四章介紹了FPGA系統開發板設計與調試的一些工作。最后一章為本文總結及其展望。

    標簽: Turbo FPGA 并行 編譯碼器

    上傳時間: 2013-04-24

    上傳用戶:ziyu_job1234

  • 常用產品抗擾度標準和測試方法

    主要講述靜電放電、射頻輻射電磁場、電快速瞬變脈 沖群、雷擊浪涌、由射頻場引起的傳導干擾、工頻磁場、 電壓跌落和衰減振蕩波等八項抗擾度試驗,其中前七項試 驗在通用抗擾度標準中已經見到;后一項試驗(衰減振蕩 波抗擾度試驗)則在電力系統設備的抗擾度試驗中經常可 以見到。考慮到國內在引進生產家用電器的企業中經常采 用的高頻噪聲模擬器,本章予以補充介紹。此外,汽車工 業在我國的迅速發展,拉動了與之配套的汽車電子與電器 行業的迅速發展。對后者的質量控制與檢測問題便成為業 內人士所關注的一個熱點。

    標簽: 抗擾度 標準 測試方法

    上傳時間: 2013-05-24

    上傳用戶:fxf126@126.com

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产欧美日韩在线播放| 国产亚洲a∨片在线观看| 亚洲欧美精品中文字幕在线| 亚洲综合第一| 欧美精品一区二| 亚洲精品一区二区三区四区高清| 欧美午夜免费| 久久久精品国产一区二区三区| 亚洲第一在线视频| 国产区二精品视| 欧美日韩视频第一区| 午夜一区不卡| 亚洲激情欧美| 国产午夜精品一区二区三区欧美| 久久亚洲私人国产精品va媚药| 亚洲人线精品午夜| 一区二区三区在线不卡| 国产乱码精品一区二区三区不卡 | 国产一级久久| 欧美日韩国产在线播放| 美日韩精品免费观看视频| 欧美呦呦网站| 欧美亚洲在线视频| 欧美一区二区黄色| 亚洲欧美日本日韩| 亚洲一区二区三区777| 影音欧美亚洲| 精品999成人| 一区二区三区我不卡| 国产午夜久久| 国内外成人免费激情在线视频| 国产日韩精品一区二区三区在线| 欧美日韩国产在线看| 国产精品区一区二区三区| 女人天堂亚洲aⅴ在线观看| 久久亚洲精选| 欧美激情一区二区三区在线视频观看 | 欧美日韩精品久久久| 欧美aaa级| 欧美精品在线一区| 欧美日本精品| 国产精品电影在线观看| 国产美女精品| 在线成人av| 久久尤物电影视频在线观看| 欧美黄色日本| 国产乱码精品一区二区三区av| 国产偷国产偷亚洲高清97cao | 亚洲专区在线视频| 亚洲一二三区精品| 欧美在线视频免费播放| 久久人人爽人人| 欧美日韩伦理在线| 国产精品乱人伦一区二区| 国产日韩精品一区二区三区| 在线观看日韩一区| 亚洲伊人久久综合| 欧美日韩免费网站| 激情欧美丁香| 欧美一级在线视频| 欧美激情中文字幕一区二区| 国产亚洲精品高潮| 亚洲欧美日韩在线播放| 欧美视频在线观看视频极品| 狠狠色丁香婷综合久久| 亚洲专区欧美专区| 国产精品国产三级国产专区53| 在线 亚洲欧美在线综合一区| 亚洲综合视频1区| 欧美日韩一区不卡| 亚洲精品欧美极品| 久久伊人精品天天| 亚洲国产精品va| 久久精品国产久精国产思思| 国产精品午夜在线观看| 久久久精品国产一区二区三区| 国产乱码精品一区二区三区av| 亚洲精品看片| 欧美日韩一区高清| 一本久道久久综合狠狠爱| 欧美极品在线播放| 99精品国产福利在线观看免费| 久久人91精品久久久久久不卡| 影音先锋亚洲一区| 欧美成人四级电影| 亚洲精品免费一二三区| 欧美日韩精品在线观看| 中文亚洲字幕| 激情自拍一区| 欧美精品麻豆| 久久不射电影网| 亚洲日韩第九十九页| 欧美调教视频| 久久亚洲图片| 亚洲影音一区| 一区精品久久| 欧美日韩国产欧| 久久aⅴ乱码一区二区三区| 亚洲国产精品视频一区| 国产一区二区中文| 老鸭窝91久久精品色噜噜导演| 亚洲国产精品一区二区www在线| 欧美日韩中国免费专区在线看| 欧美一区二区在线视频| 亚洲美女尤物影院| 激情小说另类小说亚洲欧美| 国产精品草草| 免费在线亚洲欧美| 久久久久久97三级| 亚洲私人影吧| 亚洲另类黄色| 亚洲国产网站| 亚洲精品国产拍免费91在线| 韩国一区二区三区美女美女秀| 欧美黄网免费在线观看| 久久米奇亚洲| 久久亚洲私人国产精品va| 欧美在线视屏| 欧美一区二区三区在线观看视频 | 在线亚洲伦理| 亚洲三级电影在线观看 | 久久久久久亚洲精品中文字幕| 午夜在线精品偷拍| 亚洲一区三区视频在线观看| 一区二区电影免费观看| 正在播放欧美视频| 一本色道久久综合| 国产精品久久一区二区三区| 亚洲国产影院| 国产精品午夜在线| 亚洲最黄网站| 亚洲免费在线视频一区 二区| 一二三四社区欧美黄| 狼狼综合久久久久综合网| 久久xxxx| 亚洲黄色一区二区三区| 一区二区三区视频在线看| 国产精品一区二区在线观看| 99国产精品久久久久老师| 亚洲欧美日韩国产中文| 99国产欧美久久久精品| 国产精品私拍pans大尺度在线 | 99视频精品| 亚洲国产精品一区在线观看不卡 | 欧美一区中文字幕| 久久精品国产99国产精品澳门| 亚洲欧美日韩一区二区三区在线观看| 欧美一级电影久久| 欧美精品亚洲二区| 国产精品三区www17con| 黄色小说综合网站| 亚洲精品一二三| 午夜在线一区二区| 欧美mv日韩mv国产网站| 欧美日韩中文精品| 樱桃成人精品视频在线播放| 日韩视频一区二区三区在线播放| 亚洲视频自拍偷拍| 免费不卡在线观看| 国产精品亚洲а∨天堂免在线| 黑人极品videos精品欧美裸| 一区二区三区四区五区视频| 久久久九九九九| 欧美午夜不卡视频| 狠狠色丁香久久综合频道| 日韩午夜剧场| 欧美一级理论片| 国产精品狼人久久影院观看方式| 一区二区在线看| 久久精品国产精品亚洲精品| 国产精品高清一区二区三区| 亚洲精品视频在线播放| 性娇小13――14欧美| 欧美日韩三级| 亚洲片在线资源| 久久综合中文字幕| 黄色一区二区三区四区| 亚洲免费视频成人| 国产精品白丝黑袜喷水久久久 | 久久青草久久| 国内伊人久久久久久网站视频| 亚洲一区二区三区涩| 欧美日韩午夜剧场| 影音先锋久久资源网| 久久精品国产第一区二区三区| 国模私拍视频一区| 久久久久久久久久久久久久一区| 国产综合一区二区| 麻豆国产va免费精品高清在线| 激情文学一区| 久久综合久久美利坚合众国| 亚洲第一主播视频| 欧美高清视频一区| 最新亚洲电影| 欧美激情一区二区三区高清视频 | 欧美激情国产日韩精品一区18| 一区二区亚洲欧洲国产日韩| 美女视频黄a大片欧美| 亚洲国产色一区| 欧美三级黄美女|