亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲(chóng)蟲(chóng)首頁(yè)| 資源下載| 資源專(zhuān)輯| 精品軟件
登錄| 注冊(cè)

信號(hào)與線性系統(tǒng)(tǒng)分析習(xí)(xí)題全解(吳大正第4版)

  • 學(xué) 生 管 理 信 息 系 統(tǒng),前端開(kāi)發(fā)工具為Visual Basic 6.0

    學(xué) 生 管 理 信 息 系 統(tǒng),前端開(kāi)發(fā)工具為Visual Basic 6.0,后端數(shù)據(jù)庫(kù)的開(kāi)發(fā)工具為Access 2000,

    標(biāo)簽: Visual Basic 6.0 開(kāi)發(fā)工具

    上傳時(shí)間: 2017-09-01

    上傳用戶:上善若水

  • GB-T 2471-1995 電阻器和電容器優(yōu)先數(shù)系.pdf

    國(guó)標(biāo)類(lèi)相關(guān)專(zhuān)輯 313冊(cè) 701MGB-T 2471-1995 電阻器和電容器優(yōu)先數(shù)系.pdf

    標(biāo)簽:

    上傳時(shí)間: 2014-05-05

    上傳用戶:時(shí)代將軍

  • 磁共振用超導(dǎo)磁體的磁場(chǎng)均勻性研究

    隨著生物工程及醫(yī)學(xué)影像學(xué)的發(fā)展,磁共振成像在醫(yī)學(xué)診斷學(xué)方面發(fā)揮著越來(lái)越重要的角色。磁場(chǎng)的均勻性是大型醫(yī)療設(shè)備——核磁共振(MRI)成像的理論基礎(chǔ),是評(píng)價(jià)該設(shè)備的一個(gè)重要的技術(shù)參數(shù),磁場(chǎng)的均勻性分析也是電磁場(chǎng)理論分析的一個(gè)重要方向。良好、穩(wěn)定的磁場(chǎng)均勻性對(duì)核磁共振圖像的信噪比(SNR)的提高有重要的意義,同時(shí)也是飽和壓脂序列實(shí)現(xiàn)的唯一條件。 該課題的主要內(nèi)容是在介紹磁共振成像原理與磁共振超導(dǎo)磁體的超導(dǎo)勻場(chǎng)線圈的形狀及位置的基礎(chǔ)上,分析各個(gè)線圈中電流的大小與空間某點(diǎn)磁場(chǎng)強(qiáng)度的關(guān)系。同時(shí)借鑒磁共振成像原理,設(shè)計(jì)輔助測(cè)量水膜,對(duì)空間某一特定半徑的球體腔內(nèi)各點(diǎn)的磁場(chǎng)強(qiáng)度進(jìn)行自動(dòng)化測(cè)量。在當(dāng)前使用的被動(dòng)式勻場(chǎng)的基礎(chǔ)上,利用分析軟件,對(duì)線圈的選擇及電流的大小進(jìn)行計(jì)算與優(yōu)化。實(shí)驗(yàn)結(jié)果表明效果良好,磁場(chǎng)均勻度有很大的改善。 采用的主要方法是利用磁共振成像原理及傅里葉轉(zhuǎn)化技術(shù)去設(shè)計(jì)一種精確、方便、快捷的勻場(chǎng)方法。通過(guò)計(jì)算機(jī)模擬及有限元分析的方法進(jìn)行計(jì)算、優(yōu)化,最終得到理想的磁場(chǎng)均勻度。 良好的磁場(chǎng)均勻性是磁共振成像的基礎(chǔ),是飽和壓脂序列(FATSAT)、平面回波成像(EPI)、彌散成像、頻譜分析等一系列近幾年新出現(xiàn)的先進(jìn)序列實(shí)現(xiàn)的前提條件。從而為臨床醫(yī)學(xué)提供了一種先進(jìn)的檢查手段,為疾病診治的及時(shí)性、準(zhǔn)確性、可靠性及病灶確切位置的判斷都提供了基礎(chǔ)。 該文所介紹的磁場(chǎng)均勻性測(cè)量、分析方法以及在此基礎(chǔ)上設(shè)計(jì)的勻場(chǎng)計(jì)算分析軟件已在多臺(tái)磁共振安裝調(diào)試過(guò)程中得到應(yīng)用,達(dá)到了預(yù)期的目的,能夠滿足現(xiàn)場(chǎng)調(diào)試的要求。該方法對(duì)于今后超導(dǎo)磁體磁共振的磁場(chǎng)均勻性調(diào)試,及在醫(yī)學(xué)影像學(xué)方面的發(fā)展有很好的應(yīng)用價(jià)值。該項(xiàng)技術(shù)在該領(lǐng)域的推廣必然會(huì)提高磁場(chǎng)均勻性的精度,推動(dòng)醫(yī)學(xué)影像學(xué)及臨床診斷學(xué)的發(fā)展。并能帶來(lái)良好的社會(huì)效益及經(jīng)濟(jì)效益,具有關(guān)闊的應(yīng)用前景。

    標(biāo)簽: 磁共振 超導(dǎo)磁體 磁場(chǎng)

    上傳時(shí)間: 2013-04-24

    上傳用戶:tianjinfan

  • 基于ARM的T波交替檢測(cè)技術(shù)

    心血管系統(tǒng)疾病是現(xiàn)今世界上發(fā)病率和死亡率最高的疾病之一。T波交替(T-wavealtemans,TWA)作為一種非穩(wěn)態(tài)的心電變異性現(xiàn)象,是指心電T波段振幅、形態(tài)甚至極性逐拍交替變化。大量研究表明,TWA與室性心律失常、心臟性猝死等有直接密切的關(guān)系,已成為一種無(wú)創(chuàng)獨(dú)立性預(yù)測(cè)指標(biāo)。隨著數(shù)字信號(hào)處理技術(shù)和計(jì)算機(jī)技術(shù)的迅速發(fā)展,微伏級(jí)的TWA已經(jīng)可以被檢出,并且精度越來(lái)越高。本文以T波交替檢測(cè)為中心,基于ARM給出了T波交替檢測(cè)技術(shù)原理性樣機(jī)的硬件及軟件,實(shí)現(xiàn)實(shí)時(shí)監(jiān)護(hù)的目的。 在TWA檢測(cè)研究中,需要對(duì)心電信號(hào)進(jìn)行預(yù)處理,即信號(hào)去噪和特征點(diǎn)檢測(cè)。小波分析以其多分辨率的特性和表征時(shí)頻兩域信號(hào)局部特征的能力成為我們選取的心電信號(hào)自動(dòng)分析手段。文中采用小波變換將原始心電信號(hào)分解為不同頻段的細(xì)節(jié)信號(hào),根據(jù)三種主要噪聲的不同能量分布,采用自適應(yīng)閾值和軟硬閾值折衷處理策略用閾值濾波方法對(duì)原始信號(hào)進(jìn)行去噪處理:同時(shí)基于心電信號(hào)的特征點(diǎn)R峰對(duì)應(yīng)于Mexican-hat小波變換的極值點(diǎn),因此我們使用Mexican-hat小波檢測(cè)R峰,通過(guò)附加檢測(cè)方案確保了位置的準(zhǔn)確性,并根據(jù)需要提出了T波矩陣提取方法。 隨后文章介紹了T波交替的產(chǎn)生機(jī)理及研究進(jìn)展,分別從臨床應(yīng)用和檢測(cè)方法上展現(xiàn)了目前TWA的發(fā)展進(jìn)程,并利用了譜分析法、相關(guān)分析法和移動(dòng)平均修正算法分別從時(shí)域和頻域?qū)σ恍颖緮?shù)據(jù)進(jìn)行T波交替檢測(cè)。在檢測(cè)中譜分析法抗噪能力較強(qiáng),但作為一種頻域檢測(cè)方法,無(wú)法檢測(cè)非穩(wěn)態(tài)TWA信號(hào),而相關(guān)分析法受呼吸、噪聲影響較大,數(shù)據(jù)要求較高,因此可以在譜分析檢測(cè)為陽(yáng)性TWA基礎(chǔ)上,再對(duì)信號(hào)進(jìn)行相關(guān)分析,從而克服自身算法缺陷,確定交替幅度和時(shí)間段。最后對(duì)影響檢測(cè)結(jié)果的因素進(jìn)行討論研究,從而降低檢測(cè)誤差。 文章還設(shè)計(jì)了T波交替檢測(cè)技術(shù)原理性樣機(jī)的關(guān)鍵部分電路和軟件框架。硬件部分圍繞ARM核的Samsung S3C44BOX為核心,設(shè)計(jì)了該樣機(jī)的關(guān)鍵電路,包括采集模塊、數(shù)據(jù)處理模塊(外部存儲(chǔ)電路、通信接口電路等)。其中在采集模塊中針對(duì)心電信號(hào)是微弱信號(hào)并且干擾大的特點(diǎn),采用了具有高共模抑制比和高輸入阻抗的分級(jí)放大電路,有效的提取了信號(hào)分量:A/D轉(zhuǎn)換電路保證了信號(hào)量化的高精度。利用USB接口芯片和刪內(nèi)部異步串行通訊實(shí)現(xiàn)系統(tǒng)與外界聯(lián)系。系統(tǒng)軟件中首先介紹了系統(tǒng)的軟件開(kāi)發(fā)環(huán)境,然后給出了心電信號(hào)分析及處理程序設(shè)計(jì)流程圖及實(shí)現(xiàn),使它們共同完成系統(tǒng)的軟件監(jiān)護(hù)功能。

    標(biāo)簽: ARM 檢測(cè)技術(shù)

    上傳時(shí)間: 2013-07-27

    上傳用戶:familiarsmile

  • DVB信道編解碼算法研究與FPGA實(shí)現(xiàn)

    隨著人們對(duì)于數(shù)字視頻和數(shù)字圖像的需求越來(lái)越大,數(shù)字電視廣播和手機(jī)電視迅速發(fā)展起來(lái),但是人們對(duì)于數(shù)字圖像質(zhì)量的要求也越來(lái)越高。對(duì)于觀眾來(lái)講,畫(huà)面的質(zhì)量幾乎是最為重要的,然而由于信道傳輸特性不理想和加性噪聲的影響,不可避免地會(huì)產(chǎn)生誤碼,導(dǎo)致圖像質(zhì)量的下降,甚至無(wú)法正常收看。因此,為了保障圖像質(zhì)量就需要采用糾錯(cuò)編碼(又稱(chēng)信道編碼)的方式來(lái)實(shí)現(xiàn)通信。在數(shù)字視頻廣播系統(tǒng)(DVB)中,無(wú)論是衛(wèi)星傳輸,電纜傳輸還是地面?zhèn)鬏敹疾捎昧诵诺谰幋a。 本文首先深入研究DVB標(biāo)準(zhǔn)中的信道編碼部分的關(guān)鍵技術(shù);然后依照DVB-T標(biāo)準(zhǔn)技術(shù)要求,設(shè)計(jì)并硬件實(shí)現(xiàn)了數(shù)字視頻傳輸?shù)男诺谰幗獯a系統(tǒng)。在該系統(tǒng)中,編解碼器與信源端的接口利用了MPEG-2的視頻傳輸接口同步并行接口(SPI),這種接口的應(yīng)用讓系統(tǒng)具有很強(qiáng)的通用性;與信道端接口采用了G.703接口,具有G.703接口功能和特性的數(shù)據(jù)通信設(shè)備可以直接與數(shù)字通信設(shè)備連接,這使得應(yīng)用時(shí)對(duì)于信道的選擇具有較大的靈活性。 在深入理解RS編解碼算法,卷積交織/解交織原理,卷積編碼/VITERBI譯碼算法原理的基礎(chǔ)上,本文給出了解碼部分的設(shè)計(jì)方案,并利用Xilinx公司的SpartanⅢ系列XC3S2000芯片完成方案的硬件實(shí)現(xiàn)。在RS解碼過(guò)程中引入了流水線機(jī)制,從而很大程度上提高了解碼效率。解交織器部分采用了RAM分區(qū)循環(huán)法,利用對(duì)RAM讀寫(xiě)地址的控制實(shí)現(xiàn)解卷積交織,這種方法控制電路簡(jiǎn)單,實(shí)現(xiàn)速度比較快,代價(jià)小。VITERBI譯碼器采用截尾譯碼,在幾乎不影響譯碼準(zhǔn)確度的基礎(chǔ)上大大提高了解碼效率。

    標(biāo)簽: FPGA DVB 信道 編解碼

    上傳時(shí)間: 2013-07-16

    上傳用戶:372825274

  • 電位計(jì)訊號(hào)轉(zhuǎn)換器

    電位計(jì)訊號(hào)轉(zhuǎn)換器 AT-PM1-P1-DN-ADL 1.產(chǎn)品說(shuō)明 AT系列轉(zhuǎn)換器/分配器主要設(shè)計(jì)使用于一般訊號(hào)迴路中之轉(zhuǎn)換與隔離;如 4~20mA、0~10V、熱電偶(Type K, J, E, T)、熱電阻(Rtd-Pt100Ω)、荷重元、電位計(jì)(三線式)、電阻(二線式)及交流電壓/電流等訊號(hào),機(jī)種齊全。 此款薄型設(shè)計(jì)的轉(zhuǎn)換器/分配器,除了能提供兩組訊號(hào)輸出(輸出間隔離)或24V激發(fā)電源供傳送器使用外,切換式電源亦提供了安裝的便利性。上方并設(shè)計(jì)了電源、輸入及輸出指示燈及可插拔式接線端子方便現(xiàn)場(chǎng)施工及工作狀態(tài)檢視。 2.產(chǎn)品特點(diǎn) 可選擇帶指撥開(kāi)關(guān)切換,六種常規(guī)輸出信號(hào)0-5V/0~10V/1~5V/2~10V/4~20mA/ 0~20mA 可自行切換。 雙回路輸出完全隔離,可選擇不同信號(hào)。 設(shè)計(jì)了電源、輸入及輸出LED指示燈,方便現(xiàn)場(chǎng)工作狀態(tài)檢視。 規(guī)格選擇表中可指定選購(gòu)0.1%精度 17.55mm薄型35mm導(dǎo)軌安裝。 依據(jù)CE國(guó)際標(biāo)準(zhǔn)規(guī)范設(shè)計(jì)。 3.技術(shù)規(guī)格 用途:信號(hào)轉(zhuǎn)換及隔離 過(guò)載輸入能力:電流:10×額定10秒 第二組輸出:可選擇 輸入范圍:P1:0 Ω ~ 50.0 Ω / ~ 2.0 KΩ P2:0 Ω ~ 2.0 KΩ / ~ 100.0 KΩ 精確度: ≦±0.2% of F.S. ≦±0.1% of F.S. 偵測(cè)電壓:1.6V 輸入耗損: 交流電流:≤ 0.1VA; 交流電壓:≤ 0.15VA 反應(yīng)時(shí)間: ≤ 250msec (10%~90% of FS) 輸出波紋: ≤ ±0.1% of F.S. 滿量程校正范圍:≤ ±10% of F.S.,2組輸出可個(gè)別調(diào)整 零點(diǎn)校正范圍:≤ ±10% of F.S.,2組輸出可個(gè)別調(diào)整 隔離:AC 2.0 KV 輸出1與輸出2之間 隔離抗阻:DC 500V 100MΩ 工作電源: AC 85~265V/DC 100~300V, 50/60Hz 或 AC/DC 20~56V (選購(gòu)規(guī)格) 消耗功率: DC 4W, AC 6.0VA 工作溫度: 0~60 ºC 工作濕度: 20~95% RH, 無(wú)結(jié)露 溫度系數(shù): ≤ 100PPM/ ºC (0~50 ºC) 儲(chǔ)存溫度: -10~70 ºC 保護(hù)等級(jí): IP 42 振動(dòng)測(cè)試: 1~800 Hz, 3.175 g2/Hz 外觀尺寸: 94.0mm x 94.0mm x 17.5mm 外殼材質(zhì): ABS防火材料,UL94V0 安裝軌道: 35mm DIN導(dǎo)軌 (EN50022) 重量: 250g 安全規(guī)范(LVD): IEC 61010 (Installation category 3) EMC: EN 55011:2002; EN 61326:2003 EMI: EN 55011:2002; EN 61326:2003 常用規(guī)格:AT-PM1-P1-DN-ADL 電位計(jì)訊號(hào)轉(zhuǎn)換器,一組輸出,輸入范圍:0 Ω ~ 50.0 Ω / ~ 2.0 KΩ,輸出一組輸出4-20mA,工作電源AC/DC20-56V

    標(biāo)簽: 電位計(jì) 訊號(hào) 轉(zhuǎn)換器

    上傳時(shí)間: 2013-11-05

    上傳用戶:feitian920

  • 對(duì)非整周期正弦波形信噪比計(jì)算方法的研究

    以雙音多頻信號(hào)為例,通過(guò)運(yùn)用快速傅里葉變換和Hanning窗等數(shù)學(xué)方法,分析了信號(hào)頻率,電平和相位之間的關(guān)系,推導(dǎo)出了計(jì)算非整周期正弦波形信噪比的算法,解決了數(shù)字信號(hào)處理中非整周期正弦波形信噪比計(jì)算精度低下的問(wèn)題。以C編程語(yǔ)言進(jìn)行實(shí)驗(yàn),證明了算法的正確性和可重用性,并可極大的提高工作效率。

    標(biāo)簽: 周期 信噪比 正弦 波形

    上傳時(shí)間: 2014-01-18

    上傳用戶:laomv123

  • 時(shí)鐘分相技術(shù)應(yīng)用

    摘要: 介紹了時(shí)鐘分相技術(shù)并討論了時(shí)鐘分相技術(shù)在高速數(shù)字電路設(shè)計(jì)中的作用。 關(guān)鍵詞: 時(shí)鐘分相技術(shù); 應(yīng)用 中圖分類(lèi)號(hào): TN 79  文獻(xiàn)標(biāo)識(shí)碼:A   文章編號(hào): 025820934 (2000) 0620437203 時(shí)鐘是高速數(shù)字電路設(shè)計(jì)的關(guān)鍵技術(shù)之一, 系統(tǒng)時(shí)鐘的性能好壞, 直接影響了整個(gè)電路的 性能。尤其現(xiàn)代電子系統(tǒng)對(duì)性能的越來(lái)越高的要求, 迫使我們集中更多的注意力在更高頻率、 更高精度的時(shí)鐘設(shè)計(jì)上面。但隨著系統(tǒng)時(shí)鐘頻率的升高。我們的系統(tǒng)設(shè)計(jì)將面臨一系列的問(wèn) 題。 1) 時(shí)鐘的快速電平切換將給電路帶來(lái)的串?dāng)_(Crosstalk) 和其他的噪聲。 2) 高速的時(shí)鐘對(duì)電路板的設(shè)計(jì)提出了更高的要求: 我們應(yīng)引入傳輸線(T ransm ission L ine) 模型, 并在信號(hào)的匹配上有更多的考慮。 3) 在系統(tǒng)時(shí)鐘高于100MHz 的情況下, 應(yīng)使用高速芯片來(lái)達(dá)到所需的速度, 如ECL 芯 片, 但這種芯片一般功耗很大, 再加上匹配電阻增加的功耗, 使整個(gè)系統(tǒng)所需要的電流增大, 發(fā) 熱量增多, 對(duì)系統(tǒng)的穩(wěn)定性和集成度有不利的影響。 4) 高頻時(shí)鐘相應(yīng)的電磁輻射(EM I) 比較嚴(yán)重。 所以在高速數(shù)字系統(tǒng)設(shè)計(jì)中對(duì)高頻時(shí)鐘信號(hào)的處理應(yīng)格外慎重, 盡量減少電路中高頻信 號(hào)的成分, 這里介紹一種很好的解決方法, 即利用時(shí)鐘分相技術(shù), 以低頻的時(shí)鐘實(shí)現(xiàn)高頻的處 理。 1 時(shí)鐘分相技術(shù) 我們知道, 時(shí)鐘信號(hào)的一個(gè)周期按相位來(lái)分, 可以分為360°。所謂時(shí)鐘分相技術(shù), 就是把 時(shí)鐘周期的多個(gè)相位都加以利用, 以達(dá)到更高的時(shí)間分辨。在通常的設(shè)計(jì)中, 我們只用到時(shí)鐘 的上升沿(0 相位) , 如果把時(shí)鐘的下降沿(180°相位) 也加以利用, 系統(tǒng)的時(shí)間分辨能力就可以 提高一倍(如圖1a 所示)。同理, 將時(shí)鐘分為4 個(gè)相位(0°、90°、180°和270°) , 系統(tǒng)的時(shí)間分辨就 可以提高為原來(lái)的4 倍(如圖1b 所示)。 以前也有人嘗試過(guò)用專(zhuān)門(mén)的延遲線或邏輯門(mén)延時(shí)來(lái)達(dá)到時(shí)鐘分相的目的。用這種方法產(chǎn)生的相位差不夠準(zhǔn)確, 而且引起的時(shí)間偏移(Skew ) 和抖動(dòng) (J itters) 比較大, 無(wú)法實(shí)現(xiàn)高精度的時(shí)間分辨。 近年來(lái)半導(dǎo)體技術(shù)的發(fā)展, 使高質(zhì)量的分相功能在一 片芯片內(nèi)實(shí)現(xiàn)成為可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能優(yōu)異的時(shí)鐘 芯片。這些芯片的出現(xiàn), 大大促進(jìn)了時(shí)鐘分相技術(shù)在實(shí)際電 路中的應(yīng)用。我們?cè)谶@方面作了一些嘗試性的工作: 要獲得 良好的時(shí)間性能, 必須確保分相時(shí)鐘的Skew 和J itters 都 比較小。因此在我們的設(shè)計(jì)中, 通常用一個(gè)低頻、高精度的 晶體作為時(shí)鐘源, 將這個(gè)低頻時(shí)鐘通過(guò)一個(gè)鎖相環(huán)(PLL ) , 獲得一個(gè)較高頻率的、比較純凈的時(shí)鐘, 對(duì)這個(gè)時(shí)鐘進(jìn)行分相, 就可獲得高穩(wěn)定、低抖動(dòng)的分 相時(shí)鐘。 這部分電路在實(shí)際運(yùn)用中獲得了很好的效果。下面以應(yīng)用的實(shí)例加以說(shuō)明。2 應(yīng)用實(shí)例 2. 1 應(yīng)用在接入網(wǎng)中 在通訊系統(tǒng)中, 由于要減少傳輸 上的硬件開(kāi)銷(xiāo), 一般以串行模式傳輸 圖3 時(shí)鐘分為4 個(gè)相位 數(shù)據(jù), 與其同步的時(shí)鐘信號(hào)并不傳輸。 但本地接收到數(shù)據(jù)時(shí), 為了準(zhǔn)確地獲取 數(shù)據(jù), 必須得到數(shù)據(jù)時(shí)鐘, 即要獲取與數(shù) 據(jù)同步的時(shí)鐘信號(hào)。在接入網(wǎng)中, 數(shù)據(jù)傳 輸?shù)慕Y(jié)構(gòu)如圖2 所示。 數(shù)據(jù)以68MBös 的速率傳輸, 即每 個(gè)bit 占有14. 7ns 的寬度, 在每個(gè)數(shù)據(jù) 幀的開(kāi)頭有一個(gè)用于同步檢測(cè)的頭部信息。我們要找到與它同步性好的時(shí)鐘信號(hào), 一般時(shí)間 分辨應(yīng)該達(dá)到1ö4 的時(shí)鐘周期。即14. 7ö 4≈ 3. 7ns, 這就是說(shuō), 系統(tǒng)時(shí)鐘頻率應(yīng)在300MHz 以 上, 在這種頻率下, 我們必須使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型門(mén)延遲為340p s) , 如前所述, 這樣對(duì)整個(gè)系統(tǒng)設(shè)計(jì)帶來(lái)很多的困擾。 我們?cè)谶@里使用鎖相環(huán)和時(shí)鐘分相技術(shù), 將一個(gè)16MHz 晶振作為時(shí)鐘源, 經(jīng)過(guò)鎖相環(huán) 89429 升頻得到68MHz 的時(shí)鐘, 再經(jīng)過(guò)分相芯片AMCCS4405 分成4 個(gè)相位, 如圖3 所示。 我們只要從4 個(gè)相位的68MHz 時(shí)鐘中選擇出與數(shù)據(jù)同步性最好的一個(gè)。選擇的依據(jù)是: 在每個(gè)數(shù)據(jù)幀的頭部(HEAD) 都有一個(gè)8bit 的KWD (KeyWord) (如圖1 所示) , 我們分別用 這4 個(gè)相位的時(shí)鐘去鎖存數(shù)據(jù), 如果經(jīng)某個(gè)時(shí)鐘鎖存后的數(shù)據(jù)在這個(gè)指定位置最先檢測(cè)出這 個(gè)KWD, 就認(rèn)為下一相位的時(shí)鐘與數(shù)據(jù)的同步性最好(相關(guān))。 根據(jù)這個(gè)判別原理, 我們?cè)O(shè)計(jì)了圖4 所示的時(shí)鐘分相選擇電路。 在板上通過(guò)鎖相環(huán)89429 和分相芯片S4405 獲得我們所要的68MHz 4 相時(shí)鐘: 用這4 個(gè) 時(shí)鐘分別將輸入數(shù)據(jù)進(jìn)行移位, 將移位的數(shù)據(jù)與KWD 作比較, 若至少有7bit 符合, 則認(rèn)為檢 出了KWD。將4 路相關(guān)器的結(jié)果經(jīng)過(guò)優(yōu)先判選控制邏輯, 即可輸出同步性最好的時(shí)鐘。這里, 我們運(yùn)用AMCC 公司生產(chǎn)的 S4405 芯片, 對(duì)68MHz 的時(shí)鐘進(jìn)行了4 分 相, 成功地實(shí)現(xiàn)了同步時(shí)鐘的獲取, 這部分 電路目前已實(shí)際地應(yīng)用在某通訊系統(tǒng)的接 入網(wǎng)中。 2. 2 高速數(shù)據(jù)采集系統(tǒng)中的應(yīng)用 高速、高精度的模擬- 數(shù)字變換 (ADC) 一直是高速數(shù)據(jù)采集系統(tǒng)的關(guān)鍵部 分。高速的ADC 價(jià)格昂貴, 而且系統(tǒng)設(shè)計(jì) 難度很高。以前就有人考慮使用多個(gè)低速 圖5 分相技術(shù)應(yīng)用于采集系統(tǒng) ADC 和時(shí)鐘分相, 用以替代高速的ADC, 但由 于時(shí)鐘分相電路產(chǎn)生的相位不準(zhǔn)確, 時(shí)鐘的 J itters 和Skew 比較大(如前述) , 容易產(chǎn)生較 大的孔徑晃動(dòng)(Aperture J itters) , 無(wú)法達(dá)到很 好的時(shí)間分辨。 現(xiàn)在使用時(shí)鐘分相芯片, 我們可以把分相 技術(shù)應(yīng)用在高速數(shù)據(jù)采集系統(tǒng)中: 以4 分相后 圖6 分相技術(shù)提高系統(tǒng)的數(shù)據(jù)采集率 的80MHz 采樣時(shí)鐘分別作為ADC 的 轉(zhuǎn)換時(shí)鐘, 對(duì)模擬信號(hào)進(jìn)行采樣, 如圖5 所示。 在每一采集通道中, 輸入信號(hào)經(jīng)過(guò) 緩沖、調(diào)理, 送入ADC 進(jìn)行模數(shù)轉(zhuǎn)換, 采集到的數(shù)據(jù)寫(xiě)入存儲(chǔ)器(M EM )。各個(gè) 采集通道采集的是同一信號(hào), 不過(guò)采樣 點(diǎn)依次相差90°相位。通過(guò)存儲(chǔ)器中的數(shù) 據(jù)重組, 可以使系統(tǒng)時(shí)鐘為80MHz 的采 集系統(tǒng)達(dá)到320MHz 數(shù)據(jù)采集率(如圖6 所示)。 3 總結(jié) 靈活地運(yùn)用時(shí)鐘分相技術(shù), 可以有效地用低頻時(shí)鐘實(shí)現(xiàn)相當(dāng)于高頻時(shí)鐘的時(shí)間性能, 并 避免了高速數(shù)字電路設(shè)計(jì)中一些問(wèn)題, 降低了系統(tǒng)設(shè)計(jì)的難度。

    標(biāo)簽: 時(shí)鐘 分相 技術(shù)應(yīng)用

    上傳時(shí)間: 2013-12-17

    上傳用戶:xg262122

  • PCB布線原則

    PCB 布線原則連線精簡(jiǎn)原則連線要精簡(jiǎn),盡可能短,盡量少拐彎,力求線條簡(jiǎn)單明了,特別是在高頻回路中,當(dāng)然為了達(dá)到阻抗匹配而需要進(jìn)行特殊延長(zhǎng)的線就例外了,例如蛇行走線等。安全載流原則銅線的寬度應(yīng)以自己所能承載的電流為基礎(chǔ)進(jìn)行設(shè)計(jì),銅線的載流能力取決于以下因素:線寬、線厚(銅鉑厚度)、允許溫升等,下表給出了銅導(dǎo)線的寬度和導(dǎo)線面積以及導(dǎo)電電流的關(guān)系(軍品標(biāo)準(zhǔn)),可以根據(jù)這個(gè)基本的關(guān)系對(duì)導(dǎo)線寬度進(jìn)行適當(dāng)?shù)目紤]。印制導(dǎo)線最大允許工作電流(導(dǎo)線厚50um,允許溫升10℃)導(dǎo)線寬度(Mil) 導(dǎo)線電流(A) 其中:K 為修正系數(shù),一般覆銅線在內(nèi)層時(shí)取0.024,在外層時(shí)取0.048;T 為最大溫升,單位為℃;A 為覆銅線的截面積,單位為mil(不是mm,注意);I 為允許的最大電流,單位是A。電磁抗干擾原則電磁抗干擾原則涉及的知識(shí)點(diǎn)比較多,例如銅膜線的拐彎處應(yīng)為圓角或斜角(因?yàn)楦哳l時(shí)直角或者尖角的拐彎會(huì)影響電氣性能)雙面板兩面的導(dǎo)線應(yīng)互相垂直、斜交或者彎曲走線,盡量避免平行走線,減小寄生耦合等。一、 通常一個(gè)電子系統(tǒng)中有各種不同的地線,如數(shù)字地、邏輯地、系統(tǒng)地、機(jī)殼地等,地線的設(shè)計(jì)原則如下:1、 正確的單點(diǎn)和多點(diǎn)接地在低頻電路中,信號(hào)的工作頻率小于1MHZ,它的布線和器件間的電感影響較小,而接地電路形成的環(huán)流對(duì)干擾影響較大,因而應(yīng)采用一點(diǎn)接地。當(dāng)信號(hào)工作頻率大于10MHZ 時(shí),如果采用一點(diǎn)接地,其地線的長(zhǎng)度不應(yīng)超過(guò)波長(zhǎng)的1/20,否則應(yīng)采用多點(diǎn)接地法。2、 數(shù)字地與模擬地分開(kāi)若線路板上既有邏輯電路又有線性電路,應(yīng)盡量使它們分開(kāi)。一般數(shù)字電路的抗干擾能力比較強(qiáng),例如TTL 電路的噪聲容限為0.4~0.6V,CMOS 電路的噪聲容限為電源電壓的0.3~0.45 倍,而模擬電路只要有很小的噪聲就足以使其工作不正常,所以這兩類(lèi)電路應(yīng)該分開(kāi)布局布線。3、 接地線應(yīng)盡量加粗若接地線用很細(xì)的線條,則接地電位會(huì)隨電流的變化而變化,使抗噪性能降低。因此應(yīng)將地線加粗,使它能通過(guò)三倍于印制板上的允許電流。如有可能,接地線應(yīng)在2~3mm 以上。4、 接地線構(gòu)成閉環(huán)路只由數(shù)字電路組成的印制板,其接地電路布成環(huán)路大多能提高抗噪聲能力。因?yàn)榄h(huán)形地線可以減小接地電阻,從而減小接地電位差。二、 配置退藕電容PCB 設(shè)計(jì)的常規(guī)做法之一是在印刷板的各個(gè)關(guān)鍵部位配置適當(dāng)?shù)耐伺弘娙荩伺弘娙莸囊话闩渲迷瓌t是:􀁺?電電源的輸入端跨½10~100uf的的電解電容器,如果印制電路板的位置允許,采Ó100uf以以上的電解電容器抗干擾效果會(huì)更好¡���?原原則上每個(gè)集成電路芯片都應(yīng)布置一¸0.01uf~`0.1uf的的瓷片電容,如遇印制板空隙不夠,可Ã4~8個(gè)個(gè)芯片布置一¸1~10uf的的鉭電容(最好不用電解電容,電解電容是兩層薄膜卷起來(lái)的,這種卷起來(lái)的結(jié)構(gòu)在高頻時(shí)表現(xiàn)為電感,最好使用鉭電容或聚碳酸醞電容)。���?對(duì)對(duì)于抗噪能力弱、關(guān)斷時(shí)電源變化大的器件,ÈRA、¡ROM存存儲(chǔ)器件,應(yīng)在芯片的電源線和地線之間直接接入退藕電容¡���?電電容引線不能太長(zhǎng),尤其是高頻旁路電容不能有引線¡三¡過(guò)過(guò)孔設(shè)¼在高ËPCB設(shè)設(shè)計(jì)中,看似簡(jiǎn)單的過(guò)孔也往往會(huì)給電路的設(shè)計(jì)帶來(lái)很大的負(fù)面效應(yīng),為了減小過(guò)孔的寄生效應(yīng)帶來(lái)的不利影響,在設(shè)計(jì)中可以盡量做到£���?從從成本和信號(hào)質(zhì)量?jī)煞矫鎭?lái)考慮,選擇合理尺寸的過(guò)孔大小。例如¶6- 10層層的內(nèi)存模¿PCB設(shè)設(shè)計(jì)來(lái)說(shuō),選Ó10/20mi((鉆¿焊焊盤(pán))的過(guò)孔較好,對(duì)于一些高密度的小尺寸的板子,也可以嘗試使Ó8/18Mil的的過(guò)孔。在目前技術(shù)條件下,很難使用更小尺寸的過(guò)孔了(當(dāng)孔的深度超過(guò)鉆孔直徑µ6倍倍時(shí),就無(wú)法保證孔壁能均勻鍍銅);對(duì)于電源或地線的過(guò)孔則可以考慮使用較大尺寸,以減小阻抗¡���?使使用較薄µPCB板板有利于減小過(guò)孔的兩種寄生參數(shù)¡���? PCB板板上的信號(hào)走線盡量不換層,即盡量不要使用不必要的過(guò)孔¡���?電電源和地的管腳要就近打過(guò)孔,過(guò)孔和管腳之間的引線越短越好¡���?在在信號(hào)換層的過(guò)孔附近放置一些接地的過(guò)孔,以便為信號(hào)提供最近的回路。甚至可以ÔPCB板板上大量放置一些多余的接地過(guò)孔¡四¡降降低噪聲與電磁干擾的一些經(jīng)Ñ?能能用低速芯片就不用高速的,高速芯片用在關(guān)鍵地方¡?可可用串一個(gè)電阻的方法,降低控制電路上下沿跳變速率¡?盡盡量為繼電器等提供某種形式的阻尼,ÈRC設(shè)設(shè)置電流阻尼¡?使使用滿足系統(tǒng)要求的最低頻率時(shí)鐘¡?時(shí)時(shí)鐘應(yīng)盡量靠近到用該時(shí)鐘的器件,石英晶體振蕩器的外殼要接地¡?用用地線將時(shí)鐘區(qū)圈起來(lái),時(shí)鐘線盡量短¡?石石英晶體下面以及對(duì)噪聲敏感的器件下面不要走線¡?時(shí)時(shí)鐘、總線、片選信號(hào)要遠(yuǎn)ÀI/O線線和接插件¡?時(shí)時(shí)鐘線垂直ÓI/O線線比平行ÓI/O線線干擾小¡? I/O驅(qū)驅(qū)動(dòng)電路盡量靠½PCB板板邊,讓其盡快離¿PC。。對(duì)進(jìn)ÈPCB的的信號(hào)要加濾波,從高噪聲區(qū)來(lái)的信號(hào)也要加濾波,同時(shí)用串終端電阻的辦法,減小信號(hào)反射¡? MCU無(wú)無(wú)用端要接高,或接地,或定義成輸出端,集成電路上該接電源、地的端都要接,不要懸空¡?閑閑置不用的門(mén)電路輸入端不要懸空,閑置不用的運(yùn)放正輸入端接地,負(fù)輸入端接輸出端¡?印印制板盡量使Ó45折折線而不Ó90折折線布線,以減小高頻信號(hào)對(duì)外的發(fā)射與耦合¡?印印制板按頻率和電流開(kāi)關(guān)特性分區(qū),噪聲元件與非噪聲元件呀距離再遠(yuǎn)一些¡?單單面板和雙面板用單點(diǎn)接電源和單點(diǎn)接地、電源線、地線盡量粗¡?模模擬電壓輸入線、參考電壓端要盡量遠(yuǎn)離數(shù)字電路信號(hào)線,特別是時(shí)鐘¡?對(duì)¶A/D類(lèi)類(lèi)器件,數(shù)字部分與模擬部分不要交叉¡?元元件引腳盡量短,去藕電容引腳盡量短¡?關(guān)關(guān)鍵的線要盡量粗,并在兩邊加上保護(hù)地,高速線要短要直¡?對(duì)對(duì)噪聲敏感的線不要與大電流,高速開(kāi)關(guān)線并行¡?弱弱信號(hào)電路,低頻電路周?chē)灰纬呻娏鳝h(huán)路¡?任任何信號(hào)都不要形成環(huán)路,如不可避免,讓環(huán)路區(qū)盡量小¡?每每個(gè)集成電路有一個(gè)去藕電容。每個(gè)電解電容邊上都要加一個(gè)小的高頻旁路電容¡?用用大容量的鉭電容或聚酷電容而不用電解電容做電路充放電儲(chǔ)能電容,使用管狀電容時(shí),外殼要接地¡?對(duì)對(duì)干擾十分敏感的信號(hào)線要設(shè)置包地,可以有效地抑制串?dāng)_¡?信信號(hào)在印刷板上傳輸,其延遲時(shí)間不應(yīng)大于所有器件的標(biāo)稱(chēng)延遲時(shí)間¡環(huán)境效應(yīng)原Ô要注意所應(yīng)用的環(huán)境,例如在一個(gè)振動(dòng)或者其他容易使板子變形的環(huán)境中采用過(guò)細(xì)的銅膜導(dǎo)線很容易起皮拉斷等¡安全工作原Ô要保證安全工作,例如要保證兩線最小間距要承受所加電壓峰值,高壓線應(yīng)圓滑,不得有尖銳的倒角,否則容易造成板路擊穿等。組裝方便、規(guī)范原則走線設(shè)計(jì)要考慮組裝是否方便,例如印制板上有大面積地線和電源線區(qū)時(shí)(面積超¹500平平方毫米),應(yīng)局部開(kāi)窗口以方便腐蝕等。此外還要考慮組裝規(guī)范設(shè)計(jì),例如元件的焊接點(diǎn)用焊盤(pán)來(lái)表示,這些焊盤(pán)(包括過(guò)孔)均會(huì)自動(dòng)不上阻焊油,但是如用填充塊當(dāng)表貼焊盤(pán)或用線段當(dāng)金手指插頭,而又不做特別處理,(在阻焊層畫(huà)出無(wú)阻焊油的區(qū)域),阻焊油將掩蓋這些焊盤(pán)和金手指,容易造成誤解性錯(cuò)誤£SMD器器件的引腳與大面積覆銅連接時(shí),要進(jìn)行熱隔離處理,一般是做一¸Track到到銅箔,以防止受熱不均造成的應(yīng)力集Ö而導(dǎo)致虛焊£PCB上上如果有¦12或或方Ð12mm以以上的過(guò)孔時(shí),必須做一個(gè)孔蓋,以防止焊錫流出等。經(jīng)濟(jì)原則遵循該原則要求設(shè)計(jì)者要對(duì)加工,組裝的工藝有足夠的認(rèn)識(shí)和了解,例È5mil的的線做腐蝕要±8mil難難,所以?xún)r(jià)格要高,過(guò)孔越小越貴等熱效應(yīng)原則在印制板設(shè)計(jì)時(shí)可考慮用以下幾種方法:均勻分布熱負(fù)載、給零件裝散熱器,局部或全局強(qiáng)迫風(fēng)冷。從有利于散熱的角度出發(fā),印制板最好是直立安裝,板與板的距離一般不應(yīng)小Ó2c,,而且器件在印制板上的排列方式應(yīng)遵循一定的規(guī)則£同一印制板上的器件應(yīng)盡可能按其發(fā)熱量大小及散熱程度分區(qū)排列,發(fā)熱量小或耐熱性差的器件(如小信號(hào)晶體管、小規(guī)模集³電路、電解電容等)放在冷卻氣流的最上(入口處),發(fā)熱量大或耐熱性好的器件(如功率晶體管、大規(guī)模集成電路等)放在冷卻Æ流最下。在水平方向上,大功率器件盡量靠近印刷板的邊沿布置,以便縮短傳熱路徑;在垂直方向上,大功率器件盡量靠近印刷板上方布置£以便減少這些器件在工作時(shí)對(duì)其他器件溫度的影響。對(duì)溫度比較敏感的器件最好安置在溫度最低的區(qū)域(如設(shè)備的µ部),千萬(wàn)不要將它放在發(fā)熱器件的正上方,多個(gè)器件最好是在水平面上交錯(cuò)布局¡設(shè)備內(nèi)印制板的散熱主要依靠空氣流動(dòng),所以在設(shè)計(jì)時(shí)要研究空氣流動(dòng)的路徑,合理配置器件或印制電路板。采用合理的器件排列方式,可以有效地降低印制電路的溫升。此外通過(guò)降額使用,做等溫處理等方法也是熱設(shè)計(jì)中經(jīng)常使用的手段¡

    標(biāo)簽: PCB 布線原則

    上傳時(shí)間: 2013-11-24

    上傳用戶:氣溫達(dá)上千萬(wàn)的

  • IC封裝製程簡(jiǎn)介(IC封裝制程簡(jiǎn)介)

    半導(dǎo)體的產(chǎn)品很多,應(yīng)用的場(chǎng)合非常廣泛,圖一是常見(jiàn)的幾種半導(dǎo)體元件外型。半導(dǎo)體元件一般是以接腳形式或外型來(lái)劃分類(lèi)別,圖一中不同類(lèi)別的英文縮寫(xiě)名稱(chēng)原文為   PDID:Plastic Dual Inline Package SOP:Small Outline Package SOJ:Small Outline J-Lead Package PLCC:Plastic Leaded Chip Carrier QFP:Quad Flat Package PGA:Pin Grid Array BGA:Ball Grid Array         雖然半導(dǎo)體元件的外型種類(lèi)很多,在電路板上常用的組裝方式有二種,一種是插入電路板的銲孔或腳座,如PDIP、PGA,另一種是貼附在電路板表面的銲墊上,如SOP、SOJ、PLCC、QFP、BGA。    從半導(dǎo)體元件的外觀,只看到從包覆的膠體或陶瓷中伸出的接腳,而半導(dǎo)體元件真正的的核心,是包覆在膠體或陶瓷內(nèi)一片非常小的晶片,透過(guò)伸出的接腳與外部做資訊傳輸。圖二是一片EPROM元件,從上方的玻璃窗可看到內(nèi)部的晶片,圖三是以顯微鏡將內(nèi)部的晶片放大,可以看到晶片以多條銲線連接四周的接腳,這些接腳向外延伸並穿出膠體,成為晶片與外界通訊的道路。請(qǐng)注意圖三中有一條銲線從中斷裂,那是使用不當(dāng)引發(fā)過(guò)電流而燒毀,致使晶片失去功能,這也是一般晶片遭到損毀而失效的原因之一。   圖四是常見(jiàn)的LED,也就是發(fā)光二極體,其內(nèi)部也是一顆晶片,圖五是以顯微鏡正視LED的頂端,可從透明的膠體中隱約的看到一片方型的晶片及一條金色的銲線,若以LED二支接腳的極性來(lái)做分別,晶片是貼附在負(fù)極的腳上,經(jīng)由銲線連接正極的腳。當(dāng)LED通過(guò)正向電流時(shí),晶片會(huì)發(fā)光而使LED發(fā)亮,如圖六所示。     半導(dǎo)體元件的製作分成兩段的製造程序,前一段是先製造元件的核心─晶片,稱(chēng)為晶圓製造;後一段是將晶中片加以封裝成最後產(chǎn)品,稱(chēng)為IC封裝製程,又可細(xì)分成晶圓切割、黏晶、銲線、封膠、印字、剪切成型等加工步驟,在本章節(jié)中將簡(jiǎn)介這兩段的製造程序。

    標(biāo)簽: 封裝 IC封裝 制程

    上傳時(shí)間: 2014-01-20

    上傳用戶:蒼山觀海

主站蜘蛛池模板: 义乌市| 扶绥县| 长顺县| 遵化市| 和顺县| 长宁县| 天峨县| 上林县| 易门县| 沈丘县| 泉州市| 新源县| 资源县| 弥渡县| 二手房| 皋兰县| 涞源县| 仙游县| 志丹县| 威信县| 和田县| 邻水| 镇巴县| 蒲江县| 应城市| 边坝县| 商洛市| 龙山县| 鄂伦春自治旗| 石阡县| 甘孜| 吴忠市| 曲沃县| 丹江口市| 红安县| 府谷县| 北宁市| 四平市| 林口县| 平罗县| 名山县|