甚短距離傳輸(VSR)是一種用于短距離(約300 m~600m)內(nèi)進(jìn)行數(shù)據(jù)傳輸?shù)墓鈧鬏敿夹g(shù).它主要應(yīng)用于網(wǎng)絡(luò)中的交換機(jī)、核心路由器(CR)、光交叉連接設(shè)備(OXC)、分插復(fù)用器(ADM)和波分復(fù)用(WDM)終端等不同層次設(shè)備之間的互連,具有構(gòu)建方便、性能穩(wěn)定和成本低等優(yōu)點(diǎn),是光通信技術(shù)發(fā)展的一個(gè)全新領(lǐng)域,逐漸成為國際通用的標(biāo)準(zhǔn)技術(shù),成為全光網(wǎng)的一個(gè)重要組成部分. 本文深入研究了VSR并行光傳輸系統(tǒng),完成了VSR技術(shù)的核心部分--轉(zhuǎn)換器子系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn),使用現(xiàn)場可編程陣列FPGA(Field Programmable GateArray)來完成轉(zhuǎn)換器電路的設(shè)計(jì)和功能實(shí)現(xiàn).深入研究現(xiàn)有VSR4-1.0和VSR4-3.0兩種并行傳輸標(biāo)準(zhǔn),在其技術(shù)原理的基礎(chǔ)上,提出新的VSR并行方案,提高了多模光纖帶的信道利用率,充分利用系統(tǒng)總吞吐量大的優(yōu)勢,為將來向更高速率升級(jí)提供了依據(jù).根據(jù)萬兆以太網(wǎng)的技術(shù)特點(diǎn)和傳輸要求,提出并設(shè)計(jì)了用VSR技術(shù)實(shí)現(xiàn)局域和廣域萬兆以太網(wǎng)在較短距離上的高速互連的系統(tǒng)方案,成功地將VSR技術(shù)移植到萬兆以太網(wǎng)上,實(shí)現(xiàn)低成本、構(gòu)建方便和性能穩(wěn)定的高速短距離傳輸. 本文所有的設(shè)計(jì)均在Altera Stratix GX系列FPGA的EP1SGX25F1020C7上實(shí)現(xiàn),采用Altera的Quartus Ⅱ開發(fā)工具和 Verilog HDL硬件描述語言完成了VSR4-1.0轉(zhuǎn)換器集成電路和萬兆以太網(wǎng)的SERDES的設(shè)計(jì)和仿真,并給出了各模塊的電路結(jié)構(gòu)和仿真結(jié)果.仿真的結(jié)果表明,所有的設(shè)計(jì)均能正確的實(shí)現(xiàn)各自的功能,完全能夠滿足10Gb/s高速并行傳輸系統(tǒng)的要求.
上傳時(shí)間: 2013-07-14
上傳用戶:han0097
康華光第五版模電答案,很全的啊,每個(gè)章節(jié)都有詳細(xì)的講解
標(biāo)簽: 模電
上傳時(shí)間: 2013-07-06
上傳用戶:qqiang2006
TLP521光耦和2sc2120三極管,IRF9140組成的驅(qū)動(dòng)電路
上傳時(shí)間: 2013-07-07
上傳用戶:西伯利亞
光纖布拉格光柵(Fiber Bragg Grating)傳感器是近幾年光纖傳感技術(shù)領(lǐng)域的研究熱點(diǎn),光纖光柵傳感器可以工作在強(qiáng)電磁場、高溫有腐蝕性的以及有爆炸危險(xiǎn)性的惡劣環(huán)境中,且易于將多個(gè)光纖光柵串聯(lián)在一起構(gòu)成光纖光柵陣列,實(shí)現(xiàn)分布式傳感,這是其他傳感元件所不及的。 本文設(shè)計(jì)了光纖光柵傳感網(wǎng)絡(luò)可調(diào)諧法布里-珀羅(Fabry-Perot)腔解調(diào)測試系統(tǒng)。系統(tǒng)主要分光路和電路兩部分,在光路部分,研究了光纖光柵解調(diào)技術(shù),分析和比較了幾種常見的波長解調(diào)方法,由于F-P腔調(diào)諧范圍寬,可以實(shí)現(xiàn)多點(diǎn)測量,因此決定采用可調(diào)諧F.P腔法進(jìn)行信號(hào)解調(diào)。對(duì)可調(diào)諧 F-P腔解調(diào)法做了理論分析和研究,并通過Matlab仿真對(duì)影響F-P濾波效果的腔長和反射率兩個(gè)參數(shù)進(jìn)行了優(yōu)化設(shè)計(jì)。在電路部分,首先設(shè)計(jì)整形電路將光電探測器的輸出信號(hào)整形成矩形脈沖信號(hào),設(shè)計(jì)了計(jì)算中心波長的方法,最后搭建了硬件電路來驗(yàn)證中心波長的計(jì)算方法。硬件電路以 Philips公司的 LPC2214 為核心處理器。該硬件電路包括電源電路,復(fù)位電路,串口電路,JTAG 調(diào)試接口,數(shù)碼管顯示等。軟件方面,設(shè)計(jì)了相關(guān)的軟件程序和模擬信號(hào)源,最后利用模擬信號(hào)源作為該解調(diào)測試系統(tǒng)的信號(hào)進(jìn)行實(shí)驗(yàn)驗(yàn)證,得出實(shí)驗(yàn)數(shù)據(jù),經(jīng)過分析驗(yàn)證了該解調(diào)測試系統(tǒng)的可行性。
標(biāo)簽: ARM 光纖光柵 傳感網(wǎng)絡(luò) 解調(diào)器
上傳時(shí)間: 2013-05-26
上傳用戶:hooooor
LED照明已確然成為一項(xiàng)主流技術(shù)。該項(xiàng)技術(shù)正日臻成熟,標(biāo)志之一就是大量LED照明標(biāo)準(zhǔn)和規(guī)范的陸續(xù)出臺(tái)。嚴(yán)格的效率要求已存在相當(dāng)一段時(shí)間了,今后仍將不斷提高。但近段時(shí)間,LED照明設(shè)計(jì)師的工作卻更為棘手了,因?yàn)橐瑫r(shí)滿足以下兩項(xiàng)要求:既要用針對(duì)白熾燈的調(diào)光器來實(shí)現(xiàn)調(diào)光控制功能,又要實(shí)現(xiàn)高功率因數(shù)性能。
標(biāo)簽: LED 照明應(yīng)用 無閃爍調(diào)光
上傳時(shí)間: 2013-05-27
上傳用戶:cknck
近年來提出的光突發(fā)交換OBS(Optical.Burst Switching)技術(shù),結(jié)合了光路交換(OCS)與光分組交換(OPS)的優(yōu)點(diǎn),有效支持高突發(fā)、高速率的多種業(yè)務(wù),成為目前研究的熱點(diǎn)和前沿。 本論文圍繞國家“863”計(jì)劃資助課題“光突發(fā)交換關(guān)鍵技術(shù)和試驗(yàn)系統(tǒng)”,主要涉及兩個(gè)方面:LOBS邊緣節(jié)點(diǎn)核心板和光板FPGA的實(shí)現(xiàn)方案,重點(diǎn)關(guān)注于邊緣節(jié)點(diǎn)核心板突發(fā)包組裝算法。 本文第一章首先介紹LOBS網(wǎng)絡(luò)的背景、架構(gòu),分析了LOBS網(wǎng)絡(luò)的關(guān)鍵技術(shù),然后介紹了本論文后續(xù)章節(jié)研究的主要內(nèi)容。 第二章介紹了LOBS邊緣節(jié)點(diǎn)的總體結(jié)構(gòu),主要由核心板和光板組成。核心板包括千兆以太網(wǎng)物理層接入芯片,突發(fā)包組裝FPGA,突發(fā)包調(diào)度FPGA,SDRAM以及背板驅(qū)動(dòng)芯片($2064)等硬件模塊。光板包括$2064,發(fā)射FPGA,接收FPGA,光發(fā)射機(jī),光接收機(jī),CDR等硬件模塊。論文對(duì)這些軟硬件資源進(jìn)行了詳細(xì)介紹,重點(diǎn)關(guān)注于各FPGA與其余硬件資源的接口。 第三章闡明了LOBS邊緣節(jié)點(diǎn)FPGA的具體實(shí)現(xiàn)方法,分為核心板突發(fā)包組裝FPGA和光板FPGA兩部分。核心板FPGA對(duì)數(shù)據(jù)和描述信息分別存儲(chǔ),僅對(duì)描述信息進(jìn)行處理,提高了組裝效率。在維護(hù)突發(fā)包信息時(shí),實(shí)時(shí)查詢和更新FEC配置表,保證了對(duì)FEE狀態(tài)表維護(hù)的靈活性。在讀寫SDRAM時(shí)都采用整頁突發(fā)讀寫模式,對(duì)MAC幀整幀一次性寫入,讀取時(shí)采用超前預(yù)讀模式,對(duì)SDRAM內(nèi)存的使用采取即時(shí)申請方式,十分靈活高效。光板FPGA分為發(fā)射和接收兩個(gè)方向,主要是將進(jìn)入FPGA的數(shù)據(jù)進(jìn)行同步后按照指定的格式發(fā)送。 第四章總結(jié)了論文的主要內(nèi)容,并對(duì)LOBS技術(shù)進(jìn)行展望。本論文組幀算法采用動(dòng)態(tài)組裝參數(shù)表的方法,可以充分支持各種擴(kuò)展,包括自適應(yīng)動(dòng)態(tài)組裝算法。
標(biāo)簽: LOBS FPGA 節(jié)點(diǎn)
上傳時(shí)間: 2013-05-26
上傳用戶:AbuGe
偏振模色散(PMD)是限制光通信系統(tǒng)向高速率和大容量擴(kuò)展的主要障礙,尤其是160Gb/s光傳輸系統(tǒng)中,由PMD引起的脈沖畸變現(xiàn)象更加嚴(yán)重。為了克服PMD帶來的危害,國內(nèi)外已經(jīng)開始了對(duì)PMD補(bǔ)償?shù)难芯?。但是目前的補(bǔ)償系統(tǒng)復(fù)雜、成本高且補(bǔ)償效果不理想,因此采用前向糾錯(cuò)(FEC)和偏振擾偏器配合抑制PMD的方法,可以實(shí)現(xiàn)低成本的PMD補(bǔ)償。 在實(shí)驗(yàn)中將擾偏器連入光時(shí)分復(fù)用系統(tǒng),通過觀察其工作前后的脈沖波形,發(fā)現(xiàn)擾偏器的應(yīng)用改善了系統(tǒng)的性能。隨著系統(tǒng)速率的提高,對(duì)擾偏器速率的要求也隨之提高,目前市場上擾偏器的速率無法滿足160Gb/s光傳輸系統(tǒng)要求。通過對(duì)偏振擾偏器原理的分析,決定采用高速控制電路驅(qū)動(dòng)偏振控制器的方法來實(shí)現(xiàn)高速擾偏器的設(shè)計(jì)。擾偏器采用鈮酸鋰偏振控制器,其響應(yīng)時(shí)間小于100ns,是目前偏振控制器能夠達(dá)到的最高速率,但是將其用于160Gb/s高速光通信系統(tǒng)擾偏時(shí),這個(gè)速率仍然偏低,因此,提出采用多段鈮酸鋰晶體并行擾偏的方法,彌補(bǔ)鈮酸鋰偏振控制器速率低的問題。通過對(duì)幾種處理器的分析和比較,選擇DSP+FPGA作為控制端,DSP芯片用于產(chǎn)生隨機(jī)數(shù)據(jù),F(xiàn)PGA芯片具有豐富的I/O引腳,工作頻率高,可以實(shí)現(xiàn)大量數(shù)據(jù)的快速并行輸出。這樣的方案可以充分發(fā)揮DSP和FPGA各自的優(yōu)勢。另外對(duì)數(shù)模轉(zhuǎn)換芯片也要求響應(yīng)速度快,本論文以FPGA為核心,完成了FPGA與其它芯片的接口電路設(shè)計(jì)。在QuartusⅡ集成環(huán)境中進(jìn)行FPGA的開發(fā),使用VHDL語言和原理圖輸入法進(jìn)行電路設(shè)計(jì)。 本文設(shè)計(jì)的偏振擾偏器在高速控制電路的驅(qū)動(dòng)下,可以實(shí)現(xiàn)大量的數(shù)據(jù)處理,采用多段鈮酸鋰晶體并行工作的方法,可以提高偏振擾偏器的速率。利用本方案制作的擾偏器具有高擾偏速率,適合應(yīng)用于160Gb/s光通信系統(tǒng)中進(jìn)行PMD補(bǔ)償。
上傳時(shí)間: 2013-04-24
上傳用戶:suxuan110425
常用有源晶振封裝尺寸及實(shí)物圖.應(yīng)該能幫助一些人吧?。?/p>
上傳時(shí)間: 2013-06-11
上傳用戶:lanwei
隨著計(jì)算機(jī)技術(shù)的發(fā)展,機(jī)器視覺在工農(nóng)業(yè)生產(chǎn)和國防等領(lǐng)域已得到成功的應(yīng)用,利用機(jī)器視覺進(jìn)行檢測更是其典型應(yīng)用。根據(jù)運(yùn)行環(huán)境的不同,機(jī)器視覺系統(tǒng)可分為PC-BASED系統(tǒng)和PLC-BASED系統(tǒng)。由于這兩種系統(tǒng)成本都相對(duì)較高、軟硬件系統(tǒng)相對(duì)復(fù)雜、體積相對(duì)較大,因此,在應(yīng)用中受到一定的限制。嵌入式系統(tǒng)是當(dāng)前發(fā)展迅速的熱門技術(shù),具有體積小、價(jià)格低、開發(fā)環(huán)境簡單、運(yùn)用靈活、現(xiàn)場運(yùn)行可靠等優(yōu)點(diǎn)。因此,將機(jī)器視覺技術(shù)建立在嵌入式系統(tǒng)平臺(tái)上不僅是機(jī)器視覺的發(fā)展趨勢,同時(shí)也實(shí)現(xiàn)了兩者的優(yōu)勢互補(bǔ)。 在現(xiàn)代工程領(lǐng)域,常常需要檢測各種振動(dòng)。相對(duì)傳統(tǒng)方法而言,視覺測振技術(shù)具有明顯優(yōu)點(diǎn)。本文主要研究了在ARM平臺(tái)上利用機(jī)器視覺技術(shù)進(jìn)行振動(dòng)檢測的相關(guān)技術(shù)及方法。 根據(jù)嵌入式機(jī)器視覺系統(tǒng)的特點(diǎn),本文分析了攝像系統(tǒng)標(biāo)定的方法,建立空間物體的實(shí)際位置與圖像上點(diǎn)的對(duì)應(yīng)關(guān)系,并改進(jìn)數(shù)據(jù)處理的方法,提高標(biāo)定的精度。分析了目前常用的圖像處理方法,根據(jù)系統(tǒng)平臺(tái)實(shí)際工作能力,設(shè)計(jì)了有針對(duì)性的處理算法,提高圖像處理的效率;為了方便對(duì)被測對(duì)象的識(shí)別和跟蹤,采用基于顏色閾值的分割技術(shù),從而有效地降低了對(duì)系統(tǒng)測量環(huán)境、光照條件等的要求,提高了系統(tǒng)的適應(yīng)性。 本文以二維振動(dòng)物體為被測對(duì)象,利用機(jī)器視覺技術(shù),對(duì)低頻小振幅的二維振動(dòng)進(jìn)行了檢測,并對(duì)振動(dòng)信號(hào)進(jìn)行分析。實(shí)驗(yàn)證明利用視覺技術(shù)檢測振動(dòng)的可行性和可靠性。
上傳時(shí)間: 2013-04-24
上傳用戶:daoxiang126
隨著集成電路頻率的提高和多核時(shí)代的到來,傳統(tǒng)的高速電互連技術(shù)面臨著越來越嚴(yán)重的瓶頸問題,而高速下的光互連具有電互連無法比擬的優(yōu)勢,成為未來電互連的理想替代者,也成為科學(xué)研究的熱點(diǎn)問題。目前,由OIF(Optical Intemetworking Forum,光網(wǎng)絡(luò)論壇)論壇提出的甚短距離光互連協(xié)議,主要面向主干網(wǎng),其延遲、功耗、兼容性等都不能滿足板間、芯片間光互連的需要,因此,研究定制一種適用于板級(jí)、芯片級(jí)的光互連協(xié)議具有非常重要的研究意義。 本論文將協(xié)議功能分為數(shù)據(jù)鏈路層和物理層來設(shè)計(jì),鏈路層功能包括了協(xié)議原語設(shè)計(jì),數(shù)據(jù)幀格式和數(shù)據(jù)傳輸流程設(shè)計(jì),流量控制機(jī)制設(shè)計(jì),協(xié)議通道初始化設(shè)計(jì),錯(cuò)誤檢測機(jī)制設(shè)計(jì)和空閑字符產(chǎn)生、時(shí)鐘補(bǔ)償方式設(shè)計(jì);物理層功能包含了數(shù)據(jù)的串化和解串功能,多通道情況下的綁定功能,數(shù)據(jù)編解碼功能等。 然后,文章采用FPGA(Field Programmable Gate Array,現(xiàn)場可編程門陣列)技術(shù)實(shí)現(xiàn)了定制協(xié)議的單通道模式。重點(diǎn)是數(shù)據(jù)鏈路層的實(shí)現(xiàn),物理層采用定制具備其功能的IP(Intellectual Property,知識(shí)產(chǎn)權(quán))——RocketIO來實(shí)現(xiàn)。實(shí)現(xiàn)的過程中,采用了Xilinx公司的ISE(Integrated System Environment,集成開發(fā)環(huán)境)開發(fā)流程,使用的設(shè)計(jì)工具包括:ISE,ModelSim,Synplify Pro,ChipScope等。 最后,本文對(duì)實(shí)現(xiàn)的協(xié)議進(jìn)行了軟件仿真和上扳測試,訪真和測試結(jié)果表明,實(shí)現(xiàn)的單通道模式,支持的最高串行頻率達(dá)到3.5GHz,完全滿足了光互連驗(yàn)證系統(tǒng)初期的要求,同時(shí)由RocketIO的高速串行差分口得到的眼圖質(zhì)量良好,表明對(duì)物理層IP的定制是成功的。
標(biāo)簽: FPGA 板級(jí) 光互連 協(xié)議研究
上傳時(shí)間: 2013-06-28
上傳用戶:guh000
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1