隨著數(shù)字時代的到來,信息化程度的不斷提高,人們相互之間的信息和數(shù)據(jù)交換日益增加。正交幅度調(diào)制器(QAM Modulator)作為一種高頻譜利用率的數(shù)字調(diào)制方式,在數(shù)字電視廣播、固定寬帶無線接入、衛(wèi)星通信、數(shù)字微波傳輸?shù)葘拵ㄐ蓬I(lǐng)域得到了廣泛應(yīng)用。 近年來,集成電路和數(shù)字通信技術(shù)飛速發(fā)展,F(xiàn)PGA作為集成度高、使用方便、代碼可移植性等優(yōu)點的通用邏輯開發(fā)芯片,在電子設(shè)計行業(yè)深受歡迎,市場占有率不斷攀升。本文研究基于FPGA與AD9857實現(xiàn)四路QAM調(diào)制的全過程。FPGA實現(xiàn)信源處理、信道編碼輸出四路基帶I/Q信號,AD9857實現(xiàn)對四路I/Q信號的調(diào)制,輸出中頻信號。本文具體內(nèi)容總結(jié)如下: 1.介紹國內(nèi)數(shù)字電視發(fā)展?fàn)顩r、國內(nèi)國際的數(shù)字電視標(biāo)準(zhǔn),并詳細(xì)介紹國內(nèi)有線電視的系統(tǒng)組成及QAM調(diào)制器的發(fā)展過程。 2.研究了QAM調(diào)制原理,其中包括信源編碼、TS流標(biāo)準(zhǔn)格式轉(zhuǎn)換、信道編碼的原理及AD9857的工作原理等。并著重研究了信道編碼過程,包括能量擴(kuò)散、RS編碼、數(shù)據(jù)交織、星座映射與差分編碼等。 3.深入研究了基于FPAG與AD9857電路設(shè)計,其中包括詳細(xì)研究了FPGA與AD9857的電路設(shè)計、在allegro下的PCB設(shè)計及光繪文件的制作,并做成成品。 4.簡單介紹了FPGA的開發(fā)流程。 5.深入研究了基于FPAG代碼開發(fā),其中主要包括I2C接口實現(xiàn),ASI到SPI的轉(zhuǎn)換,信道編碼中的TS流包處理、能量擴(kuò)散、RS編碼、數(shù)據(jù)交織、星座映射與差分編碼的實現(xiàn)及AD9857的FPGA控制使其實現(xiàn)四路QAM的調(diào)制。 6.介紹代碼測試、電路測試及系統(tǒng)指標(biāo)測試。 最終系統(tǒng)指標(biāo)測試表明基于FPGA與AD9857的四路DVB-C調(diào)制器基本達(dá)到了國標(biāo)的要求。
上傳時間: 2013-07-05
上傳用戶:leehom61
本文將高效數(shù)字調(diào)制方式QAM和軟件無線電技術(shù)相結(jié)合,在大規(guī)模可編程邏輯器件FPGA上對16QAM算法實現(xiàn)。在當(dāng)今頻譜資源日趨緊缺的情況下有很大現(xiàn)實意義。 論文對16QAM軟件實現(xiàn)的基礎(chǔ)理論,帶通采樣理論、變速率數(shù)字信號處理相關(guān)抽取內(nèi)插技術(shù)做了推導(dǎo)和分析;深入研究了軟件無線電核心技術(shù)數(shù)字下變頻原理和其實現(xiàn)結(jié)構(gòu);對CIC、半帶等高效數(shù)字濾波器原理結(jié)構(gòu)和性能作了研究;16QAM調(diào)制和解調(diào)系統(tǒng)設(shè)計采用自項向下設(shè)計思想;采用硬件描述語言VerilogHDL在EDA工具QuartusII環(huán)境下實現(xiàn)代碼輸入;對系統(tǒng)調(diào)試采用了算法仿真和在系統(tǒng)實測調(diào)試相結(jié)合方法。 論文首先對16QAM調(diào)制解調(diào)算法進(jìn)行系統(tǒng)級仿真,并對實現(xiàn)的各模塊的可行性仿真驗證,在此基礎(chǔ)上,完成了調(diào)制端16QAM信號的時鐘分頻模塊、串并轉(zhuǎn)換模塊、星座映射、8倍零值內(nèi)插、低通濾波以及FPGA和AD9857接口等模塊;解調(diào)器主要完成帶通采樣、16倍CIC抽取濾波,升余弦滾降濾波,以及16QAM解碼等模塊,實現(xiàn)了16QAM調(diào)制器;給出了中頻信號時域測試波形和頻譜圖。本系統(tǒng)在200KHz帶寬下實現(xiàn)了512Kbps的高速數(shù)據(jù)數(shù)率傳輸。論文還對增強(qiáng)型數(shù)字鎖相環(huán)EPLL的實現(xiàn)結(jié)構(gòu)進(jìn)行了研究和性能分析。
標(biāo)簽: FPGA QAM 16 調(diào)制
上傳時間: 2013-07-29
上傳用戶:hwl453472107
·【內(nèi)容簡介】本書是中國電子學(xué)會敏感技術(shù)分會、北京電子學(xué)會和北京電子商會傳感器分會年卷編委會編寫的出版物,每年一卷。本卷分三部分,第1部分介紹傳感器與敏感元器件國家標(biāo)準(zhǔn);第2部分介紹傳感器、變送器和執(zhí)行器產(chǎn)品;第3部分介紹研究、生產(chǎn)和銷售這些產(chǎn)品的技術(shù)支持。 本書是選用傳感器與執(zhí)行器的必備手冊,可供傳感器與執(zhí)行器生產(chǎn)、研制和應(yīng)用的廠商及科技工作者閱讀,也可供高等院校有關(guān)專業(yè)的師生參考。 【目錄信息】
上傳時間: 2013-06-02
上傳用戶:txfyddz
PIC單片機(jī)定時器初值計算器,通過選擇分頻值,定時時間,自動計算出定時器初值
標(biāo)簽: PIC 單片機(jī)定時器 初值計算器
上傳時間: 2013-06-02
上傳用戶:mdrd3081
本文:采用了FPGA方法來模擬高動態(tài)(Global Position System GPS)信號源中的C/A碼產(chǎn)生器。C/A碼在GPS中實現(xiàn)分址、衛(wèi)星信號粗捕和精碼(P碼)引導(dǎo)捕獲起著重要的作用,通過硬件描述語言VERILOG在ISE中實現(xiàn)電路生成,采用MODELSIM、SYNPLIFY工具分別進(jìn)行仿真和綜合。
上傳時間: 2013-08-31
上傳用戶:pwcsoft
摘要: 介紹了時鐘分相技術(shù)并討論了時鐘分相技術(shù)在高速數(shù)字電路設(shè)計中的作用。 關(guān)鍵詞: 時鐘分相技術(shù); 應(yīng)用 中圖分類號: TN 79 文獻(xiàn)標(biāo)識碼:A 文章編號: 025820934 (2000) 0620437203 時鐘是高速數(shù)字電路設(shè)計的關(guān)鍵技術(shù)之一, 系統(tǒng)時鐘的性能好壞, 直接影響了整個電路的 性能。尤其現(xiàn)代電子系統(tǒng)對性能的越來越高的要求, 迫使我們集中更多的注意力在更高頻率、 更高精度的時鐘設(shè)計上面。但隨著系統(tǒng)時鐘頻率的升高。我們的系統(tǒng)設(shè)計將面臨一系列的問 題。 1) 時鐘的快速電平切換將給電路帶來的串?dāng)_(Crosstalk) 和其他的噪聲。 2) 高速的時鐘對電路板的設(shè)計提出了更高的要求: 我們應(yīng)引入傳輸線(T ransm ission L ine) 模型, 并在信號的匹配上有更多的考慮。 3) 在系統(tǒng)時鐘高于100MHz 的情況下, 應(yīng)使用高速芯片來達(dá)到所需的速度, 如ECL 芯 片, 但這種芯片一般功耗很大, 再加上匹配電阻增加的功耗, 使整個系統(tǒng)所需要的電流增大, 發(fā) 熱量增多, 對系統(tǒng)的穩(wěn)定性和集成度有不利的影響。 4) 高頻時鐘相應(yīng)的電磁輻射(EM I) 比較嚴(yán)重。 所以在高速數(shù)字系統(tǒng)設(shè)計中對高頻時鐘信號的處理應(yīng)格外慎重, 盡量減少電路中高頻信 號的成分, 這里介紹一種很好的解決方法, 即利用時鐘分相技術(shù), 以低頻的時鐘實現(xiàn)高頻的處 理。 1 時鐘分相技術(shù) 我們知道, 時鐘信號的一個周期按相位來分, 可以分為360°。所謂時鐘分相技術(shù), 就是把 時鐘周期的多個相位都加以利用, 以達(dá)到更高的時間分辨。在通常的設(shè)計中, 我們只用到時鐘 的上升沿(0 相位) , 如果把時鐘的下降沿(180°相位) 也加以利用, 系統(tǒng)的時間分辨能力就可以 提高一倍(如圖1a 所示)。同理, 將時鐘分為4 個相位(0°、90°、180°和270°) , 系統(tǒng)的時間分辨就 可以提高為原來的4 倍(如圖1b 所示)。 以前也有人嘗試過用專門的延遲線或邏輯門延時來達(dá)到時鐘分相的目的。用這種方法產(chǎn)生的相位差不夠準(zhǔn)確, 而且引起的時間偏移(Skew ) 和抖動 (J itters) 比較大, 無法實現(xiàn)高精度的時間分辨。 近年來半導(dǎo)體技術(shù)的發(fā)展, 使高質(zhì)量的分相功能在一 片芯片內(nèi)實現(xiàn)成為可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能優(yōu)異的時鐘 芯片。這些芯片的出現(xiàn), 大大促進(jìn)了時鐘分相技術(shù)在實際電 路中的應(yīng)用。我們在這方面作了一些嘗試性的工作: 要獲得 良好的時間性能, 必須確保分相時鐘的Skew 和J itters 都 比較小。因此在我們的設(shè)計中, 通常用一個低頻、高精度的 晶體作為時鐘源, 將這個低頻時鐘通過一個鎖相環(huán)(PLL ) , 獲得一個較高頻率的、比較純凈的時鐘, 對這個時鐘進(jìn)行分相, 就可獲得高穩(wěn)定、低抖動的分 相時鐘。 這部分電路在實際運用中獲得了很好的效果。下面以應(yīng)用的實例加以說明。2 應(yīng)用實例 2. 1 應(yīng)用在接入網(wǎng)中 在通訊系統(tǒng)中, 由于要減少傳輸 上的硬件開銷, 一般以串行模式傳輸 圖3 時鐘分為4 個相位 數(shù)據(jù), 與其同步的時鐘信號并不傳輸。 但本地接收到數(shù)據(jù)時, 為了準(zhǔn)確地獲取 數(shù)據(jù), 必須得到數(shù)據(jù)時鐘, 即要獲取與數(shù) 據(jù)同步的時鐘信號。在接入網(wǎng)中, 數(shù)據(jù)傳 輸?shù)慕Y(jié)構(gòu)如圖2 所示。 數(shù)據(jù)以68MBös 的速率傳輸, 即每 個bit 占有14. 7ns 的寬度, 在每個數(shù)據(jù) 幀的開頭有一個用于同步檢測的頭部信息。我們要找到與它同步性好的時鐘信號, 一般時間 分辨應(yīng)該達(dá)到1ö4 的時鐘周期。即14. 7ö 4≈ 3. 7ns, 這就是說, 系統(tǒng)時鐘頻率應(yīng)在300MHz 以 上, 在這種頻率下, 我們必須使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型門延遲為340p s) , 如前所述, 這樣對整個系統(tǒng)設(shè)計帶來很多的困擾。 我們在這里使用鎖相環(huán)和時鐘分相技術(shù), 將一個16MHz 晶振作為時鐘源, 經(jīng)過鎖相環(huán) 89429 升頻得到68MHz 的時鐘, 再經(jīng)過分相芯片AMCCS4405 分成4 個相位, 如圖3 所示。 我們只要從4 個相位的68MHz 時鐘中選擇出與數(shù)據(jù)同步性最好的一個。選擇的依據(jù)是: 在每個數(shù)據(jù)幀的頭部(HEAD) 都有一個8bit 的KWD (KeyWord) (如圖1 所示) , 我們分別用 這4 個相位的時鐘去鎖存數(shù)據(jù), 如果經(jīng)某個時鐘鎖存后的數(shù)據(jù)在這個指定位置最先檢測出這 個KWD, 就認(rèn)為下一相位的時鐘與數(shù)據(jù)的同步性最好(相關(guān))。 根據(jù)這個判別原理, 我們設(shè)計了圖4 所示的時鐘分相選擇電路。 在板上通過鎖相環(huán)89429 和分相芯片S4405 獲得我們所要的68MHz 4 相時鐘: 用這4 個 時鐘分別將輸入數(shù)據(jù)進(jìn)行移位, 將移位的數(shù)據(jù)與KWD 作比較, 若至少有7bit 符合, 則認(rèn)為檢 出了KWD。將4 路相關(guān)器的結(jié)果經(jīng)過優(yōu)先判選控制邏輯, 即可輸出同步性最好的時鐘。這里, 我們運用AMCC 公司生產(chǎn)的 S4405 芯片, 對68MHz 的時鐘進(jìn)行了4 分 相, 成功地實現(xiàn)了同步時鐘的獲取, 這部分 電路目前已實際地應(yīng)用在某通訊系統(tǒng)的接 入網(wǎng)中。 2. 2 高速數(shù)據(jù)采集系統(tǒng)中的應(yīng)用 高速、高精度的模擬- 數(shù)字變換 (ADC) 一直是高速數(shù)據(jù)采集系統(tǒng)的關(guān)鍵部 分。高速的ADC 價格昂貴, 而且系統(tǒng)設(shè)計 難度很高。以前就有人考慮使用多個低速 圖5 分相技術(shù)應(yīng)用于采集系統(tǒng) ADC 和時鐘分相, 用以替代高速的ADC, 但由 于時鐘分相電路產(chǎn)生的相位不準(zhǔn)確, 時鐘的 J itters 和Skew 比較大(如前述) , 容易產(chǎn)生較 大的孔徑晃動(Aperture J itters) , 無法達(dá)到很 好的時間分辨。 現(xiàn)在使用時鐘分相芯片, 我們可以把分相 技術(shù)應(yīng)用在高速數(shù)據(jù)采集系統(tǒng)中: 以4 分相后 圖6 分相技術(shù)提高系統(tǒng)的數(shù)據(jù)采集率 的80MHz 采樣時鐘分別作為ADC 的 轉(zhuǎn)換時鐘, 對模擬信號進(jìn)行采樣, 如圖5 所示。 在每一采集通道中, 輸入信號經(jīng)過 緩沖、調(diào)理, 送入ADC 進(jìn)行模數(shù)轉(zhuǎn)換, 采集到的數(shù)據(jù)寫入存儲器(M EM )。各個 采集通道采集的是同一信號, 不過采樣 點依次相差90°相位。通過存儲器中的數(shù) 據(jù)重組, 可以使系統(tǒng)時鐘為80MHz 的采 集系統(tǒng)達(dá)到320MHz 數(shù)據(jù)采集率(如圖6 所示)。 3 總結(jié) 靈活地運用時鐘分相技術(shù), 可以有效地用低頻時鐘實現(xiàn)相當(dāng)于高頻時鐘的時間性能, 并 避免了高速數(shù)字電路設(shè)計中一些問題, 降低了系統(tǒng)設(shè)計的難度。
標(biāo)簽: 時鐘 分相 技術(shù)應(yīng)用
上傳時間: 2013-12-17
上傳用戶:xg262122
凌力爾特公司提供了一個規(guī)模龐大且不斷成長的高電壓 DC/DC 轉(zhuǎn)換器繫列,這些器件是專為驅(qū)動高功率 LED 而設(shè)計的。
標(biāo)簽: LED 高電壓 降壓型轉(zhuǎn)換器 驅(qū)動高功率
上傳時間: 2013-11-12
上傳用戶:playboys0
對於許多電子子繫統(tǒng)而言,比如:VFD (真空熒光顯示屏)、TFT-LCD、GPS 或 DSL 應(yīng)用,僅采用一個簡單的降壓或升壓型 DC/DC 轉(zhuǎn)換器並不能滿足其要求
上傳時間: 2014-12-24
上傳用戶:nostopper
LT®3837 從一個 4.5V 至 20V 輸入獲取工作電壓,但可通過采用一個 VCC 穩(wěn)壓器和 / 或變壓器上的一個偏壓繞組使該轉(zhuǎn)換器的輸入範(fàn)圍向上擴(kuò)展。
標(biāo)簽: DCDC 反激式控制器 輸入電壓 轉(zhuǎn)換器
上傳時間: 2013-11-01
上傳用戶:
對於輸出電壓處於輸入電壓範(fàn)圍之內(nèi) (這在鋰離子電池供電型應(yīng)用中是一種很常見的情形) 的 DC/DC 轉(zhuǎn)換器設(shè)計,可供采用的傳統(tǒng)解決方案雖有不少,但迄今為止都不能令人非常滿意
上傳時間: 2013-11-19
上傳用戶:urgdil
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1