The makers of handheld medical, industrial and consumerdevices use a wide variety of high resolution, small tomedium sized color TFT LCD displays. The power supplydesigners for these displays must contend with shrinkingboard area, tight schedules, and variations in displaytypes and feature requirements. The LTC®3524 simplifi esthe designer’s job by combining a versatile, easily programmed,TFT LCD bias supply and white LED backlightdriver in a low profi le 4mm × 4mm QFN package.
Avalanche photo diode (APD) receiver modules arewidely used in fi ber optic communication systems. AnAPD module contains the APD and a signal conditioningamplifi er, but is not completely self contained. It stillrequires signifi cant support circuitry including a highvoltage, low noise power supply and a precision currentmonitor to indicate the signal strength. The challenge issqueezing this support circuitry into applications withlimited board space. The LT®3482 addresses this challengeby integrating a monolithic DC/DC step-up converter andan accurate current monitor. The LT3482 can supportup to a 90V APD bias voltage, and the current monitorprovides better than 10% accuracy over four decades ofdynamic range (250nA to 2.5mA).
High voltage buck DC/DC controllers such as the LTC3890(dual output) and LTC3891 (single output) are popular inautomotive applications due to their extremely wide 4V to60V input voltage range, eliminating the need for a snubberand voltage suppression circuitry. These controllersare also well suited for 48V telecom applications whereno galvanic isolation is required.
Avalanche photodiodes (APDs) are widely utilized in laserbased fiberoptic systems to convert optical data intoelectrical form. The APD is usually packaged with a signalconditioning amplifier in a small module. An APD receivermodule and attendant circuitry appears in Figure 1. TheAPD module (figure right) contains the APD and a transimpedance(e.g., current-to-voltage) amplifier. An opticalport permits interfacing fiberoptic cable to the APD’sphotosensitive portion. The module’s compact constructionfacilitates a direct, low loss connection between theAPD and the amplifier, necessary because of the extremelyhigh speed data rates involved
Telecommunication, satellite links and set-top boxes allrequire tuning a high frequency oscillator. The actualtuning element is a varactor diode, a 2-terminal device thatchanges capacitance as a function of reverse bias voltage.1 The oscillator is part of a frequency synthesizingloop, as detailed in Figure 1. A phase locked loop (PLL)compares a divided down representation of the oscillatorwith a frequency reference. The PLL’s output is levelshifted to provide the high voltage necessary to bias thevaractor, which closes a feedback loop by voltage tuningthe oscillator. This loop forces the voltage controlledoscillator (VCO) to operate at a frequency determined bythe frequency reference and the divider’s division ratio.