該文的主要內容是對螺管式步進比例電磁鐵磁場的電磁吸力產生機理、結構形式、電磁吸力數值計算和參數優化設計等進行分析研究.為了使銜鐵可作長行程的往復直線運動,在結構上采用無擋鐵式的螺管電磁鐵,這樣電磁吸力主要由漏磁通產生,由麥克斯韋電磁力公式可推知:力的大小和方向可以得到比較大的電磁吸力;另外,該文還對影響電磁吸力的其它因素:軛鐵半徑、銜鐵半徑、槽的尺寸形狀等進行了正交優化試驗,弄清了各因素對電磁吸力的影響程度,進一步應用Tabu搜索法對各因素進行全局優化,得出各參數最優組合方案,并經工廠實踐檢驗,結果較理想.該文還對電磁鐵的動態特性,也即對整個步進運動過程中電磁吸力、運動速度、位移等與運動時間之間的關系進行了計算分析,以便工廠可以更好地對電磁鐵的通電時間、運動過程進行控制.
標簽:
步進
比例
電磁鐵
上傳時間:
2013-04-24
上傳用戶:趙安qw
超聲波電機(Ultrasonic Motor,簡稱USM)是近二十年來發展起來的一種新型驅動裝置,該電機不同于傳統的電磁感應電機,它是利用壓電陶瓷的逆壓電效應激發超聲振動,借助彈性體諧振放大,通過摩擦耦合產生旋轉運動或直線運動.這種電機的具有響應快、結構緊湊、低轉速、大力矩、不受電磁干擾、斷電自鎖等優點,在微型機械、機器人、精密儀器、家用電器、航空航天、汽車等方面有著廣泛的應用前景.隨著超聲波電機的推廣應用和產業化發展的需要,對超聲波電機的驅動和控制技術的研究就非常必要了,小型化、通用化、高性能的驅動電源和簡單而又實用的控制技術已成為國內外研究的熱點.該文對于單一的定位控制,研究一種簡單且控制精度高的控制算法,結合所研制的縱扭復合型超聲波電機樣機,實現了高精度(0.010度)的定位控制,另對基于高性能DSP的驅動電源進行了初步的探討和研究,研制了通用性較高的驅動電源.該文開展的主要研究工作和取得的成果如下:1.簡要地介紹了超聲波電機的原理、發展歷史和特點,重點分析了超聲波電機驅動電源和定位控制的研究進展和存在的問題,從而引出該碩士論文的研究意義和主要內容.2.從理論和實驗上揭示這種電機具有的高分辨率和步進特性實質,提出了利用此特性實現高精度的定位控制策略——步進定位法,并分析了影響其定位精度的因素,結合所研制的縱扭復合型超聲波電機樣機,實現了高精度(0.010度)的定位控制,并確定了相關控制參數的選擇準則.3.簡要介紹了常用開關變換器結構,設計了以MOSFET為開關器件的半橋式逆變功率電路.介紹了高性能DSP(TMS320LF2407)為核心的控制信號發生電路和以UC3842為控制芯片的可調壓直流電源,結合控制電路和功率變換電路獲得了驅動超聲波電機所需兩項幅值、頻率、相位可調的交變方波,具有較高的通用性,為進一步開展運用較復雜控制策略的超聲波電機位置和速度伺服控制研究打下一定基礎.
標簽:
超聲波
電機
控制研究
上傳時間:
2013-04-24
上傳用戶:hfmm633