亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

半導體物理基礎

  • 儀器接口平臺SCPI解析模塊設計.rar

    隨著計算機技術(shù)的迅猛發(fā)展,受其影響的儀器行業(yè)也發(fā)生了巨大的變革,即儀器的手動操作使用改為計算機控制自動測試。隨著自動測試技術(shù)和程控儀器的發(fā)展,除了要求物理硬件接口標準化外,也要求軟件控制標準化。 硬件方面,從20世紀50代自動測試概念建立起,經(jīng)過初期專用接口、半專用接口到20世紀80年代中期才普及推廣開放式標準接口總線,如RS232串行通信接口總線、GPIB通用接口總線、PXI計算機外圍儀器系統(tǒng)總線、VXI塊式儀器系統(tǒng)總線等。 軟件方面,1987年6月頒布的IEEE488.2(程控儀器消息交換協(xié)議)標準首先解決了數(shù)據(jù)結(jié)構(gòu)方面的問題,但仍將大量的器件語義留給設計者自由定義。1990年4月,國際上九家儀器公司在IEEE488.2基礎上提出了SCPI(Standard Commands for Programmable Instruments程控儀器標準命令),才使程控儀器器件數(shù)據(jù)和命令得到標準化。SCPI的總目標是縮短自動測試系統(tǒng)程序開發(fā)時間,保護儀器制造者和使用者雙方的硬、軟件投資,為儀器控制和數(shù)據(jù)利用提供廣泛兼容的編碼環(huán)境。 儀器接收到SCPI消息后進行響應:接收字符串消息、詞法分析、語法分析、中間代碼生成、優(yōu)化和目標代碼生成,語法分析模塊的性能直接影響到程控執(zhí)行效率。為了進一步簡化儀器內(nèi)語法分析模塊、提高程控執(zhí)行效率,本課題提出了在接口電路中加入解析模塊的思想,可將控制器發(fā)送到儀器的SCPI消息即復雜的ASCII碼字符串轉(zhuǎn)變?yōu)楹唵蔚亩M制代碼。采用此解析模塊將大大簡化儀器設計者的軟件工作,既能實現(xiàn)儀器語言標準化又能提高儀器對遠程 控制的響應速度,這在研究實驗室內(nèi)的自制儀器時將是很有用的。 儀器接口有很多種,本課題主要討論了RS232和GPIB兩種接口。本設計中儀器接口板是獨立于儀器的,與儀器單獨使用微處理器,若要與儀器連接實現(xiàn)通信只需在兩微處理器之間進行通信即可,這樣做的目的是:一方面可以不影響儀器的設計和操作,一方面可以實現(xiàn)接口板的通用性和儀器的可換性。針對于RS232接口為一簡單接口,我先將工作重心放在軟件設計上,主要考慮怎樣把復雜的ASCII碼字符串解析為簡單的二進制代碼。針對于GPIB接口,軟件設計的主要部分已完成,再把工作重心放在硬件設計上,采用性價比更高的CPID實現(xiàn)GPIB接口芯片NAT9914。為了觀察解析結(jié)果還加入了LCD顯示。本設計在開發(fā)通用的、低價的儀器接口板方面做了一個有益的嘗試,為進一步的自動測試系統(tǒng)研究打下了基礎。 關鍵詞:儀器;SCPI;RS232接口;GPIB接口;CPLD

    標簽: SCPI 儀器接口 模塊設計

    上傳時間: 2013-04-24

    上傳用戶:Andy123456

  • 太陽能電池陣列模擬器的研究與設計.rar

    21世紀,人類面臨著實現(xiàn)經(jīng)濟和社會可持續(xù)發(fā)展的重大挑戰(zhàn),能源問題越來越突出,太陽能等可再生能源逐漸成為人類關注的焦點。時至今日,人類對光伏系統(tǒng)的研究越來越深入廣泛,但在光伏系統(tǒng)的研發(fā)過程中,太陽能電池由于受日照強度、環(huán)境溫度影響較大,導致實驗成本過高,研發(fā)周期變長。太陽能電池陣列模擬器便能較好地解決這一問題。 @@ 本文首先對比了模擬式太陽能電池模擬器和數(shù)字式太陽能電池模擬器的優(yōu)缺點,選取了數(shù)字式太陽能電池陣列模擬器作為研究對象,并對研究太陽能電池陣列模擬器的實際意義作了闡述。隨后描述了太陽能電池的輸出特性,討論了適合工程計算的太陽能電池陣列數(shù)學物理模型。 @@ 本文研究的太陽能電池陣列模擬器由功率電路和控制電路兩部分組成。功率電路選取了半橋型DC/DC電路作為主電路拓撲,對其工作過程進行了分析,并對各部分電路進行了設計。然后設計了電壓電流雙閉環(huán)調(diào)節(jié)器,在此基礎之上用PSIM仿真軟件對所設計的太陽能電池陣列模擬器進行了仿真,包括靜態(tài)工作點的仿真以及動態(tài)響應速度的仿真,通過仿真驗證了模擬器能夠達到所要求指標。 @@ 控制電路板是整個模擬器的核心控制部分,通過控制運算提供輸出電壓的參考值,進而提供控制功率管開通關斷的PWM信號。本文選取了microchip公司的dsPIC30F2023作為主控制芯片,分析了該型號微處理芯片的性能特點,介紹了模擬信號采樣電路、232通訊電路、人機交互界面電路等外圍電路的硬件設計,調(diào)節(jié)器采用了數(shù)字PID控制。 @@ 在MPLAB集成開發(fā)環(huán)境中進行了軟件方案的設計,主要包括主程序、生成PWM程序、AD采樣、故障處理、人機交互程序等,介紹了各個模塊的程序流程。 @@ 軟硬件系統(tǒng)設計完成后,最終實現(xiàn)了太陽能電池陣列模擬器,可以為光伏系統(tǒng)的研究提供一個良好的實驗平臺。 @@關鍵詞:太陽能電池陣列模擬器;半橋型DC/DC變換器;dsPIC30F2023

    標簽: 太陽能電池 陣列 模擬

    上傳時間: 2013-07-28

    上傳用戶:cceezzpp

  • LLC諧振變換器的研究.rar

    諧振變換器相對硬開關PWM變換器,具有開關頻率高、關斷損耗小、效率高、重量輕、體積小、EMI噪聲小、開關應力小等優(yōu)點。而LLC諧振變換器具有原邊開關管易實現(xiàn)全負載范圍內(nèi)的ZVS,次級二極管易實現(xiàn)ZCS諧振電感和變壓器易實現(xiàn)磁性元件的集成,以及輸入電壓范圍寬等優(yōu)點,因而得到了廣泛的關注。 本文對諧振變換器的基本分類和各種諧振變換器的優(yōu)缺點進行了比較和總結(jié),并與傳統(tǒng)PWM變換器進行了對比,總結(jié)出LLC諧振變換器的主要優(yōu)點。并以400W LLC諧振變換器為目標設計,LLC前級使用APFC電路,后一級是LLC諧振變換器。 首先,基于FHA(基波分析法)的方法對LLC諧振變換器進了穩(wěn)態(tài)電路的分析,并詳細闡述了LLC諧振變換器在各個開關頻率范圍內(nèi)的工作原理和工作特性。隨后,文章詳細比較了LLC諧振變換器與傳統(tǒng)的諧振變換器和半橋PWM變換器不同之處。 然后,文章分別采用分段線性法和擴展描述函數(shù)法建立了LLC諧振變換器的小信號模型。由于分段線性法建立的小信號模型僅考慮了LLC諧振變換器工作在滿負載的情況下,為了建立更具一般性的模型,論文又采用了擴展描述函數(shù)法建模,用以指導控制環(huán)路的設計。 接著,論文對整個系統(tǒng)進行了綜合設計。文章給出了APFC部分的主電路和控制補償回路的具體設計;同時,也做出了LLC諧振變換器主電路的具體設計,而LLC諧振變換器控制回路的設計,仍需要更深一步的研究,并需提出一種切實可行的設計方法。 最后,采用Pspiee軟件建立了仿真模型。仿真結(jié)果得出LLC諧振變換器能在負載和輸入電壓變化范圍都很大的情況下實現(xiàn)輸出電壓的穩(wěn)定調(diào)節(jié),并能實現(xiàn)場效應管和二極管的軟開關,驗證了理論分析的正確性;由于實驗條件的限制,制作的實驗電路板處于調(diào)試之中,希望進一步驗證理論設計的正確性。

    標簽: LLC 諧振變換器

    上傳時間: 2013-04-24

    上傳用戶:DanXu

  • 基于FPGA的GPS接收機基帶處理器的研究與設計.rar

    互聯(lián)網(wǎng)、移動通信、星基導航是21世紀信息社會的三大支柱產(chǎn)業(yè),而GPS系統(tǒng)的技術(shù)水平和發(fā)展歷程代表著全世界衛(wèi)星導航系統(tǒng)的發(fā)展狀況。目前,我國已經(jīng)成為GPS的使用大國,衛(wèi)星導航產(chǎn)業(yè)鏈也已基本形成。然而,我們對GPS核心技術(shù)(即如何捕獲衛(wèi)星信號并保持對信號的跟蹤)的研究還不夠深入,我國GPS產(chǎn)品的核心部分多數(shù)還是靠進口。因此,對GPS核心技術(shù)的研究是非常緊迫的。 本文首先介紹了GPS的定位原理,之后闡述了GPS接收機的基本原理一直接擴頻通信和GPS信號的結(jié)構(gòu)與特性。從這些方面出發(fā)研究接收機基帶處理器的捕獲與跟蹤設計方案。 設計過程中,先詳細分析了滑動相關的捕獲算法和基于FFT的快速捕獲算法,并利用matlab進行了驗證。由于前者靈活性好且可捕獲到高精度的碼相位和載波頻率,適合于本文的硬件接收機,所以本文確定了滑動相關的捕獲方案。 接著分析了跟蹤環(huán)路的特點,跟蹤模塊采用碼跟蹤環(huán)和載波跟蹤環(huán)耦合的方法實現(xiàn)。由于GPS系統(tǒng)通常工作在非常低的信噪比環(huán)境中,而非相干環(huán)在低信噪比下環(huán)路跟蹤性能較好,所以碼跟蹤環(huán)采用非相干(DDLL)環(huán)實現(xiàn)。這種跟蹤環(huán)路采用的鑒相器是能量鑒相器,對數(shù)據(jù)的調(diào)制和載波相位都不敏感,鑒相器不會產(chǎn)生不確定量。由于輸入信號存在180°相位翻轉(zhuǎn),而COSTAS鎖相環(huán)允許數(shù)據(jù)調(diào)制,對I支路和Q支路信號的180°相位翻轉(zhuǎn)不敏感,所以載波跟蹤環(huán)采用COSTAS鎖相環(huán)實現(xiàn)。上述算法在matlab環(huán)境下得到了驗證。 基帶處理器電路的主要模塊在Quartus II8.0開發(fā)平臺上利用VHDL硬件描述語言實現(xiàn)。然后利用EDA仿真工具ModelSim-Altera6.1g進行了邏輯仿真。本設計滿足系統(tǒng)功能和性能的要求,可以直接用于實時GPS接收機系統(tǒng)的設計中,為自主設計GPS接收機奠定了基礎。 最后,由于在弱電磁環(huán)境下,捕獲失鎖后32PPS信號會丟失。所以設計了一個能授時和守時的算法去得到與GPS時同步的精確授時秒信號。并且實現(xiàn)了這個算法。

    標簽: FPGA GPS 接收機

    上傳時間: 2013-04-24

    上傳用戶:zuozuo1215

  • LTE系統(tǒng)中基帶DAGC的應用研究及FPGA實現(xiàn).rar

    當今,移動通信正處于向第四代通信系統(tǒng)發(fā)展的階段,OFDM技術(shù)作為第四代數(shù)字移動通信(4G)系統(tǒng)的關鍵技術(shù)之一,被包括LTE在內(nèi)的眾多準4G協(xié)議所采用。IDFT/DFT作為OFDM系統(tǒng)中的關鍵功能模塊,其精度對基帶解調(diào)性能產(chǎn)生著重大的影響,尤其對LTE上行所采用的SC_FDMA更是如此。為了使定點化IDFT/DFT達到較好的性能,本文采用數(shù)字自動增益控制(DAGC)技術(shù),以解決過大輸入信號動態(tài)范圍所造成的IDFT/DFT輸出信噪比(SNR)惡化問題。 首先,本文簡單介紹了較為成熟的AAGC(模擬AGC)技術(shù),并重點關注近年來為了改善其性能而興起的數(shù)字化AGC技術(shù),它們主要用于壓縮ADC輸入動態(tài)范圍以防止其飽和。針對基帶處理中具有累加特性的定點化IDFT/DFT技術(shù),進一步分析了AAGC技術(shù)和基帶DAGC在實施對象,實現(xiàn)方法等上的異同點,指出了基帶DAGC的必要性。 其次,根據(jù)LTE協(xié)議,搭建了從調(diào)制到解調(diào)的基帶PUSCH處理鏈路,并針對基于DFT的信道估計方法的缺點,使用簡單的兩點替換實現(xiàn)了優(yōu)化,通過高斯信道下的MATLAB仿真,證明其可以達到理想效果。仿真結(jié)果還表明,在不考慮同步問題的高斯信道下,本文所搭建的基帶處理鏈路,采用64QAM進行調(diào)制,也能達到在SNR高于17dB時,硬判譯碼結(jié)果為極低誤碼率(BER)的效果。 再次,在所搭建鏈路的基礎上,通過理論分析和MATLAB仿真,證明了包括時域和頻域DAGC在內(nèi)的基帶DAGC具有穩(wěn)定接收鏈路解調(diào)性能的作用。同時,通過對幾種DAGC算法的比較后,得到的一套適用于實現(xiàn)的基帶DAGC算法,可以使IDFT/DFT的輸出SNR處于最佳范圍,從而滿足LTE系統(tǒng)基帶解調(diào)的要求。針對時域和頻域DAGC的差異,分別選定移位和加法,以及查表的方式進行基帶DAGC算法的實現(xiàn)。 最后,本文對選定的基帶DAGC算法進行了FPGA設計,仿真、綜合和上板結(jié)果說明,時域和頻域DAGC實現(xiàn)方法占用資源較少,容易進行集成,能夠達到的最高工作頻率較高,完全滿足基帶處理的速率要求,可以流水處理每一個IQ數(shù)據(jù),使之滿足基帶解調(diào)性能。

    標簽: DAGC FPGA LTE

    上傳時間: 2013-05-17

    上傳用戶:laozhanshi111

  • WCDMA系統(tǒng)下行同步原理與FPGA實現(xiàn).rar

    同步是移動通信領域中的關鍵技術(shù),是保障通信初始和進行的必要過程,對系統(tǒng)的性能影響重大。縱觀移動通信系統(tǒng)的發(fā)展史,同步技術(shù)自始至終都是人們研究的熱點。 @@ WCDMA作為第三代移動通信無線接口標準之一,已經(jīng)在全世界范圍內(nèi)得到了商用。小區(qū)搜索是WCDMA的重要物理層過程,是實現(xiàn)下行移動臺和基站間同步的重要手段。 @@ 作為ASIC領域的一種半定制電路,現(xiàn)場可編程門陣列(FPGA)既解決了全定制電路不能修改的不足,又解決了原有可編程器件容量有限的問題。FPGA以其強大的現(xiàn)場可編程能力和開發(fā)速度優(yōu)勢,逐漸成為ASIC電路中設計周期最短、開發(fā)費用最低、風險最小的器件之一。 @@ 因此,研究WCDMA同步算法及其在FPGA中的實現(xiàn)與驗證是具有理論和現(xiàn)實意義的。本文首先介紹了WCDMA物理層基礎,接著詳細討論了WCDMA主同步、輔同步和導頻同步的原理,介紹了前兩步同步的改進型算法和證明,并和傳統(tǒng)相關算法在資源和實現(xiàn)復雜度方面進行了比較,給出了下行同步的浮點仿真結(jié)果和分析。之后,深入討論了下行同步的FPGA (V4-SX-35)實現(xiàn)方案、運算流程和模塊間的接口設計。最后,介紹了下行同步的FPGA驗證方法。 @@ 本文較為深入的討論了WCDMA下行同步的算法和FPGA實現(xiàn)方案,給出了理論分析和仿真、實驗結(jié)果。并在低復雜度和資源開銷條件下,完成了FPGA的硬件設計和片上測試,達到了系統(tǒng)的性能指標。 @@關鍵詞:WCDMA;同步;小區(qū)搜索;FPGA

    標簽: WCDMA FPGA

    上傳時間: 2013-04-24

    上傳用戶:wsm555

  • MIMOOFDM關鍵技術(shù)研究與FPGA設計.rar

    寬帶無線通信的持續(xù)高速的需求增長刺激了新的通信技術(shù)的不斷產(chǎn)生,而這些技術(shù)的發(fā)展,很大程度上都來自于不同技術(shù)的互相補充與融合,這也成為新標準的源泉。正交頻分復用(OFDM)技術(shù)在提供高效的頻譜利用率以及良好的抗多徑性能的同時,通過多輸入輸出(MIMO)技術(shù)來進一步增加信道容量,在不增加信號帶寬的基礎上取得更高的傳輸速率和更好的傳輸質(zhì)量。因此MIMO-OFDM技術(shù)近年來在成為研究熱點的同時,已被認為是下一帶移動通信和網(wǎng)絡接入標準中的核心技術(shù)。 本文主要對MIMO-OFDM系統(tǒng)物理層的關鍵技術(shù)進行了研究,并主要對系統(tǒng)的同步和信道估計算法進行了深入的分析,并提出了一些改進。最后進行了MIMO-OFDM基帶系統(tǒng)基于FPGA的物理層設計,對其中一些關鍵模塊的設計,比如信道估計和空時譯碼模塊進行了詳細的討論。 第一章緒論部分首先結(jié)合寬帶無線通信技術(shù)發(fā)展的歷史就MIMO-OFDM技術(shù)產(chǎn)生發(fā)展的背景進行了分析,指出了MIMO-OFDM研究與發(fā)展方向,最后總結(jié)了本文的工作目標和基本要求。 第二章主要是推導分析了MIMO-OFDM系統(tǒng)的基本原理,先分別從OFDM技術(shù)和MIMO技術(shù)兩方面概括性的介紹了其理論以及技術(shù)特點,最后對MIMO與OFDM結(jié)合的關鍵技術(shù)進行了討論。 第三章是對MIMO-OFDM同步算法的研究,主要針對基于訓練序列的同步算法進行了深入討論,關注點是訓練序列的設計。針對原有的一些算法進行了總結(jié)與比較,并主要對基于頻域設計的訓練序列符號同步算法做出了改進。 第四章首先從基于導頻的信道估計算法推導開始,關注點放在MIMO-OFDM系統(tǒng)下的自適應信道估計算法研究。文章將原有的一些OFDM自適應信道估計算法擴展到MIMO領域,結(jié)合基于共軛梯度的自適應算法并做出了一些改進。 第五章節(jié)是本文的硬件設計部分,文章基于一個2發(fā)2收MIMO-OFDM系統(tǒng)進行了基帶數(shù)字處理部分的FPGA設計工作,根據(jù)設計要求實現(xiàn)了發(fā)送端和接收端數(shù)據(jù)處理的基本功能,為完善的和更高性能的MIMO-OFDM系統(tǒng)實現(xiàn)奠定了基礎。

    標簽: MIMOOFDM FPGA 關鍵技術(shù)

    上傳時間: 2013-06-26

    上傳用戶:wl9454

  • 基于FPGA的OFDM調(diào)制解調(diào)器的設計與實現(xiàn).rar

    正交頻分復用(OFDM)技術(shù)是一種多載波數(shù)字調(diào)制技術(shù),具有頻譜利用率高、抗多徑干擾能力強、成本低等特點,適合無線通信的高速化、寬帶化及移動化的需求,將成為下一代無線通信系統(tǒng)(4G)的核心調(diào)制傳輸技術(shù)。 本文首先描述了OFDM技術(shù)的基本原理。對OFDM的調(diào)制解調(diào)以及其中涉及的特性和關鍵技術(shù)等做了理論上的分析,指出了OFDM區(qū)別于其他調(diào)制技術(shù)的巨大優(yōu)勢;然后針對OFDM中的信道估計技術(shù),深入分析了基于FFT級聯(lián)的信道估計理論和基于聯(lián)合最大似然函數(shù)的半盲分組估計理論,在此基礎上詳細研究描述了用于OFDM系統(tǒng)的迭代的最大似然估計算法,并利用Matlab做了相應的仿真比較,驗證了它們的有效性。 而后,在Matlab中應用Simulink工具構(gòu)建OFDM系統(tǒng)仿真平臺。在此平臺上,對OFDM系統(tǒng)在多徑衰落、高斯白噪聲等多種不同的模型參數(shù)下進行了仿真,并給出了數(shù)據(jù)曲線,通過分析結(jié)果可正確評價OFDM系統(tǒng)在多個方面的性能。 在綜合了OFDM的系統(tǒng)架構(gòu)和仿真分析之后,設計并實現(xiàn)了基于FPGA的OFDM調(diào)制解調(diào)系統(tǒng)。首先根據(jù)802.16協(xié)議和OFDM系統(tǒng)的具體要求,設定了合理的參數(shù);然后從調(diào)制器和解調(diào)器的具體組成模塊入手,對串/并轉(zhuǎn)換,QPSK映射,過采樣處理,插入導頻,添加循環(huán)前綴,IFFT/FFT,幀同步檢測等各個模塊進行硬件設計,詳細介紹了各個模塊的設計和實現(xiàn)過程,并給出了相應的仿真波形和參數(shù)說明。其中,針對定點運算的局限性,為系統(tǒng)設計并自定義了24位的浮點運算格式,參與傅立葉反變換和傅立葉變換的運算,在系統(tǒng)參數(shù)允許的范圍內(nèi),充分利用了有限資源,提高了系統(tǒng)運算精度;然后重點描述了基于FPGA的快速傅立葉變換算法的改進、優(yōu)化和設計實現(xiàn),針對原始快速傅立葉變換FPGA實現(xiàn)算法運算空閑時間過多,資源占用較大的問題,提出了帶有流水作業(yè)功能、資源占用較少的快速傅立葉變換優(yōu)化算法設計方案,使之運用于OFDM基帶處理系統(tǒng)當中并加以實現(xiàn),結(jié)果滿足系統(tǒng)參數(shù)的需求。最后以理論分析為依據(jù),對整個OFDM的基帶處理系統(tǒng)進行了系統(tǒng)調(diào)試與性能分析,證明了設計的可行性。 綜上所述,本文完成了一個基于FPGA的OFDM基帶處理系統(tǒng)的設計、仿真和實現(xiàn)。本設計為OFDM通信系統(tǒng)的進一步改進提供了大量有用的數(shù)據(jù)。

    標簽: FPGA OFDM 調(diào)制解調(diào)器

    上傳時間: 2013-07-25

    上傳用戶:14786697487

  • 用FPGA實現(xiàn)“共軛變換”圖像處理方法

    近年來微光、紅外、X光圖像傳感器在軍事、科研、工農(nóng)業(yè)生產(chǎn)、醫(yī)療衛(wèi)生等領域的應用越來越為廣泛,但由于這些成像器件自身的物理缺陷,視覺效果很不理想,往往需要對圖像進行適當?shù)奶幚恚缘玫竭m合人眼觀察或機器識別的圖像。因此,市場急需大量高效的實時圖像處理器能夠在傳感器后端對這類圖像進行處理。而FPGA的出現(xiàn),恰恰解決了這個問題。 近十年來,隨著FPGA(現(xiàn)場可編程門陣列)技術(shù)的突飛猛進,F(xiàn)PGA也逐漸進入數(shù)字信號處理領域,尤其在實時圖像處理方面。Xilinx的研究表明,在2000年主要用于DSP應用的FPGA的發(fā)貨量,增長了50%;而常規(guī)的DSP大約增長了40%。由于FPGA可無比擬的并行處理能力,使得FPGA在圖像處理領域的應用持續(xù)上升,國內(nèi)外,越來越多的實時圖像處理應用都轉(zhuǎn)向了FPGA平臺。與PDSP相比,F(xiàn)PGA將在未來統(tǒng)治更多前端(如傳感器)應用,而PDSP將會側(cè)重于復雜算法的應用領域。可以說,F(xiàn)PGA是數(shù)字信號處理的一次重大變革。 算法是圖像處理應用的靈魂,是硬件得以發(fā)揮其強大功能的根本。”共軛變換”圖像處理方法是一種新型的圖像處理算法,由鄭智捷博士上個世紀90年代初提出。這種算法使用基元形狀(meta-shape)技術(shù),而這種技術(shù)的特征正好具備幾何與拓撲的雙重特性,使得大量不同的基于形態(tài)的灰度圖像處理濾波器可用這種方法實現(xiàn)。該種算法在空域進行圖像處理,無需進行大量復雜的算術(shù)運算,算法簡單、快速、高效,易于硬件實現(xiàn)。通過十多年來的實驗與實踐證明,在微光圖像,紅外圖像,X光圖像處理領域,”共軛變換”圖像處理方法確實有其獨特的優(yōu)異性能。本篇論文就針對”共軛變換”圖像處理方法在微光圖像處理領域的應用,就如何在FPGA上實現(xiàn)”共軛變換”圖像處理方法展開研究。首先在Matlab環(huán)境下,對常用的圖像增強算法和”共軛變換”圖像處理方法進行了比較,并且在設計制作“FPGA視頻處理開發(fā)平臺”的基礎上,用VHDL實現(xiàn)了”共軛變換”圖像處理方法的基本內(nèi)核并進行了算法的硬件實現(xiàn)與效果驗證。此外,本文還詳細地討論了視頻流的采集及其編碼解碼問題以及I2C總線的FPGA實現(xiàn)。

    標簽: FPGA 共軛變換 圖像 處理方法

    上傳時間: 2013-04-24

    上傳用戶:CHENKAI

  • 無線擴頻集成電路開發(fā)中信道編解碼技術(shù)研究與FPGA實現(xiàn)

    本論文主要對無線擴頻集成電路設計中的信道編解碼算法進行研究并對其FPGA實現(xiàn)思路和方法進行相關研究。 近年來無線局域網(wǎng)IEEE802.11b標準建議物理層采用無線擴頻技術(shù),所以開發(fā)一套擴頻通信芯片具有重大的現(xiàn)實意義。無線擴頻通信系統(tǒng)與常規(guī)通信相比,具有很強的抗干擾能力,并具有信息蔭蔽、多址保密通信等特點。無線信道的特性較復雜,因此在無線擴頻集成電路設計中,加入信道編碼是提高芯片穩(wěn)定性的重要方法。 在了解擴頻通信基本原理的基礎上,本文提出了“串聯(lián)級聯(lián)碼+兩次交織”的信道編碼方案。串聯(lián)的級聯(lián)碼由外碼——(15,9,4)里德-所羅門(Reed-Solomon)碼,和內(nèi)碼-(2,1,3)卷積碼構(gòu)成,交織則采用交織深度為4的塊交織。重點對RS碼的時域迭代譯碼算法和卷積碼的維特比譯碼算法進行了詳細的討論,并完成信道編譯碼方案的性能仿真及用FPGA實現(xiàn)的方法。 計算機仿真的結(jié)果表明,采用此信道編碼方案可以較好的改善現(xiàn)有仿真系統(tǒng)的誤符號率。 本論文的內(nèi)容安排如下:第一章介紹了無線擴頻通信技術(shù)的發(fā)展狀態(tài)以及國內(nèi)外開發(fā)擴頻通信芯片的現(xiàn)狀,并給出了本論文的研究內(nèi)容和安排。第二章主要介紹了擴頻通信的基本原理,主要包括擴頻通信的定義、理論基礎和分類,直接序列擴頻通信方式的數(shù)學模型。第三章介紹了基本的信道編碼原理,信道編碼的分類和各自的特點。第四章給出了本課題選擇的信道編碼方案——“串聯(lián)級聯(lián)碼+兩次交織”,詳細討論了方案中里德-所羅門(Reed-Solomon)碼和卷積碼的基本原理、編碼算法和譯碼算法。最后給出編碼方案的實際參數(shù)。第五章對第四章提出的編碼方案進行了性能仿真。第六章結(jié)合項目實際,討論了FPGA開發(fā)基帶擴頻通信系統(tǒng)的設計思路和方法。首先對FPGA開發(fā)流程以及實際開發(fā)的工具進行了簡要的介紹,然后給出了擴頻通信系統(tǒng)的總體設計。對發(fā)射和接收子系統(tǒng)中信道編碼、解碼等相關功能模塊的實現(xiàn)原理和方法進行分析。第七章對論文的工作進行總結(jié)。

    標簽: FPGA 無線擴頻 信道編解 技術(shù)研究

    上傳時間: 2013-07-07

    上傳用戶:時代電子小智

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲欧美日本日韩| 亚洲日本va在线观看| 日韩视频中文| 激情综合激情| 国产一区二区中文| 国产精品一区视频网站| 欧美日韩一二三四五区| 欧美电影免费观看| 麻豆久久久9性大片| 久久综合网络一区二区| 亚洲一区视频在线| 亚洲一区二区三区精品动漫| 日韩午夜在线| 一本久久a久久精品亚洲| 91久久精品视频| 亚洲理论在线观看| 亚洲美女网站| 一本色道久久综合亚洲91| 国产精品亚洲视频| 欧美片第一页| 欧美精品国产精品日韩精品| 免费永久网站黄欧美| 美日韩精品免费| 欧美精品三区| 欧美三级电影一区| 国产精品久久久久77777| 欧美午夜国产| 欧美日韩一区二| 欧美特黄一级大片| 国产精品私房写真福利视频| 国产精品午夜春色av| 国产美女精品免费电影| 国产一区二区按摩在线观看| 国产午夜精品久久| 精品成人一区二区| 在线看片欧美| 日韩视频一区二区三区在线播放| 亚洲第一黄色| 亚洲精品午夜| 亚洲综合电影| 久久久久久久网| 另类综合日韩欧美亚洲| 欧美老女人xx| 欧美日韩国产二区| 欧美午夜片在线免费观看| 国产欧美日韩| 亚洲成色www8888| 99国产精品久久久久老师| 亚洲一区精品在线| 亚洲欧美在线免费观看| 美日韩精品视频| 久久影院亚洲| 欧美激情视频一区二区三区免费 | 蜜桃av综合| 一区二区av在线| 亚洲一区二区日本| 新狼窝色av性久久久久久| 欧美一区二区免费观在线| 久久精品视频免费播放| 欧美日韩国产一区精品一区| 国产精品v欧美精品v日韩| 国产在线高清精品| 激情欧美一区二区| 亚洲国产精品悠悠久久琪琪| 亚洲免费视频观看| 欧美成人免费小视频| 欧美日韩亚洲一区二| 亚洲一区二区三区四区在线观看| 久久精品国产一区二区三区| 亚洲成人在线网| 美女91精品| 一区视频在线| 浪潮色综合久久天堂| 亚洲福利电影| 日韩网站在线观看| 国产精品视频yy9099| 欧美在线观看你懂的| 国产精品一区一区| 亚洲一区在线免费观看| 国产精品免费福利| 欧美自拍偷拍| 亚洲伦理在线免费看| 国产精品久久久久9999吃药| 欧美一区激情| 亚洲欧美中文另类| 亚洲精品国产精品国自产在线 | 亚洲视频在线看| 国产美女精品| 欧美伦理91i| 欧美精品一区三区在线观看| 久久夜色精品| 暖暖成人免费视频| 免费的成人av| 国产精品久久久久久妇女6080 | 国产精品腿扒开做爽爽爽挤奶网站| 亚洲日本无吗高清不卡| 国产欧美在线| 亚洲蜜桃精久久久久久久| 欧美国产日本| 欧美日韩国产综合视频在线观看中文| 国产麻豆精品视频| 中文在线一区| 国产精品国产三级国产普通话蜜臀| 亚洲美女免费视频| 一区二区三区鲁丝不卡| 免费观看亚洲视频大全| 亚洲福利免费| 久久久久久久综合狠狠综合| 国产日韩在线播放| 亚洲欧美日韩精品一区二区| 国产精品视频不卡| 欧美一区二区免费观在线| 韩日精品在线| 久久夜色精品国产欧美乱| 亚洲国产精品久久久久秋霞影院 | 免费日韩av电影| 91久久精品国产91久久性色| 免费在线亚洲| 亚洲精品在线观看免费| 欧美激情女人20p| 亚洲麻豆视频| 国产精品欧美久久久久无广告| 亚洲欧美综合v| 国产欧美高清| 久久三级视频| 日韩视频一区二区| 国产精品亚洲片夜色在线| 久久国产加勒比精品无码| 国产一区二区中文| 欧美日韩二区三区| 亚洲专区欧美专区| 在线成人亚洲| 欧美日韩国产一级| 久久精品五月| 日韩系列在线| 国产日韩专区| 男女视频一区二区| 欧美一区二区三区在线免费观看| 永久免费视频成人| 欧美日韩在线另类| 亚洲一区二区三区欧美| 伊人成人开心激情综合网| 国产精品国产三级国产a| 久热精品视频在线| 亚洲伊人久久综合| 在线播放日韩| 国产精品网站在线观看| 欧美国产欧美亚州国产日韩mv天天看完整| 亚洲一区二区在线播放| 亚洲国产专区校园欧美| 国产欧亚日韩视频| 欧美日韩亚洲免费| 欧美成人69| 久久亚洲综合| 香蕉久久a毛片| 亚洲特色特黄| 日韩视频在线观看国产| 亚洲第一网站| 国产自产在线视频一区| 国产精品久久久久免费a∨| 欧美大片va欧美在线播放| 久久精品国产第一区二区三区| 亚洲一区二区三区免费视频| 91久久精品国产91久久| 一区二区三区在线观看欧美| 国产欧美日韩91| 国产精品视频午夜| 国产精品黄视频| 欧美色视频一区| 欧美日韩二区三区| 欧美激情成人在线| 欧美国产在线电影| 欧美电影免费观看| 男女av一区三区二区色多| 久久综合综合久久综合| 久久久久久久一区二区三区| 欧美一级在线播放| 性色av香蕉一区二区| 欧美一二三区在线观看| 先锋影音一区二区三区| 午夜精品www| 午夜日韩激情| 欧美自拍偷拍| 久久综合一区二区| 欧美mv日韩mv国产网站| 欧美第一黄网免费网站| 欧美激情亚洲另类| 欧美三级网页| 国产乱肥老妇国产一区二| 国产午夜精品全部视频在线播放 | 9l国产精品久久久久麻豆| 亚洲精品久久久久久久久久久久久 | 欧美在线亚洲| 亚洲一区二区动漫| 欧美一区二区性| 久久这里有精品视频| 久久中文久久字幕| 欧美aⅴ一区二区三区视频| 欧美激情a∨在线视频播放| 欧美日产一区二区三区在线观看|