本課題設(shè)計(jì)和完成了一套基于DSP+FPGA結(jié)構(gòu)的小波變換實(shí)時(shí)圖像處理系統(tǒng)。采用小波算法對圖像進(jìn)行邊緣提取、圖像增強(qiáng)、圖像融合等處理,并在ADSP-BF535上實(shí)現(xiàn)了小波算法,分析了其運(yùn)行小波算法的性能。圖像處理的數(shù)據(jù)量比較大,而且運(yùn)算比較復(fù)雜,DSP的特殊結(jié)構(gòu)和性能很好地滿足了系統(tǒng)實(shí)現(xiàn)的需要,而FPGA的高速性和靈活性也滿足了系統(tǒng)實(shí)時(shí)性和穩(wěn)定性的需要,所以采用DSP+FPGA來實(shí)現(xiàn)圖像處理系統(tǒng)是可靠的,也是可行的。系統(tǒng)的硬件設(shè)計(jì)以DSP和FPGA為平臺(tái),DSP實(shí)現(xiàn)算法、管理系統(tǒng)運(yùn)行、并實(shí)現(xiàn)了系統(tǒng)的自啟動(dòng);FPGA實(shí)現(xiàn)一些接口、時(shí)序控制等,簡化了外圍電路,提高了系統(tǒng)的可靠性。結(jié)果表明,在ADSP-BF535上實(shí)現(xiàn)小波算法,效果良好,而且滿足系統(tǒng)實(shí)時(shí)性的要求。最后,總結(jié)了系統(tǒng)的設(shè)計(jì)和調(diào)試經(jīng)驗(yàn),對調(diào)試時(shí)遇到的一些問題進(jìn)行了分析。
標(biāo)簽: FPGA DSP 小波變換 實(shí)時(shí)圖像
上傳時(shí)間: 2013-04-24
上傳用戶:Kecpolo
本文提出了一種基于FPGA的細(xì)胞圖像識(shí)別系統(tǒng)方案,該系統(tǒng)中FPGA處于核心地位,F(xiàn)PGA采用Altera公司的EP1K100QC208-1芯片,構(gòu)造專用處理功能,實(shí)現(xiàn)彩色圖像灰度化、灰度變換、中值濾波、低通濾波、灰度圖像二值化等算法。這部分處理的數(shù)據(jù)量非常大,由于采用FPGA處理,產(chǎn)生的時(shí)延變得很小;最后系統(tǒng)機(jī)進(jìn)行識(shí)別處理的是二值圖像,數(shù)據(jù)量也很小。所進(jìn)行的仿真實(shí)驗(yàn)取得了良好的效果,給出了部分源代碼和實(shí)驗(yàn)結(jié)果。設(shè)計(jì)采用VHDL語言描述,并使用電子設(shè)計(jì)自動(dòng)化(EDA)工具進(jìn)行了模擬和驗(yàn)證。
標(biāo)簽: FPGA 圖像識(shí)別 預(yù)處理 硬件
上傳時(shí)間: 2013-04-24
上傳用戶:xwd2010
DeviceNet現(xiàn)場總線標(biāo)準(zhǔn)作為工業(yè)現(xiàn)場總線的國際標(biāo)準(zhǔn),其開放性和先進(jìn)性得到了廣泛關(guān)注和充分肯定。開發(fā)符合DeviceNet現(xiàn)場標(biāo)準(zhǔn)的自動(dòng)化產(chǎn)品意義重大,也是必要的。 文中從現(xiàn)場通用的老式串口(RS232和RS485)與新興DeviceNet網(wǎng)絡(luò)的兼容問題以及模擬量,數(shù)字量和多種總線等多功能的一體化問題為出發(fā)點(diǎn),以Atmel的32位ARM7高速處理器為開發(fā)平臺(tái),充分發(fā)揮其處理高速和功能多樣的優(yōu)勢,同時(shí)結(jié)合DeviceNet現(xiàn)場總線高效和診斷的優(yōu)點(diǎn),開發(fā)了一個(gè)帶8路數(shù)字量輸入,8數(shù)字量輸出,4路模擬量輸入以及RS232為底層自定義協(xié)議串口,RS485為底層的在線可配置Modbus協(xié)議的DevciceNet一體化通訊網(wǎng)關(guān)。 最后文中還利用雙口RAM的協(xié)同處理能力,構(gòu)成雙CPU處理能力的結(jié)構(gòu),將avr162的8位處理器處理PROFIBUS總線數(shù)據(jù),而將32位的ARM7處理器處理DeviceNet總線數(shù)據(jù)。文中特別從系統(tǒng)硬件開發(fā)和軟件開發(fā)兩方面加以闡述,并結(jié)合OMRON PLC主站測試系統(tǒng),最終成功給于測試。 為了便于讀者理解和文章的完整性,本文首先對DeviceNet現(xiàn)場總線標(biāo)準(zhǔn)做了簡單介紹;后根據(jù)DeviceNet標(biāo)準(zhǔn)對所需求的產(chǎn)品的進(jìn)行總體設(shè)計(jì),以及相應(yīng)的DeviceNet網(wǎng)關(guān)的硬件和軟件的設(shè)計(jì)和開發(fā)。最后,搭建了DeviceNet-Modbus測試系統(tǒng)和DeviceNet-PROFIBUS DP兩套測試系統(tǒng)對所開發(fā)產(chǎn)品進(jìn)行的了功能測試。本課題按照預(yù)期設(shè)計(jì)思想完成了DeviceNet多功能網(wǎng)關(guān)的軟硬件的開發(fā),并將系統(tǒng)程序下載到處理器中,在測試平臺(tái)下能夠長時(shí)間的正常運(yùn)行,達(dá)到了期望效果。
上傳時(shí)間: 2013-04-24
上傳用戶:huangzchytems
橫向磁通電機(jī)是近些年來出現(xiàn)的一種新型結(jié)構(gòu)的電機(jī),由于其轉(zhuǎn)矩密度和功率密度大的優(yōu)點(diǎn)受到了廣泛的關(guān)注,但我國對該種電機(jī)的研究尚處于起步階段。 本課題是國家863計(jì)劃項(xiàng)目——“新型稀土永磁電機(jī)設(shè)計(jì)與集成技術(shù)(課題編號:2002AA324020)”中有關(guān)橫向磁通永磁同步電動(dòng)機(jī)的部分。本課題的目標(biāo)就是要充分發(fā)揮橫向磁通電機(jī)功率密度和轉(zhuǎn)矩密度大的優(yōu)點(diǎn),克服其功率因數(shù)低的缺點(diǎn),對橫向磁通永磁同步電動(dòng)機(jī)的磁場進(jìn)行計(jì)算、分析,找出功率因數(shù)偏低的原因,并提出相應(yīng)的改進(jìn)方法和建議。在此基礎(chǔ)上進(jìn)行樣機(jī)的研制,對理論成果進(jìn)行驗(yàn)證,并力爭樣機(jī)在性能和工藝指標(biāo)上有所突破,部分指標(biāo)達(dá)到國際領(lǐng)先水平。 本文介紹了橫向磁通永磁電機(jī)的特點(diǎn)及運(yùn)行原理,并按照不同的分類方式介紹了橫向磁通電機(jī)的各種結(jié)構(gòu)。三維磁場的有限元計(jì)算十分復(fù)雜、計(jì)算量大,因此傳統(tǒng)電機(jī)均采用簡化的二維磁場進(jìn)行計(jì)算。但是橫向磁通電機(jī)由于結(jié)構(gòu)特殊,無法采用簡化的二維磁場的計(jì)算方法進(jìn)行分析。因此本文利用ANSYS軟件建立了樣機(jī)模型,對樣機(jī)進(jìn)行了三維電磁場分析。在電磁場計(jì)算的基礎(chǔ)上,進(jìn)行了電機(jī)空載反電勢,空載漏磁系數(shù),電磁轉(zhuǎn)矩等相關(guān)參數(shù)的計(jì)算,討論了橫向磁通永磁同步電動(dòng)機(jī)的結(jié)構(gòu)變化對參數(shù)的影響。本文特別針對橫向磁通永磁電機(jī)功率因數(shù)較低這一問題進(jìn)行了分析,找出了功率因數(shù)偏低的原因,提出了相應(yīng)的改善方法和建議,對橫向磁通電機(jī)的理論研究和設(shè)計(jì)應(yīng)用分析方法進(jìn)行了探討。本文利用電磁場計(jì)算的結(jié)果,完成了電機(jī)運(yùn)行特性仿真,克服了采用傳統(tǒng)磁路等效的方法帶來的誤差。最后,通過與樣機(jī)測試結(jié)果的對照研究,驗(yàn)證和完善分析方法,并為進(jìn)一步獲得性能更加優(yōu)異的樣機(jī)奠定了基礎(chǔ)。
標(biāo)簽: 磁通 永磁同步電動(dòng)機(jī) 性能分析 磁場
上傳時(shí)間: 2013-04-24
上傳用戶:a296386173
隨著電子技術(shù)的不斷發(fā)展,嵌入式系統(tǒng)越來越多地在控制類、消費(fèi)類、通訊類等電子產(chǎn)品廣泛應(yīng)用,嵌入式技術(shù)也越來越和人們的生活緊密結(jié)合。同時(shí),計(jì)算機(jī)硬件的發(fā)展以及數(shù)據(jù)量的增加,對存儲(chǔ)設(shè)備的要求也越來越高。 本文深入研究了嵌入式系統(tǒng)中數(shù)據(jù)存儲(chǔ)和數(shù)據(jù)交換,提出了一套完整的嵌入式系統(tǒng)中數(shù)據(jù)存儲(chǔ)和數(shù)據(jù)交換的設(shè)計(jì)方案,并詳細(xì)介紹了其實(shí)現(xiàn)過程。Flash存儲(chǔ)器由于體積小、功耗低、性能穩(wěn)定等特點(diǎn)在便攜式電子產(chǎn)品中得到了廣泛的應(yīng)用。Flash存儲(chǔ)器主要有兩種形式:Nor Flash和Nand Flash。Nor Flash具有XIP特性,可以直接在芯片上執(zhí)行代碼,而且讀取速度較快。Nand Flash存儲(chǔ)密度大、容量大、生產(chǎn)工藝簡單、性價(jià)比高,但是控制方式復(fù)雜而且可能會(huì)存在一定的壞塊。SD卡是近年來流行的大容量便攜式存儲(chǔ)卡。本系統(tǒng)中,我們以Flash和SD卡作為數(shù)據(jù)存儲(chǔ)介質(zhì)。在存儲(chǔ)介質(zhì)的選擇方面,在系統(tǒng)內(nèi)部采用了體積小、容量大、成本低的Flash,并采用Nor和Nand Flash相結(jié)合的方案:在Nor Flash上存儲(chǔ)與系統(tǒng)相關(guān)的軟件和程序,在Nand Flash上存儲(chǔ)用戶數(shù)據(jù)。系統(tǒng)外部采用安全性高、容量大、性能佳的SD卡作存儲(chǔ)容量擴(kuò)展。實(shí)現(xiàn)了基于Atmel公司ARM系列MCU的Flash存儲(chǔ)器和SD卡的硬件電路的設(shè)計(jì)及底層驅(qū)動(dòng)程序的設(shè)計(jì)。 本研究分別根據(jù)Nor和Nand Flash數(shù)據(jù)存儲(chǔ)和操作特點(diǎn),分析了JFFS2和YAFFS的特點(diǎn)以及各自的存儲(chǔ)方式、斷電保護(hù)、損耗平衡、垃圾回收等一系列的策略和機(jī)制,并在Nor和Nand Flash上實(shí)現(xiàn)并優(yōu)化了這些管理機(jī)制。在SD上則采用目前主流操作系統(tǒng)(Windows,Linux等)所支持的FAT16文件格式,完成了從磁盤格式化到文件的讀寫等標(biāo)準(zhǔn)API函數(shù),實(shí)現(xiàn)了嵌入式系統(tǒng)的高速數(shù)據(jù)交換。
標(biāo)簽: ARM 嵌入式 數(shù)據(jù)存儲(chǔ) 系統(tǒng)研究
上傳時(shí)間: 2013-04-24
上傳用戶:qulele
目前運(yùn)動(dòng)控制主要有兩種實(shí)現(xiàn)方式,一是使用PLC加運(yùn)動(dòng)控制模塊來實(shí)現(xiàn):二是使用PC加運(yùn)動(dòng)控制卡來實(shí)現(xiàn)。兩者各有優(yōu)缺點(diǎn),但兩者有以下共同的缺點(diǎn):一是由于它們兒乎都是采用通用微控制器(MCU和DSP)來實(shí)現(xiàn)電機(jī)控制,由于受CPU速度的限制,以及CPU的多個(gè)進(jìn)程同時(shí)處理,故無法在控制精度和控制速度比較高的場合中應(yīng)用。二是它們的設(shè)計(jì)只是把運(yùn)動(dòng)控制部件當(dāng)作系統(tǒng)的一個(gè)部分,如果要完成一個(gè)機(jī)械設(shè)備的完整控制,還需要輔助有其他的數(shù)字量/模擬量控制設(shè)備。這樣在提高了系統(tǒng)成本的同時(shí),也降低了系統(tǒng)的可靠性。 論文設(shè)計(jì)了一種基于ARM+CPLD的高速運(yùn)動(dòng)控制器,該控制器采用高速的CPLD處理器來完成電機(jī)的閉環(huán)控制,輔助以NXP的32位ARM7TDMI處理器LPC231X來實(shí)現(xiàn)復(fù)雜的運(yùn)動(dòng)規(guī)劃,使得運(yùn)動(dòng)控制精度更高、速度更快、運(yùn)動(dòng)更加平穩(wěn);同時(shí)為系統(tǒng)擴(kuò)展了常規(guī)運(yùn)動(dòng)控制卡不具備的通用I/O接口,除開4軸運(yùn)動(dòng)控制所需要的8點(diǎn)高速脈沖輸入和8點(diǎn)高速脈沖輸出外,系統(tǒng)具有24點(diǎn)數(shù)字量輸入(可選共陰或共陽),25點(diǎn)繼電器輸出,僅一臺(tái)這樣的專用設(shè)備就可以完成4軸運(yùn)動(dòng)控制和設(shè)備上其它開關(guān)量控制。 系統(tǒng)采用可移植的軟、硬件設(shè)計(jì)。硬件上以運(yùn)動(dòng)控制部件為核心,可以方便的在ARM處理器預(yù)留的資源上擴(kuò)展出數(shù)字輸入,數(shù)字輸出,AD輸入,DA輸出等常用功能模塊。系統(tǒng)軟件構(gòu)架如下:在最上層,系統(tǒng)采用μC/OS-Ⅱ操作系統(tǒng)來完成系統(tǒng)任務(wù)調(diào)度;在底層,將底層設(shè)備的操作打包編寫成底層驅(qū)動(dòng)的形式,可直接供用戶程序調(diào)用;在中間層,可根據(jù)不同的用戶要求編寫用戶程序,再將其傳遞給μC/OS-Ⅱ來調(diào)度該用戶程序。 將該運(yùn)動(dòng)控制器應(yīng)用于工業(yè)應(yīng)用中的套標(biāo)機(jī),在對套標(biāo)機(jī)進(jìn)行運(yùn)動(dòng)分解之后,結(jié)合套標(biāo)機(jī)的電氣特性,很好的實(shí)現(xiàn)了運(yùn)動(dòng)控制器在套標(biāo)機(jī)上的二次開發(fā),滿足了套標(biāo)機(jī)在現(xiàn)場中的應(yīng)用。
標(biāo)簽: ARMCPLD 運(yùn)動(dòng)控制器
上傳時(shí)間: 2013-04-24
上傳用戶:牛津鞋
隨著半導(dǎo)體工藝的飛速發(fā)展和芯片設(shè)計(jì)水平的不斷進(jìn)步,ARM微處理器的性能得到大幅度地提高,同時(shí)其芯片的價(jià)格也在不斷下降,嵌入式系統(tǒng)以其獨(dú)有的優(yōu)勢,己經(jīng)廣泛地滲透到科學(xué)研究和日常生活的各個(gè)方面。 本文以ARM7 LPC2132處理器為核心,結(jié)合蓋革一彌勒計(jì)數(shù)管對Time-To-Count輻射測量方法進(jìn)行研究。ARM結(jié)構(gòu)是基于精簡指令集計(jì)算機(jī)(RISC)原理而設(shè)計(jì)的,其指令集和相關(guān)的譯碼機(jī)制比復(fù)雜指令集計(jì)算機(jī)要簡單得多,使用一個(gè)小的、廉價(jià)的ARM微處理器就可實(shí)現(xiàn)很高的指令吞吐量和實(shí)時(shí)的中斷響應(yīng)。基于ARM7TDMI-S核的LPC2132微處理器,其工作頻率可達(dá)到60MHz,這對于Time-To-Count技術(shù)是非常有利的,而且利用LPC2132芯片的定時(shí)/計(jì)數(shù)器引腳捕獲功能,可以直接讀取TC中的計(jì)數(shù)值,也就是說不再需要調(diào)用中斷函數(shù)讀取TC值,從而大大降低了計(jì)數(shù)前雜質(zhì)時(shí)間。本文是在我?guī)熜謪诬姷摹禩ime-To-Count測量方法初步研究》基礎(chǔ)上,使用了高速的ARM芯片,對基于MCS-51的Time-To-Count輻射測量系統(tǒng)進(jìn)行了改進(jìn),進(jìn)一步論證了采用高速ARM處理器芯片可以極大的提高G-M計(jì)數(shù)器的測量范圍與測量精度。 首先,討論了傳統(tǒng)的蓋革-彌勒計(jì)數(shù)管探測射線強(qiáng)度的方法,并指出傳統(tǒng)的脈沖測量方法的不足。然后討論了什么是Time-To-Count測量方法,對Time-To-Count測量方法的理論基礎(chǔ)進(jìn)行分析。指出Time-To-Count方法與傳統(tǒng)的脈沖計(jì)數(shù)方法的區(qū)別,以及采用Time-To-Count方法進(jìn)行輻射測量的可行性。 接著,詳細(xì)論述基于ARM7 LPC2132處理器的Time-To-Count輻射測量儀的原理、功能、特點(diǎn)以及輻射測量儀的各部分接口電路設(shè)計(jì)及相關(guān)程序的編制。 最后得出結(jié)論,通過高速32位ARM處理器的使用,Time-To-Count輻射測量儀的精度和量程均得到很大的提高,對于Y射線總量測量,使用了ARM處理器的Time-To-Count輻射測量儀的量程約為20 u R/h到1R/h,數(shù)據(jù)線性程度也比以前的Time-To-CotJnt輻射測量儀要好。所以在使用Time-To-Count方法進(jìn)行的輻射測量時(shí),如何減少雜質(zhì)時(shí)間以及如何提高計(jì)數(shù)前時(shí)間的測量精度,是決定Time-To-Count輻射測量儀性能的關(guān)鍵因素。實(shí)驗(yàn)用三只相同型號的J33G-M計(jì)數(shù)管分別作為探測元件,在100U R/h到lR/h的輻射場中進(jìn)行試驗(yàn).每個(gè)測量點(diǎn)測量5次取平均,得出隨著照射量率的增大,輻射強(qiáng)度R的測量值偏小且與輻射真實(shí)值之間的誤差也隨之增大。如果將測量誤差限定在10%的范圍內(nèi),則此儀器的量程范圍為20 u R/h至1R/h,量程跨度近六個(gè)數(shù)量級。而用J33型G-M計(jì)數(shù)管作常規(guī)的脈沖測量,量程范圍約為50 u R/h到5000 u R/h,充分體現(xiàn)了運(yùn)用Time-To-Count方法測量輻射強(qiáng)度的優(yōu)越性,也從另一個(gè)角度反應(yīng)了隨著計(jì)數(shù)前時(shí)間的逐漸減小,雜質(zhì)時(shí)間在其中的比重越來越大,對測量結(jié)果的影響也就越來越嚴(yán)重,盡可能的減小雜質(zhì)時(shí)間在Time-To-Count方法輻射測量特別是測量高強(qiáng)度輻射中是關(guān)鍵的。筆者用示波器測出此輻射儀器的雜質(zhì)時(shí)間約為6.5 u S,所以在計(jì)算定時(shí)器值的時(shí)候減去這個(gè)雜質(zhì)時(shí)間,可以增加計(jì)數(shù)前時(shí)間的精確度。通過實(shí)驗(yàn)得出,在標(biāo)定儀器的K值時(shí),應(yīng)該在照射量率較低的條件下行,而測得的計(jì)數(shù)前時(shí)間是否精確則需要在照射量率較高的條件下通過儀器標(biāo)定來檢驗(yàn)。這是因?yàn)樵谡丈淞柯瘦^低時(shí),計(jì)數(shù)前時(shí)間較大,雜質(zhì)時(shí)間對測量結(jié)果的影響不明顯,數(shù)據(jù)線斜率較穩(wěn)定,適宜于確定標(biāo)定系數(shù)K值,而在照射量率較高時(shí),計(jì)數(shù)前時(shí)間很小,雜質(zhì)時(shí)間對測量結(jié)果的影響較大,可以明顯的在數(shù)據(jù)線上反映出來,從而可以很好的反應(yīng)出儀器的性能與量程。實(shí)驗(yàn)證明了Time-To-Count測量方法中最為關(guān)鍵的環(huán)節(jié)就是如何對計(jì)數(shù)前時(shí)間進(jìn)行精確測量。經(jīng)過對大量實(shí)驗(yàn)數(shù)據(jù)的分析,得到計(jì)數(shù)前時(shí)間中的雜質(zhì)時(shí)間可分為硬件雜質(zhì)時(shí)間和軟件雜質(zhì)時(shí)間,并以軟件雜質(zhì)時(shí)間為主,通過對程序進(jìn)行合理優(yōu)化,軟件雜質(zhì)時(shí)間可以通過程序的改進(jìn)而減少,甚至可以用數(shù)學(xué)補(bǔ)償?shù)姆椒▉淼窒瑥亩梢缘玫奖容^精確的計(jì)數(shù)前時(shí)間,以此得到較精確的輻射強(qiáng)度值。對于本輻射儀,用戶可以選擇不同的工作模式來進(jìn)行測量,當(dāng)輻射場較弱時(shí),通常采用規(guī)定次數(shù)測量的方式,在輻射場較強(qiáng)時(shí),應(yīng)該選用定時(shí)測量的方式。因?yàn)椋?dāng)輻射場較弱時(shí),如果用規(guī)定次數(shù)測量的方式,會(huì)浪費(fèi)很多時(shí)間來采集足夠的脈沖信號。當(dāng)輻射場較強(qiáng)時(shí),由于輻射粒子很多,產(chǎn)生脈沖的頻率就很高,規(guī)定次數(shù)的測量會(huì)加大測量誤差,當(dāng)選用定時(shí)測量的方式時(shí),由于時(shí)間的相對加長,所以記錄的粒子數(shù)就相對的增加,從而提高儀器的測量精度。通過調(diào)研國內(nèi)外先進(jìn)核輻射測量儀器的發(fā)展現(xiàn)狀,了解到了目前最新的核輻射總量測量技術(shù)一Time-To-Count理論及其應(yīng)用情況。論證了該新技術(shù)的理論原理,根據(jù)此原理,結(jié)合高速處理器ARM7 LPC2132,對以G-計(jì)數(shù)管為探測元件的Time-To-Count輻射測量儀進(jìn)行設(shè)計(jì)。論文以實(shí)驗(yàn)的方法論證了Time-To-Count原理測量核輻射方法的科學(xué)性,該輻射儀的量程和精度均優(yōu)于以前以脈沖計(jì)數(shù)為基礎(chǔ)理論的MCS-51核輻射測量儀。該輻射儀具有量程寬、精度高、易操作、用戶界面友好等優(yōu)點(diǎn)。用戶可以定期的對儀器的標(biāo)定,來減小由于電子元件的老化對低儀器性能參數(shù)造成的影響,通過Time-To-Count測量方法的使用,可以極大拓寬G-M計(jì)數(shù)管的量程。就儀器中使用的J33型G-M計(jì)數(shù)管而言,G-M計(jì)數(shù)管廠家參考線性測量范圍約為50 u R/h到5000 u R/h,而用了Time-To-Count測量方法后,結(jié)合高速微處理器ARM7 LPC2132,此核輻射測量儀的量程為20 u R/h至1R/h。在允許的誤差范圍內(nèi),核輻射儀的量程比以前基于MCS-51的輻射儀提高了近200倍,而且精度也比傳統(tǒng)的脈沖計(jì)數(shù)方法要高,測量結(jié)果的線性程度也比傳統(tǒng)的方法要好。G-M計(jì)數(shù)管的使用壽命被大大延長。 綜上所述,本文取得了如下成果:對國內(nèi)外Time-To-Count方法的研究現(xiàn)狀進(jìn)行分析,指出了Time-To-Count測量方法的基本原理,并對Time-T0-Count方法理論進(jìn)行了分析,推導(dǎo)出了計(jì)數(shù)前時(shí)間和兩個(gè)相鄰輻射粒子時(shí)間間隔之間的關(guān)系,從數(shù)學(xué)的角度論證了Time-To-Count方法的科學(xué)性。詳細(xì)說明了基于ARM 7 LPC2132的Time-To-Count輻射測量儀的硬件設(shè)計(jì)、軟件編程的過程,通過高速微處理芯片LPC2132的使用,成功完成了對基于MCS-51單片機(jī)的Time-To-Count測量儀的改進(jìn)。改進(jìn)后的輻射儀器具有量程寬、精度高、易操作、用戶界面友好等特點(diǎn)。本論文根據(jù)實(shí)驗(yàn)結(jié)果總結(jié)出了Time-To-Count技術(shù)中的幾點(diǎn)關(guān)鍵因素,如:處理器的頻率、計(jì)數(shù)前時(shí)間、雜質(zhì)時(shí)間、采樣次數(shù)和測量時(shí)間等,重點(diǎn)分析了雜質(zhì)時(shí)間的組成以及引入雜質(zhì)時(shí)間的主要因素等,對國內(nèi)核輻射測量儀的研究具有一定的指導(dǎo)意義。
標(biāo)簽: TimeToCount ARM 輻射測量儀
上傳時(shí)間: 2013-06-24
上傳用戶:pinksun9
機(jī)械手是自動(dòng)裝配生產(chǎn)線上必不可少的設(shè)備,它可以模擬人手臂的部分動(dòng)作,按預(yù)定的程序、軌跡和要求,實(shí)現(xiàn)抓取、搬運(yùn)和裝配等工作。在減輕人的勞動(dòng)強(qiáng)度和提高裝配質(zhì)量和在惡劣環(huán)境下作業(yè)等方面,起到了積極的作用。嵌入式系統(tǒng)是近年來發(fā)展起來的以應(yīng)用為中心并且軟硬件可裁剪的實(shí)時(shí)系統(tǒng),它的特點(diǎn)是高度自動(dòng)化,響應(yīng)速度快等,非常適合于要求實(shí)時(shí)的和多任務(wù)的場合。 本文分析了機(jī)械手控制系統(tǒng)的功能要求,研究設(shè)計(jì)了一種基于ARM和DSP的機(jī)械手?jǐn)?shù)控系統(tǒng)的方案。嵌入式ARM處理器,具有運(yùn)行速度快、功耗低、程序設(shè)計(jì)靈活、外圍硬件資源豐富等優(yōu)點(diǎn),但其很難在處理大數(shù)據(jù)量、復(fù)雜算法時(shí)保證系統(tǒng)的靈活性和實(shí)時(shí)性。DSP作為數(shù)字信號處理的核心器件,能夠?qū)崟r(shí)快速的完成控制算法運(yùn)算,由于DSP普通輸入輸出口的高低電平變化周期最快只能到1微秒左右,不適合高速輸入輸出;FPGA芯片高速輸入輸出數(shù)據(jù),時(shí)間可縮短至幾十納秒。另外利用FPGA可以方便的實(shí)現(xiàn)各種接口的邏輯時(shí)序,豐富的接口使得該系統(tǒng)能夠方便的進(jìn)行移植,擴(kuò)展了該系統(tǒng)的應(yīng)用領(lǐng)域,從而提升了其性價(jià)比,通過ARM處理器和DSP以及FPGA技術(shù)的有機(jī)結(jié)合,發(fā)揮各自的優(yōu)勢,使系統(tǒng)具有程序設(shè)計(jì)靈活、以太網(wǎng)通信、大容量存儲(chǔ)、高速數(shù)據(jù)輸出、可移植等特點(diǎn),既滿足高速機(jī)械手自動(dòng)控制的要求,同時(shí)又具有一定的通用性。 通過本課題實(shí)踐表明,基于ARM和DSP構(gòu)建嵌入式數(shù)控系統(tǒng)的應(yīng)用方案全可行、合理,同傳統(tǒng)的人機(jī)交互系統(tǒng)設(shè)計(jì)相比,能大量地減輕研發(fā)任務(wù),提高發(fā)速度,能夠在短時(shí)間內(nèi)得到控制性能優(yōu)秀的數(shù)控系統(tǒng)。
標(biāo)簽: ARM DSP 數(shù)控 系統(tǒng)研究
上傳時(shí)間: 2013-06-11
上傳用戶:康郎
隨著現(xiàn)代控制技術(shù)的飛速發(fā)展和傳統(tǒng)工業(yè)改造的逐步實(shí)現(xiàn),能夠獨(dú)立工作的溫度檢測和顯示系統(tǒng)已經(jīng)應(yīng)用于諸多領(lǐng)域。傳統(tǒng)的溫度監(jiān)測系統(tǒng)可靠性和實(shí)時(shí)性相對較差,溫度測量的精度和準(zhǔn)確度較低,而且大多采用有線方式對整個(gè)系統(tǒng)進(jìn)行控制,這不利于應(yīng)用的擴(kuò)展。近年來,嵌入式系統(tǒng)和無線通信技術(shù)(特別是短消息業(yè)務(wù))受到遠(yuǎn)程監(jiān)測領(lǐng)域研究者的密切關(guān)注,成為一個(gè)研究熱點(diǎn)。本文提出了一種將帶有I2C總線的ARM嵌入式微處理器和短消息業(yè)務(wù)(SMS)用于溫度檢測系統(tǒng)中的方法,實(shí)現(xiàn)了溫度的多點(diǎn)監(jiān)測。本文的主要研究內(nèi)容如下: (1)多點(diǎn)溫度監(jiān)測系統(tǒng)硬件設(shè)計(jì)。采用以ARM微處理器LPC2290芯片為核心的嵌入式工控板,通過對Benq無線通信模塊M22的控制,接收并識(shí)別監(jiān)測中心發(fā)過來的短消息內(nèi)容,實(shí)現(xiàn)了多點(diǎn)溫度的采集及顯示;采用八個(gè)帶有I2C總線接口的數(shù)字溫度傳感器LM75,組成八點(diǎn)溫度采集電路:利用帶有I2C總線接口的LED驅(qū)動(dòng)器件ZLG7290及共陰式數(shù)碼管為溫度顯示電路,保證了溫度測量的精度和準(zhǔn)確度。 (2)多點(diǎn)溫度監(jiān)測系統(tǒng)軟件設(shè)計(jì)。根據(jù)整個(gè)監(jiān)測系統(tǒng)的特點(diǎn),提出了軟件設(shè)計(jì)的總體思路,并以ADS1.2為集成開發(fā)環(huán)境,將μC/OS-Ⅱ嵌入式操作系統(tǒng)的相關(guān)代碼移植到LPC2290中;采用分層體系思想,使用標(biāo)準(zhǔn)C語言編寫程序,結(jié)合嵌入式操作系統(tǒng)的任務(wù)管理、信號量等機(jī)制,并調(diào)用相關(guān)的應(yīng)用程序接口函數(shù)(API函數(shù)),設(shè)計(jì)了包括溫度采集、溫度顯示、短消息接收與發(fā)送等多個(gè)子程序。 (3)監(jiān)測中心軟件設(shè)計(jì)。為了增強(qiáng)系統(tǒng)控制和數(shù)據(jù)管理功能,使用Visual C++6.0及ADO數(shù)據(jù)庫技術(shù)編寫了監(jiān)測中心軟件人機(jī)交互界面,通過串口使另一M22無線通信模塊同監(jiān)測中心上位機(jī)的通信,實(shí)現(xiàn)了在PC機(jī)上發(fā)送短消息指令對下位機(jī)進(jìn)行遠(yuǎn)程控制,并將接收到的數(shù)據(jù)存儲(chǔ)在Access數(shù)據(jù)庫中以便分析處理。 嵌入式技術(shù)和短消息業(yè)務(wù)在一定程度上提高了多點(diǎn)溫度監(jiān)測系統(tǒng)的測量精度、可靠性、穩(wěn)定性和實(shí)時(shí)性,對改進(jìn)遠(yuǎn)程監(jiān)測系統(tǒng)的控制方式和數(shù)據(jù)傳輸方式有一定的意義,也為對嵌入式應(yīng)用項(xiàng)目的開發(fā)奠定了基礎(chǔ)。
標(biāo)簽: ARM 多點(diǎn) 溫度監(jiān)測 系統(tǒng)設(shè)計(jì)
上傳時(shí)間: 2013-07-08
上傳用戶:feichengweoayauya
現(xiàn)代自動(dòng)化生產(chǎn)技術(shù)迅猛發(fā)展,對保證其產(chǎn)品質(zhì)量的檢測技術(shù)也提出了更高的要求,許多傳統(tǒng)的檢測手段已不能滿足現(xiàn)代化大生產(chǎn)的需求.而在計(jì)算機(jī)視覺理論基礎(chǔ)上發(fā)展起來的視覺檢測技術(shù)以其高精度、非接觸、自動(dòng)化程度高等優(yōu)點(diǎn)滿足了現(xiàn)代生產(chǎn)過程在線檢測的要求,逐漸由實(shí)驗(yàn)室走向工業(yè)現(xiàn)場,得到了日益廣泛的應(yīng)用.隨著現(xiàn)代生產(chǎn)節(jié)拍的不斷加快,以及檢測節(jié)點(diǎn)的增多,處理數(shù)據(jù)量的增大,對視覺檢測系統(tǒng)的測量速度提出了更高的要求,而在現(xiàn)有的檢測系統(tǒng)中,實(shí)現(xiàn)100%實(shí)時(shí)在線檢測的關(guān)鍵問題是提高視覺圖像的處理速度,從而提高整個(gè)視覺檢測系統(tǒng)的處理速度.因此該文提出基于FPGA的高速圖像處理系統(tǒng)的設(shè)計(jì)方案,得到了國家"十五"攻關(guān)項(xiàng)目"光學(xué)數(shù)碼柔性通用坐標(biāo)測量機(jī)"的資助.該文針對以下三個(gè)方面進(jìn)行研究并取得一定的成果:(一)高速圖像處理硬件解決方案的研究通過分析現(xiàn)有的幾種實(shí)現(xiàn)高速圖像處理的方法的優(yōu)缺點(diǎn),提出了基于現(xiàn)場可編程邏輯器件FPGA(Field Programmable Gate Array)技術(shù)的高速圖像處理系統(tǒng)的方案,并構(gòu)建了其硬件平臺(tái).(二)基于USB總線的通訊采用USB專用接口芯片,實(shí)現(xiàn)高速圖像處理系統(tǒng)與PC機(jī)的通訊驗(yàn)證硬件設(shè)計(jì)的正確性.(三)基于FPGA的圖像處理的研究分析圖像處理的特點(diǎn)及其基本的方法,初步研究了基于FPGA的圖像低層次處理的硬件化方法的實(shí)現(xiàn).
上傳時(shí)間: 2013-04-24
上傳用戶:tb_6877751
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1