21世紀,人類面臨著實現(xiàn)經濟和社會可持續(xù)發(fā)展的重大挑戰(zhàn),能源問題越來越突出,太陽能等可再生能源逐漸成為人類關注的焦點。時至今日,人類對光伏系統(tǒng)的研究越來越深入廣泛,但在光伏系統(tǒng)的研發(fā)過程中,太陽能電池由于受日照強度、環(huán)境溫度影響較大,導致實驗成本過高,研發(fā)周期變長。太陽能電池陣列模擬器便能較好地解決這一問題。 @@ 本文首先對比了模擬式太陽能電池模擬器和數(shù)字式太陽能電池模擬器的優(yōu)缺點,選取了數(shù)字式太陽能電池陣列模擬器作為研究對象,并對研究太陽能電池陣列模擬器的實際意義作了闡述。隨后描述了太陽能電池的輸出特性,討論了適合工程計算的太陽能電池陣列數(shù)學物理模型。 @@ 本文研究的太陽能電池陣列模擬器由功率電路和控制電路兩部分組成。功率電路選取了半橋型DC/DC電路作為主電路拓撲,對其工作過程進行了分析,并對各部分電路進行了設計。然后設計了電壓電流雙閉環(huán)調節(jié)器,在此基礎之上用PSIM仿真軟件對所設計的太陽能電池陣列模擬器進行了仿真,包括靜態(tài)工作點的仿真以及動態(tài)響應速度的仿真,通過仿真驗證了模擬器能夠達到所要求指標。 @@ 控制電路板是整個模擬器的核心控制部分,通過控制運算提供輸出電壓的參考值,進而提供控制功率管開通關斷的PWM信號。本文選取了microchip公司的dsPIC30F2023作為主控制芯片,分析了該型號微處理芯片的性能特點,介紹了模擬信號采樣電路、232通訊電路、人機交互界面電路等外圍電路的硬件設計,調節(jié)器采用了數(shù)字PID控制。 @@ 在MPLAB集成開發(fā)環(huán)境中進行了軟件方案的設計,主要包括主程序、生成PWM程序、AD采樣、故障處理、人機交互程序等,介紹了各個模塊的程序流程。 @@ 軟硬件系統(tǒng)設計完成后,最終實現(xiàn)了太陽能電池陣列模擬器,可以為光伏系統(tǒng)的研究提供一個良好的實驗平臺。 @@關鍵詞:太陽能電池陣列模擬器;半橋型DC/DC變換器;dsPIC30F2023
上傳時間: 2013-07-28
上傳用戶:cceezzpp
風能作為一種清潔可再生能源,迅速發(fā)展,已經成為世界新能源最主要的發(fā)展方向之一。風力發(fā)電系統(tǒng)按照容量可以分為小型風力發(fā)電系統(tǒng)和大型風力發(fā)電系統(tǒng),按照是否并網又分為離網系統(tǒng)和并網系統(tǒng),文章著重研究小型并網風力發(fā)電系統(tǒng)。 本文在分析國內外風力發(fā)電系統(tǒng)的現(xiàn)狀以及風電產業(yè)現(xiàn)狀的基礎上,研究了風力發(fā)電系統(tǒng)的總體結構、風力機的主要機型以及發(fā)電系統(tǒng)的分類。通過研究風力機和永磁同步發(fā)電機各自的特性,基于它們的數(shù)學模型分別建立了各自的仿真模型?;谏鲜龇抡婺P?,分別建立了整個電壓源型逆變器并網風力發(fā)電系統(tǒng)和電流源型逆變器并網風力發(fā)電系統(tǒng)的仿真模型。 在風力發(fā)電并網系統(tǒng)中,并網逆變器是核心部分,可以分為電流源型逆變器和電壓源型逆變器。本文研究了三相電壓源型逆變器實現(xiàn)并網所采用的控制方法,包括空間矢量調制法和鎖相環(huán)技術。針對電流源型并網逆變器風力發(fā)電系統(tǒng),研究了PWM電流源型整流器的空間矢量調制和PWM電流源型逆變器的三種脈寬調制策略。 文中電壓源型逆變器并網風力發(fā)電系統(tǒng)的仿真模型,采用BOOST變換器穩(wěn)定逆變器輸入直流電壓,采用SPWM方法控制電壓源型逆變器實現(xiàn)風機的并網;在電流源型逆變器并網風力發(fā)電系統(tǒng)仿真模型中,用空間矢量調制方法控制PWM電流源型整流器和用SPWM控制電流源型逆變器的方法實現(xiàn)了系統(tǒng)的并網。本文對采用的控制方法進行了仿真驗證,比較了兩種并網系統(tǒng)的并網優(yōu)缺點,最后對兩種并網逆變器的區(qū)別進行了總結。
標簽: 并網 仿真研究 風力發(fā)電系統(tǒng)
上傳時間: 2013-06-29
上傳用戶:wyaqy
在能源枯竭與環(huán)境污染問題日益嚴重的今天,新能源的開發(fā)與利用愈來愈受到重視。太陽能是當前世界上最清潔、最現(xiàn)實、最有大規(guī)模開發(fā)利用前景的可再生能源之一。其中太陽能光伏利用受到世界各國的普遍關注。而太陽能光伏并網發(fā)電是太陽能光伏利用的主要發(fā)展趨勢,必將得到快速的發(fā)展。在并網型光伏發(fā)電系統(tǒng)中,逆變器是系統(tǒng)中最末一級或唯一一級能量變換裝置,其效率的高低、可靠性的好壞將直接影響整個并網型系統(tǒng)的性能和投資。按照不同的標準光伏并網逆變器的拓撲結構分為很多種,本文主要研究單相非隔離型光伏并網逆變器。 文章首先概述了光伏并網系統(tǒng)的發(fā)展情況并分析了當前國際金融危機對光伏產業(yè)的影響。其次,分析了當前國際市場上主要的光伏逆變器產品的特點,概括了光伏并網系統(tǒng)中光伏陣列的配置。隨后,本文以單相全橋拓撲為模型分析了非隔離型并網系統(tǒng)在采用不同的PWM調制策略下的共模電流,指出了抑制共模電流需滿足的條件。對于全橋和半橋拓撲,分析了不同的濾波方式對共模電流抑制的影響??偨Y了能夠抑制共模電流的實用電路拓撲并提出了一種能夠抑制共模電流的新拓撲。對不同拓撲的損耗情況在文章中進行了比較。 對于非隔離型并網系統(tǒng)中的逆變器易向電網注入直流分量的問題,首先分析了直流分量產生的原因及其導致變壓器產生的直流偏磁飽和現(xiàn)象。在此基礎上,總結了抑制直流分量的方法,指出了半橋拓撲能夠抑制直流分量。對于并網電流的控制,工程上通常采用比例積分控制器,而比例積分控制器在理論上無法實現(xiàn)無靜差控制,因此,本文對能夠實現(xiàn)無靜差控制的比例諧振控制器進行了簡要分析。最后,在非隔離型1.5kW實驗平臺上對共模電流和直流分量的抑制方法進行了驗證。
上傳時間: 2013-07-30
上傳用戶:科學怪人
在能源枯竭與環(huán)境污染問題日益嚴重的今天,風力發(fā)電已經成為綠色可再生能源的一個重要途徑。雙饋電機變速恒頻(VSCF)發(fā)電是通過對轉子繞阻的控制來實現(xiàn)的,而轉子回路流動的功率是由發(fā)電機運行范圍所決定的轉差功率,因而可以將發(fā)電機的同步轉速設定在整個運行范圍的中間。如果系統(tǒng)運行的轉差率范圍為±30%,則最大轉差功率僅為發(fā)電機額定功率的30%,因此交流勵磁變換器的容量可大大減小,從而降低成本。該變換器如果加上良好的控制策略,則系統(tǒng)運行將具有優(yōu)越的穩(wěn)態(tài)和暫態(tài)運行性能,非常適用于風能這種隨機性強的能源形式。本文對變速恒頻雙饋機風力發(fā)電系統(tǒng)的若干關鍵技術,如空載柔性并網、帶載柔性并網、解列控制、最大功率點跟蹤、電網電壓不平衡運行、低電壓故障穿越等問題進行了深入研究,論文的主要工作如下: 根據(jù)交流勵磁變速恒頻風力發(fā)電的運行特點,將電網電壓定向的矢量控制方法應用在雙饋發(fā)電機的并網發(fā)電控制上。研究了一種基于電網電壓定向的雙饋機變速恒頻風力發(fā)電柔性并網控制策略,在變速條件下實現(xiàn)無電流沖擊并網和輸出有功、無功功率的解耦控制,建立了交流勵磁發(fā)電機柔性并網及穩(wěn)態(tài)運行的控制模型,對柔性并網及其逆過程的解列分別進行了仿真和實驗研究。 提出了一種以向電網輸送凈電能最多為目標的最大功率點跟蹤控制策略,在不檢測風速情況下,能夠自動尋找并跟隨最大功率點,且不依賴風力機最佳功率特性曲線,提高了發(fā)電系統(tǒng)的凈輸出能力,具有良好的動、靜態(tài)性能。仿真和實驗結果證明了本控制策略的正確性和有效性。 對網側變換器分別進行了幅相控制和直接電流控制策略的研究。結果表明:幅相控制策略簡單實用,可以得到正弦波電流,且波形諧波小,實現(xiàn)了單位功率因數(shù)運行,但響應速度相對較慢;而直接電流控制策略具有網側電流閉環(huán)控制,使網側電流動、靜態(tài)性能得到提高,實現(xiàn)對系統(tǒng)參數(shù)的不敏感,增強了電流控制系統(tǒng)的魯棒性,但算法相對復雜。 在電網不平衡條件下,如果以傳統(tǒng)的電網電壓平衡控制策略設計PWM整流器,會使系統(tǒng)出現(xiàn)不正常的運行狀態(tài)。為了提高三相PWM整流器的運行性能,本文對電網電壓不平衡情況下三相PWM整流器運行控制策略進行了改進,研究了消除負序電流和抑制輸入功率二次諧波的控制策略,實現(xiàn)了線電流正弦、負序輸入電流為零及總無功功率輸入為最小的目標。 為了提高VSCF風力發(fā)電系統(tǒng)的運行能力,本文對電網故障時雙饋風力發(fā)電系統(tǒng)低電壓穿越控制(LVRT)進行了研究,在不改變系統(tǒng)硬件結構的情況下,通過改變勵磁控制策略來實現(xiàn)LVRT;在電網故障時使電機和變換器安全穿越故障,保持不脫網運行,提高系統(tǒng)的穩(wěn)定性和安全性。
上傳時間: 2013-07-09
上傳用戶:leileiq
隨著全球能源危機和環(huán)境污染問題的日益嚴重,開發(fā)利用清潔的可再生能源勢在必行。太陽能是當前世界上最清潔、最現(xiàn)實、大規(guī)模開發(fā)利用最有前景的可再生能源之一。其中太陽能光伏利用受到世界各國的普遍關注,而太陽能光伏并網發(fā)電是太陽能光伏利用的主要發(fā)展趨勢,必將得到快速的發(fā)展。此外,高性能的數(shù)字信號處理芯片(DSP)的出現(xiàn),使得一些先進的控制策略應用于光伏并網逆變器成為可能。本論文就是在此背景下,對太陽能并網發(fā)電系統(tǒng)中的核心器件并網逆變器進行了較為深入的研究,具有重要的現(xiàn)實意義。 太陽能光伏并網發(fā)電系統(tǒng)的兩個核心部分是太陽能電池板的最大功率點跟蹤(MPPT)控制和光伏并網逆變控制。 首先,本文對太陽能電池的工作原理及工作特性進行介紹,詳細分析太陽能電池工作的等效電路和數(shù)學模型。 其次,本文對幾種傳統(tǒng)的最大功率點跟蹤(MPPT)控制算法進行了研究、分析和比較,提出各自優(yōu)缺點?;谧畲蠊β矢欉^程的快速性和穩(wěn)定性,設計采用改進的間歇掃描法來實現(xiàn)光伏發(fā)電系統(tǒng)中太陽能電池的最大功率輸出,以提高系統(tǒng)的性能和最大功率點跟蹤速度。 再次,針對既可獨立運行又可并網運行的單相光伏逆變器,本文采用有效值外環(huán)、瞬時值內環(huán)的控制方法,既保證了逆變器輸出的靜態(tài)誤差為零,又保證了逆變器良好的輸出波形。給出了同時滿足獨立和并網兩種運行模式的輸出濾波器結構和元件參數(shù)的計算過程,并通過仿真和實驗驗證了設計的合理性。 隨后,詳細討論了并網過程中的軟件鎖相環(huán)技術,對鎖相環(huán)電路的組成、工作原理進行了研究,實驗結果表明此方法可靠有效,能使逆變器輸出電流與電網電壓完全同相,達到功率因數(shù)為1的目的。 最后,采用TI公司的TMS320LF2407A作為主控芯片,研制完成1.5kW實驗樣機,分別得出了獨立運行和并網運行時的實驗結果,結果表明,所采用的控制策略和設計的硬件電路能夠滿足設計要求,系統(tǒng)可安全、穩(wěn)定運行。
上傳時間: 2013-05-18
上傳用戶:uuuuuuu
由于世界能源危機的日益嚴重和全球環(huán)境的不斷惡化,大規(guī)模開發(fā)清潔可再生能源成為當前能源戰(zhàn)略的主要方向。太陽能作為當前世界上最清潔、最現(xiàn)實、最有大規(guī)模開發(fā)利用前景的可再生能源之一,得到了各界的廣泛關注。在太陽能的利用中,光伏發(fā)電并網又是其主要發(fā)展方向之一。 由于光伏產業(yè)界目前還沒有統(tǒng)一的標準,又因為功率等級及應用場合的不同,使各種拓撲結構的光伏并網變流器都得以嘗試使用。本文就是在此背景下,對當前使用的各類光伏并網變流器的拓撲結構和控制方法進行比較,并結合光伏并網系統(tǒng)實際應用中暴露的主要缺陷,從適應光伏陣列輸出特性和提高系統(tǒng)整體的可靠性兩方面入手,提出Z-source變換器結合PWM整流器的拓撲結構。 文章首先介紹了光伏并網系統(tǒng)中并網變流器的三種隔離回路方式,及應用于小功率和中大功率場合的不同主電路拓撲結構及控制策略,比較其優(yōu)缺點,提出了Z-source變換器結合PWM整流組成的光伏發(fā)電系統(tǒng)。這種拓撲結構可以減小系統(tǒng)中電解電容的體積容量,并解決由太陽能電池板輸出電壓大范圍變化所帶來一系列問題,同時可以在一定程度上改善系統(tǒng)的可靠性問題。其次,文中分析介紹了Z-source變換器的工作原理,對比了三種升壓控制的實現(xiàn)方式和性能差異,并簡述了逆變器的三種SPWM電流控制策略及其優(yōu)缺點。最后,結合整體系統(tǒng)需要,將Z-source變換器的升壓控制與PWM整流器的并網控制融合,提出完成逆變并網功能和最大功率點跟蹤的控制思想。 根據(jù)上述分析和研究,選定整體光伏系統(tǒng)的硬件結構和控制方案。詳細闡述了系統(tǒng)硬件部分的設計計算,提供了系統(tǒng)主電路結構、參數(shù)計算、元件選型和控制電路的設計的詳細說明,并完成了主電路硬件的制作。根據(jù)空間狀態(tài)方程法對光伏發(fā)電系統(tǒng)進行仿真建模,仿真模型包括主電路拓撲及各控制子模塊,文中簡要說明各控制模塊的功能,給出仿真結果并進行分析。驗證該系統(tǒng)可以較好的實現(xiàn)本文提出的控制方案所應完成的各項功能,系統(tǒng)工作穩(wěn)定可靠,性能良好。
上傳時間: 2013-07-12
上傳用戶:asd_123
光伏發(fā)電是集開發(fā)可再生能源、改善生態(tài)環(huán)境于一體的重大課題,有巨大的經濟、社會效益和學術研究價值。 本文首先介紹了3kW光伏并網逆變器系統(tǒng)的組成和結構。3kW光伏并網逆變器采用兩級式結構,主電路由前級Boost變換器和后級的單相逆變橋組成??刂撇糠忠訢SP(DSP56F803)為核心,實現(xiàn)了光伏陣列最大功率點的跟蹤控制,以及產生與電網壓同頻同相的正弦電流,實現(xiàn)并網的功能。本文重點對逆變器系統(tǒng)的最大功率點跟蹤(MPPT)控制進行研究。 針對基于外特性建立的光伏陣列模型雖然簡單、參數(shù)易解,但精度低的問題,本文建立了基于物理特性的光伏陣列模型,并考慮光照強度、環(huán)境溫度對光伏陣列的影響,模型參數(shù)與實際參數(shù)嚴格對應。將幾種最大功率點跟蹤算法應用于所建立的光伏陣列模型使用MATLAB進行仿真,分析仿真結果,比較各種算法的優(yōu)缺點,總結出每種算法所適用的環(huán)境,并給出了最大功率點跟蹤控制在并網逆變器系統(tǒng)的實現(xiàn)策略。 設計了適用于額定功率為100W的光伏陣列最大功率點跟蹤的Boost電路,分別給出了利用PIC單片機16F873實現(xiàn)擾動觀察法和增量電導法的程序流程圖,實現(xiàn)了這兩種算法控制下光伏陣列的最大功率點跟蹤,并分析了兩種算法的跟蹤性能。
上傳時間: 2013-04-24
上傳用戶:fudong911
近年來,世界各國競相發(fā)展綠色可再生能源,太陽能因其潔凈、儲量巨大等優(yōu)點倍受青睞。在太陽能的各種應用中,光伏發(fā)電倍受關注。隨著光伏組件價格的不斷降低和電力電子技術的發(fā)展,光伏發(fā)電的系統(tǒng)容量和變換設備的轉換效率不斷增加,體積逐漸減小,對光伏發(fā)電系統(tǒng)相關設備的設計和制造提出了新的要求。 本文從提高光伏發(fā)電系統(tǒng)整體效率的角度出發(fā),以光伏發(fā)電系統(tǒng)中電能變換裝置作為研究目標,研究光伏發(fā)電中的關鍵性技術之一——光伏陣列的最大功率點跟蹤技術。主要研究適用于光伏發(fā)電系統(tǒng)的最大功率點跟蹤變換器的拓撲;研究光伏發(fā)電系統(tǒng)的最大功率點跟蹤變換器的控制方法。論文在分析研究光伏電池的工作原理及輸出特性的基礎上,分析研究了幾種基于DC/DC變換器的最大功率跟蹤算法及各自優(yōu)缺點和適用場合。在拓撲研究方面,分析研究了Buck、Boost和全橋電路應用于光伏發(fā)電中的優(yōu)缺點以及適用的最佳功率等級,并對這三種電路的功率損耗進行分析,通過仿真進行驗證。探討了把軟開關技術、三電平技術應用于光伏發(fā)電系統(tǒng)的可行性,并詳細分析了應用于光伏發(fā)電系統(tǒng)的移相全橋ZVS DC/DC變換器電路的換流過程。在理論分析的基礎上,論文設計實現(xiàn)了應用移相全橋軟開關DC/DC變換電路作為主電路的MPPT變換器,構建了1000W小型獨立光伏發(fā)電系統(tǒng),進行仿真和實驗,對實驗結果進行損耗分析。證實了移相全橋ZVS DC/DC變換電路作為中小型光伏發(fā)電系統(tǒng)的前級變換器,可以在實現(xiàn)太陽能光伏陣列的最大功率點跟蹤的同時,保證開關管實現(xiàn)軟開關,從而提高了系統(tǒng)的轉換效率和功率密度。
標簽: 光伏發(fā)電系統(tǒng) 關鍵技術
上傳時間: 2013-05-23
上傳用戶:huannan88
在能源枯竭及環(huán)境污染問題日益嚴重的今天,光伏發(fā)電是未來可再生能源應用的一種重要方法。本文以光伏逆變技術為研究對象,對光伏系統(tǒng)最大功率點跟蹤方法、光伏智能充電控制策略、光伏并網系統(tǒng)拓撲結構與控制方法、光伏并網與有源濾波統(tǒng)一控制方法等問題進行了深入研究。 在擾動觀測法的基礎上,提出了一種直接電流控制最大功率點跟蹤方法,通過檢測變換器輸出電流進行最大功率點跟蹤控制,簡化控制算法,同時省去了擾動觀測法中的電壓和電流傳感器,降低系統(tǒng)成本。 研究了一種實用的光伏系統(tǒng)蓄電池充電控制策略,將最大功率點跟蹤與智能充電控制有機結合在一起,充分利用光伏電池的輸出功率,縮短充電時間,提高充電效率;研究了一種全數(shù)字式逆變器,通過電壓有效值外環(huán)和瞬時值內環(huán)的雙閉環(huán)控制,既能保證系統(tǒng)輸出電壓的穩(wěn)態(tài)精度,又能保證瞬變負載條件下的動態(tài)特性。研制了一套3kW光伏獨立發(fā)電系統(tǒng)并進行了實驗驗證。 針對住宅型光伏并網逆變器體積小、性能價格比高的要求,研究了一種基于導抗變換器的并網逆變器拓撲結構,相比于傳統(tǒng)電流型逆變器,本拓撲省去了笨重的電抗器,同時利用高頻變壓器進行能量傳遞和電氣隔離,進一步降低了系統(tǒng)損耗和體積,降低系統(tǒng)成本。 經研究發(fā)現(xiàn),由于導抗變換器的固有特性,采用傳統(tǒng)的SPWM調制方法將導致并網逆變器輸出平頂飽和的非正弦電流,造成對電網的諧波污染,提出了一種新型改進調制模式。該方法可以實現(xiàn)高功率因數(shù)、低諧波并網發(fā)電。根據(jù)上述理論分析,研制了一臺3kW單相光伏并網逆變器,實驗結果驗證了理論分析的正確性。 研究了一種三相電流型并網逆變器拓撲結構及其控制方法,采用改進調制模式對其進行控制,在諧波抑制方面取得了滿意的效果。提出的三相并網逆變方案,相比于傳統(tǒng)三相并網逆變器,具有如下顯著優(yōu)點:系統(tǒng)中任意一相都是一個獨立的子系統(tǒng),不受其它相影響,即使在某一相或某兩相損壞的情況下,剩余相也能正常運行,增加了系統(tǒng)的冗余性;在三相電網不平衡情況下,本方法也能提供穩(wěn)定的三相電流,增加系統(tǒng)抗電網波動能力。初看起來本方案使用的導抗變換器和變壓器有3套,但是每相承受的功率容量只有系統(tǒng)總功率的三分之一,這樣可以選用較小容量的器件,有利于高頻電感和變壓器的制作和生產。提出了一種基于導抗變換器的三相電流型逆變器實現(xiàn)方案,利用導抗變換器將輸入直流電壓變換為高頻正弦電流,經高頻變壓器隔離及電流等級變換后進行裂相調制,輸出為三相正弦電流。該方法不僅省去了傳統(tǒng)電流型逆變器直流側電抗器,而且采用高頻變換進行功率傳輸,減小了隔離變壓器及輸出濾波器的體積,有利于裝置的小型化和降低成本。 針對光伏電池輸出電壓較低的問題,研究了一種單級式三相升壓型并網逆變器,通過一級變換同時實現(xiàn)升壓和DC/AC變換功能,并且提出了一種基于DSP芯片的控制策略,本方法僅用一個電壓傳感器就能替代原先的三個電壓傳感器:每個載波周期短路相只進行一次開關動作,同時任何時刻只有2個開關管導通,可有效降低系統(tǒng)的開關損耗和導通損耗;由于采用DSP控制,具有控制靈活、穩(wěn)定性高、成本低、并網電能質量好,便于功率調節(jié)等優(yōu)點。 提出了一種光伏并網與有源濾波兼用的統(tǒng)一控制策略,在同一套裝置上既實現(xiàn)光伏并網發(fā)電,又實現(xiàn)諧波補償,克服目前的光伏發(fā)電裝置白天發(fā)電、夜間停機的不足,提高系統(tǒng)利用率。詳細分析了無功電流和諧波電流的檢測方法、光伏并網發(fā)電有功指令電流的生成方法及電流環(huán)控制器和電壓環(huán)控制器的設計方法,并對光伏并網發(fā)電與有源濾波統(tǒng)一控制模式和單一有源濾波模式進行了討論,仿真和實驗結果驗證了所提出的系統(tǒng)結構及控制策略的正確性和可行性。
標簽: 光伏發(fā)電系統(tǒng) 逆變 技術研究
上傳時間: 2013-04-24
上傳用戶:dancnc
隨著煤炭、石油和天然氣等化石燃料迅速消耗,以及由此帶來的能源危機與環(huán)境污染日益加劇,近年來世界各國都在積極尋找和開發(fā)新的、清潔、安全可靠的可再生能源。太陽能具有取之不盡、用之不竭和清潔安全等特點,是理想的可再生能源。20世紀70年代后,太陽能光伏發(fā)電在世界范圍內受到高度重視并取得了長足進展。太陽能光伏發(fā)電技術作為太陽能利用的一個重要組成部分,并被認為是二十一世紀最具發(fā)展?jié)摿Φ囊环N發(fā)電方式。太陽能光伏發(fā)電系統(tǒng)的研究對于緩解能源危機、減少環(huán)境污染以及減小溫室效應具有重要的意義。 由于太陽能電池陣列是光伏發(fā)電系統(tǒng)的核心部件和能源供給部分,因此在光伏發(fā)電系統(tǒng)仿真模型的研究中,太陽電池陣列仿真模型的研究至關重要。本文根據(jù)硅太陽電池的工程用數(shù)學模型建立了太陽能電池陣列的MATLAB仿真模型,分析了太陽輻射強度和溫度對太陽電池陣列仿真模型精度的影響,提出了在不同太陽輻射強度時參數(shù)的優(yōu)化設計計算公式,并將仿真結果與實際太陽電池陣列的測量結果進行了比較。 基于太陽能電池陣列的仿真模型,本文建立了太陽能光伏發(fā)電系統(tǒng)最大功率點跟蹤MATLAB仿真模型,并對兩種常用最大功率點跟蹤方法進行了仿真比較研究,驗證了理論分析的正確性。 本文針對目前應用廣泛的太陽能獨立光伏發(fā)電系統(tǒng)進行了研究,對系統(tǒng)中常用的DC/DC變換器拓撲及其優(yōu)缺點進行了總結,并研究了一種新的帶有雙向變換器的太陽能獨立光伏發(fā)電系統(tǒng),對其主電路參數(shù)進行了設計,完成了基于TMS320F2812 DSP控制系統(tǒng)的硬件電路設計和軟件設計。
標簽: DSP 太陽能 光伏發(fā)電系統(tǒng)
上傳時間: 2013-04-24
上傳用戶:sclyutian