亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

可控整流

可控硅整流裝置是利用可控硅的特點(diǎn)更好地控制電流的強(qiáng)弱的裝置。
  • 室內(nèi)5G網(wǎng)絡(luò)白皮書(HKT GSA 華為)

    1. 引言2. 概述3.3.1 100Mbps 以上的邊緣速率3.3.2 99.999% 高可靠性和≤ 1ms 的超低時延3.3.3 1 個連接/ 平方米3.3.4 其他3.3.5 小結(jié)4.1.1 高頻組網(wǎng)傳播損耗與穿透損耗大,室外覆蓋室內(nèi)難4.1.2 無源分布式天線系統(tǒng)演進(jìn)難、綜合損耗大、互調(diào)干擾大3.1 5G 三大業(yè)務(wù)類型3.2 室內(nèi)5G 業(yè)務(wù)及特征3.3 室內(nèi)5G 業(yè)務(wù)對網(wǎng)絡(luò)的需求4.2 多樣化的業(yè)務(wù)要求網(wǎng)絡(luò)具備更大的彈性容量4.3 行業(yè)應(yīng)用要求網(wǎng)絡(luò)具備極高可靠性4.4 四代共存網(wǎng)絡(luò)及新業(yè)務(wù)發(fā)展要求網(wǎng)絡(luò)具有高效運(yùn)維、智能運(yùn)營能力4.5 小結(jié)5.1 組網(wǎng)策略: 高中低頻分層組網(wǎng),提供更大容量5.2 MIMO 選擇策略:標(biāo)配4T4R,提供更好的用戶體驗(yàn)5.3 方案選擇策略:大容量數(shù)字化方案是必然選擇5.4 容量策略:彈性容量,靈活按需滿足業(yè)務(wù)需求5.5 可靠性策略:面向5G 業(yè)務(wù)的可靠性設(shè)計5.6 部署策略:端到端數(shù)字化部署,奠定網(wǎng)絡(luò)運(yùn)維和運(yùn)營的基礎(chǔ)5.7 網(wǎng)絡(luò)運(yùn)維策略:可視化運(yùn)維,實(shí)現(xiàn)室內(nèi)5G 網(wǎng)絡(luò)可管可控5.8 網(wǎng)絡(luò)運(yùn)營策略:基于網(wǎng)絡(luò)運(yùn)營平臺,支撐室內(nèi)5G 網(wǎng)絡(luò)智能運(yùn)營5.9 小結(jié)

    標(biāo)簽: 5g 華為

    上傳時間: 2022-01-30

    上傳用戶:qdxqdxqdxqdx

  • STM32L053可控的PWM脈沖方法之DMA

    目標(biāo)要求:系統(tǒng)時鐘8Mhz,6個PWM脈沖。實(shí)現(xiàn)上述目標(biāo)的方法有很多種,比如兩個定時器級連,定時器定時中斷翻轉(zhuǎn)IO口,等等,這里使用DMA的方式去實(shí)現(xiàn)。

    標(biāo)簽: stm32l053 pwm

    上傳時間: 2022-02-21

    上傳用戶:qingfengchizhu

  • 電力電子學(xué)的spice仿真_原書第3版

    本書是原書作者在從事電力電子教學(xué)與研究的基礎(chǔ)上編寫而成的。本書第1~7章首先介紹了SPICE語言以及PSpice軟件在模擬電路中的簡單應(yīng)用,其后第8~12章介紹了PSpice在電力電子學(xué)中的應(yīng)用,主要涉及DCDC變換器、DCAC逆變器、諧振型變換器、可控式整流器和ACAC變換器的主電路仿真,然后第13章介紹了控制電路的仿真,第14章介紹了直流電動機(jī)的建模與仿真,最后介紹了仿真中遇到的一些問題及其解決辦法。本書可為從事電力電子相關(guān)研究和應(yīng)用的工程技術(shù)人員提供參考,也可作為高等院校相關(guān)專業(yè)學(xué)生的教材使用

    標(biāo)簽: 電力電子學(xué) spice

    上傳時間: 2022-04-09

    上傳用戶:

  • 基于TMS320F2812數(shù)字控制的三相逆變電源設(shè)計論文+原理圖PCB

    基于TMS320F2812數(shù)字控制的三相逆變電源設(shè)計論文+原理圖PCB摘要:隨著社會的需求越來越高,傳統(tǒng)的模擬電源的諸多缺陷越來越凸顯, 本文在借鑒國內(nèi)外相關(guān)研究的基礎(chǔ)上,通過對空間矢量脈寬調(diào)制算法的分析,研究了數(shù)字信號處理器生成SVPWM 波形的實(shí)現(xiàn)方法及軟件算法。并將相關(guān)方法應(yīng)用于實(shí)踐,研制了基于TMS320F2812數(shù)字控制的三相逆變電源,相關(guān)試驗(yàn)參數(shù)和結(jié)果表明:該設(shè)計提高了直流電壓的利用率,使開關(guān)器件的損耗更小。此外,還提出了逆變電源閉環(huán)控制的PI控制算法,利用DSP的強(qiáng)大的數(shù)字信號處理能力,提高了系統(tǒng)的響應(yīng)速度。經(jīng)測試,系統(tǒng)實(shí)現(xiàn)了1~40V步進(jìn)為1V的調(diào)壓輸出, 50Hz~1kHz步進(jìn)2Hz的調(diào)頻輸出,輸出電壓恒定為36V時負(fù)載調(diào)整率小于5%。 關(guān)鍵詞:全橋逆變,SVPWM,DSP1.       系統(tǒng)硬件設(shè)計3.1  不可控整流電路    采用整流橋加濾波,得到比較穩(wěn)定的電壓,電路如圖3.1.1所示。 圖3.1.1  不可控整流電路圖電路實(shí)現(xiàn)AC-DC變換。本模塊交流輸入是經(jīng)48V變壓器將220V交流電壓變壓為48V交流電壓后的輸入電壓,然后經(jīng)過橋式整流器整流,再通過電容濾波,輸出大小約為57.6V的直流電壓。中間接一個保險絲來保護(hù)后面的元器件,或當(dāng)后面電路短路時防止電容損壞。    一般來說,無法找到一個可以把電源的所有電流紋波都吸收的電容,所以通常用多個電容并聯(lián),這樣流入每個電容的紋波電流就只有并聯(lián)的電容個數(shù)分之一,每個電容就可以工作在低于它的最大額定紋波電流下,這里采用5個220μF的電容并聯(lián)。另外輸入濾波電容上一般要并上陶瓷電容(0.1μF),以吸收紋波電流的高頻分量。兩個20kΩ電阻的作用是使后

    標(biāo)簽: 逆變電源

    上傳時間: 2022-05-05

    上傳用戶:

  • 基于數(shù)字追頻控制的超聲逆變電源的研究

    近年來,隨著超聲學(xué)研究的發(fā)展,功率超聲技術(shù)得到了越來越廣泛的應(yīng)用。超聲波清洗技術(shù)作為功率超聲技術(shù)的一個分支,以清洗速度快、效果好、易于實(shí)現(xiàn)自動化等優(yōu)點(diǎn),為傳統(tǒng)工業(yè)清洗領(lǐng)域注入了新鮮的血液。作為超聲波清洗機(jī)的核心組件,超聲逆變電源的設(shè)計一直是超聲波清洗系統(tǒng)設(shè)計的關(guān)鍵環(huán)節(jié),它性能的好壞很大程度上決定了最終的清洗效果。以往的超聲逆變電源的設(shè)計通常是基于模擬集成控制芯片的,這種實(shí)現(xiàn)方式在頻率、功率控制的精度和速度上以及系統(tǒng)的靈活性、穩(wěn)定性方面存在著一定的局限性,限制了超聲逆變電源的發(fā)展。數(shù)字控制技術(shù)的出現(xiàn),很好地彌補(bǔ)了上述缺陷,因此本課題將數(shù)字控制技術(shù)引入到超聲逆變電源控制電路的設(shè)計中是很有意義的。    本文首先對超聲逆變電源的基本結(jié)構(gòu)和工作原理做了簡單介紹,針對超聲逆變電源各部分的結(jié)構(gòu)特點(diǎn),并結(jié)合一些傳統(tǒng)設(shè)計方案優(yōu)缺點(diǎn)的分析,確定了二極管不控整流的整流電路設(shè)計方案、電壓源型串聯(lián)諧振逆變器的逆變電路實(shí)現(xiàn)方案、基于鎖相環(huán)的頻率跟蹤實(shí)現(xiàn)方案、和基于PWM脈寬調(diào)制技術(shù)的功率調(diào)節(jié)實(shí)現(xiàn)方案。接著,文章詳細(xì)介紹了頻率自動跟蹤和功率控制的具體實(shí)現(xiàn)方法,利用數(shù)學(xué)推理和波形分析的方式闡明了方案的可行性,并通過軟件仿真驗(yàn)證了方案的正確性。然后,文章還設(shè)計了主電路諧振軟開關(guān)、人機(jī)接口電路、采樣電路、IGBT驅(qū)動以及過流過溫保護(hù)電路。方案確定了之后,通過觀察自制電路板的實(shí)驗(yàn)波形表明新構(gòu)建的超聲逆變電源可以保證系統(tǒng)在復(fù)雜工況下處于諧振狀態(tài),驗(yàn)證了全數(shù)字頻率跟蹤系統(tǒng)和功率調(diào)節(jié)系統(tǒng)的可行性和有效性。    本文的重點(diǎn)和創(chuàng)新點(diǎn)在于將超聲逆變電源的控制電路通過數(shù)字化來實(shí)現(xiàn)。本文創(chuàng)新地利用FPGA構(gòu)建了全數(shù)字頻率跟蹤系統(tǒng)——數(shù)字鎖相環(huán)和全數(shù)字功率調(diào)節(jié)系統(tǒng)——數(shù)字PWM調(diào)制、數(shù)字PID調(diào)節(jié),從而取代了傳統(tǒng)的模擬鎖相環(huán)芯片CD4046和模擬PWM控制芯片SG3525,在控制的精確性、快速性和靈活性上都有了很大的提高。此外,利用ATmega16單片機(jī)實(shí)現(xiàn)了人機(jī)接口電路、頻率采樣和電流A/D轉(zhuǎn)換,并通過SPI接口與FPGA進(jìn)行數(shù)據(jù)傳輸,完善了數(shù)字控制體系,從而實(shí)現(xiàn)了基于FPGA和單片機(jī)的全數(shù)字控制超聲逆變電源系統(tǒng)。

    標(biāo)簽: 超聲逆變電源 數(shù)字追頻控制

    上傳時間: 2022-05-30

    上傳用戶:

  • 動態(tài)匹配換能器的超聲波電源控制策略.

    超聲波電源廣泛應(yīng)用于超聲波加工、診斷、清洗等領(lǐng)域,其負(fù)載超聲波換能器是一種將超音頻的電能轉(zhuǎn)變?yōu)闄C(jī)械振動的器件。由于超聲換能器是一種容性負(fù)載,因此換能器與發(fā)生器之間需要進(jìn)行阻抗匹配才能工作在最佳狀態(tài)。串聯(lián)匹配能夠有效濾除開關(guān)型電源輸出方波存在的高次諧波成分,因此應(yīng)用較為廣泛。但是環(huán)境溫度或元件老化等原因會導(dǎo)致?lián)Q能器的諧振頻率發(fā)生漂移,使諧振系統(tǒng)失諧。傳統(tǒng)的解決辦法就是頻率跟蹤,但是頻率跟蹤只能保證系統(tǒng)整體電壓電流同頻同相,由于工作頻率改變了而匹配電感不變,此時換能器內(nèi)部動態(tài)支路工作在非諧振狀態(tài),導(dǎo)致?lián)Q能器功率損耗和發(fā)熱,致使輸出能量大幅度下降甚至停振,在實(shí)際應(yīng)用中受到限制。所以,在跟蹤諧振點(diǎn)調(diào)節(jié)逆變器開關(guān)頻率的同時應(yīng)改變匹配電感才能使諧振系統(tǒng)工作在最高效能狀態(tài)。針對按固定諧振點(diǎn)匹配超聲波換能器電感參數(shù)存在的缺點(diǎn),本文應(yīng)用耦合振蕩法對換能器的匹配電感和耦合頻率之間的關(guān)系建立數(shù)學(xué)模型,證實(shí)了匹配電感隨諧振頻率變化的規(guī)律。給出利用這一模型與耦合工作頻率之間的關(guān)系動態(tài)選擇換能器匹配電感的方法。經(jīng)過分析比較,選擇了基于磁通控制原理的可控電抗器作為匹配電感,通過改變電抗控制度調(diào)節(jié)電抗值。并給出了實(shí)現(xiàn)這一方案的電路原理和控制方法。最后本文以DSPTMS320F2812為核心設(shè)計出實(shí)現(xiàn)這一原理的超聲波逆變電源。實(shí)驗(yàn)結(jié)果表明基于磁通控制的可控電抗器可以實(shí)現(xiàn)電抗值隨電抗控制度線性無級可調(diào),由于該電抗器輸出正弦波,理論上沒有諧波污染。具體采用復(fù)合控制策略,穩(wěn)態(tài)時,換能器工作在DPLL鎖定頻率上;動態(tài)時,逐步修改匹配電抗大小,搜索輸出電流的最大值,再結(jié)合DPLL鎖定該頻率。配合PS-PWM可實(shí)現(xiàn)功率連續(xù)可調(diào)。該超聲波換能系統(tǒng)能夠有效的跟隨最大電流輸出頻率,即使頻率發(fā)生漂移系統(tǒng)仍能保持工作在最佳狀態(tài),具有實(shí)際應(yīng)用價值。

    標(biāo)簽: 動態(tài)匹配換能器 超聲波電源

    上傳時間: 2022-06-18

    上傳用戶:

  • 基于時鐘日歷芯片DS1302的萬年歷設(shè)計

    摘要隨著科學(xué)技術(shù)的發(fā)展,萬年歷的設(shè)計也層出不窮。本設(shè)計以單片機(jī)AT89C51和DS1302為核心,結(jié)合譯碼器74HC154和驅(qū)動芯片741S244,以及模擬鍵盤,LED顯示電路等構(gòu)成一個可控及顯示精確的萬年歷時間系統(tǒng)DS1302為一個實(shí)時時鐘芯片,具有較高時間精度,它與單片機(jī)進(jìn)行串口通信,單片機(jī)通過與它的通信,取出其時間寄存器中的值,再通過相應(yīng)的電路,把時間值通過LED顯示,如果顯示的值與標(biāo)準(zhǔn)時間不同,此系統(tǒng)就經(jīng)過模擬鍵盤靈活控制,調(diào)節(jié)DS1302中時間寄存器中的值,達(dá)到與標(biāo)準(zhǔn)時間同步。關(guān)鍵詞 AT89C51,DS1302在科技日新月異發(fā)展的今天,人們對時間概念的認(rèn)識顯得尤為深刻,“時間就是金錢”,“時間就是生命”等警句更是激勵著人們努力工作,把握時間。作為時間的標(biāo)量,時鐘等計時設(shè)備也隨著人們的不斷認(rèn)識而變化。在三千年前,我國祖先就發(fā)明了用土和石片刻制成的“土主”與“日規(guī)”兩種計時器,成為世界上最早發(fā)明計時器的國家之一。到了銅器時代,計時器又有了新的發(fā)展,用青銅制的“漏壺”取代了“土主”與“日規(guī)”。東漢元初四年張衡發(fā)明了世界第一架“水運(yùn)渾象”,此后唐高僧一行等人又在此基礎(chǔ)上借鑒改進(jìn)發(fā)明了“水運(yùn)渾天儀”、“水運(yùn)儀象臺”。至元明之時,計時器擺脫了天文儀器的結(jié)構(gòu)形式,得到了突破性的新發(fā)展。元初郭守敬、明初詹希元創(chuàng)制了“大明燈漏”與“五輪沙漏”,采用機(jī)機(jī)械結(jié)構(gòu),并增添盤、針來指示時間,這使其計時更準(zhǔn)確,機(jī)械性也更先進(jìn)。

    標(biāo)簽: DS1302 萬年歷

    上傳時間: 2022-06-19

    上傳用戶:

  • 50khz+igbt串聯(lián)諧振感應(yīng)加熱電源研制

    目前以IGBT為開關(guān)器件的串聯(lián)諧振感應(yīng)加熱電源在大功率和高頻下的研究是一個熱點(diǎn)和難點(diǎn),為彌補(bǔ)采用模擬電路搭建而成的控制系統(tǒng)的不足,對感應(yīng)加熱電源數(shù)字化控制研究是必然趨勢。本文以串聯(lián)諧振型感應(yīng)加熱電源為研究對象,采用T公司的TMS320F2812為控制芯片實(shí)現(xiàn)電源控制系統(tǒng)的數(shù)字化。首先分析了串聯(lián)諾振型感應(yīng)加熱電源的負(fù)載特性和調(diào)功方式,確定了采用相控整流調(diào)功控制方式,接著分析了串聯(lián)諾振逆變器在感性和容性狀態(tài)下的工作過程確定了系統(tǒng)安全可靠的運(yùn)行狀態(tài)。本文設(shè)計了電源主電路參數(shù)并在Matlab/Simulink仿真環(huán)境下搭建了整個系統(tǒng),仿真分析了串聯(lián)譜振型感應(yīng)加熱電源的半壓啟動模式及鎖相環(huán)頻率跟蹤能力和功率調(diào)節(jié)控制。針對感應(yīng)加熱電源的數(shù)字控制系統(tǒng),在討論了晶閘管相控觸發(fā)和鎖相環(huán)的工作原理及研究現(xiàn)狀下詳細(xì)地分析了本課題基于DSP晶閘管相控脈沖數(shù)字觸發(fā)和數(shù)字鎖相環(huán)(DPL)的實(shí)現(xiàn),得出它們各自的優(yōu)越性,同時分析了感應(yīng)加熱電源的功率控制策略,得出了采用數(shù)字PI積分分離的控制方法。本文采用T1公司的TMS320F2812作為系統(tǒng)的控制芯片,搭建了控制系統(tǒng)的DSP外圍硬件電路,分析了系統(tǒng)的運(yùn)行過程并編寫了整個控制系統(tǒng)的程序。最后對控制系統(tǒng)進(jìn)行了試驗(yàn),驗(yàn)證了理論分析的正確性和控制方案的可行性。

    標(biāo)簽: igbt 串聯(lián)諧振 電源

    上傳時間: 2022-06-20

    上傳用戶:

  • 基于TDCGP2的高精度脈沖激光測距系統(tǒng)研究

    論文通過對高精度脈沖式激光測距系統(tǒng)的研究,并在參照課題技術(shù)指標(biāo)的基礎(chǔ)上,旨在提供一種高精度脈沖式激光測距系統(tǒng)的解決方案,并對脈沖式激光測距儀系統(tǒng)設(shè)計中所涉及的脈沖讀取與放大電路、時刻鑒別、時間間隔測量等關(guān)鍵技術(shù)進(jìn)行了深入的研究和探討。論文利用電流-電壓轉(zhuǎn)換法對脈沖信號進(jìn)行讀取,并使用了可控增益放大技術(shù),使得放大后的脈沖信號能在限定幅值范圍內(nèi)變化,減小了時刻鑒別中由于脈沖幅值波動所引起的漂移誤差;在時刻鑒別中,采用了預(yù)鑒別恒定比值鑒別法使漂移誤差進(jìn)一步減小。時間間隔測量是論文的核心部分,基于TDC-GP2的時間間隔測量設(shè)計使系統(tǒng)的時差測量精度達(dá)到72ps,高精度的時差測量為系統(tǒng)測距精度提供了可靠保障。關(guān)鍵詞:脈沖激光測距;可控增益放大;蜂值檢測:時刻鑒別:TDC-GP2

    標(biāo)簽: 脈沖激光測距

    上傳時間: 2022-06-21

    上傳用戶:

  • 基于IGBT的150KHZ大功率感應(yīng)加熱電源的研究

    本文以感應(yīng)加熱電源為研究對象,闡述了感應(yīng)加熱電源的基本原理及其發(fā)展趨勢。對感應(yīng)加熱電源常用的兩種拓?fù)浣Y(jié)構(gòu)-電流型逆變器和電壓型逆變器做了比較分析,并分析了感應(yīng)加熱電源的各種調(diào)功方式。在對比幾種功率調(diào)節(jié)方式的基礎(chǔ)上,得出在整流側(cè)調(diào)功有利于高頻感應(yīng)加熱電源頻率和功率的提高的結(jié)論,選擇了不控整流加軟斬波器調(diào)功的感應(yīng)加熱電源作為研究對象,針對傳統(tǒng)硬斬波調(diào)功式感應(yīng)加熱電源功率損耗大的缺點(diǎn),采用軟斬波調(diào)功方式,設(shè)計了一種零電流開關(guān)準(zhǔn)諾振變換器ZCS-QRCs(Zero-current-switching-Quasi-resonant)倍頻式串聯(lián) 振高頻感應(yīng)加熱電源。介紹了該軟斬波調(diào)功器的組成結(jié)構(gòu)及其工作原理,通過仿真和實(shí)驗(yàn)的方法研究了該軟斬波器的性能,從而得出該軟斬波器非常適合大功率高頻感應(yīng)加熱電源應(yīng)用場合的結(jié)論。同時設(shè)計了功率閉環(huán)控制系統(tǒng)和PI功率調(diào)節(jié)器,將感應(yīng)加熱電源的功率控制問題轉(zhuǎn)化為Buck斬波器的電壓控制問題。針對目前IGBT器件頻率較低的實(shí)際情況,本文提出了一種新的逆變拓?fù)?通過IGBT的并聯(lián)來實(shí)現(xiàn)倍頻,從而在保證感應(yīng)加熱電源大功率的前提下提高了其工作頻率,并在分析其工作原理的基礎(chǔ)上進(jìn)行了仿真,驗(yàn)證了理論分析的正確性,達(dá)到了預(yù)期的效果。另外,本文還設(shè)計了數(shù)字鎖相環(huán)(DPLL),使逆變器始終保持在功率因數(shù)近似為1的狀態(tài)下工作,實(shí)現(xiàn)電源的高效運(yùn)行。最后,分析并設(shè)計了1GBT的緩沖吸收電路。本文第五章設(shè)計了一臺150kHz,10KW的倍頻式感應(yīng)加熱電源實(shí)驗(yàn)樣機(jī),其中斬波器頻率為20kHz,逆變器工作頻率為150kHz(每個IGBT工作頻率為75kHz),控制孩心采用TI公司的TMS320F2812 DSP控制芯片,簡化了系統(tǒng)結(jié)構(gòu)。實(shí)驗(yàn)結(jié)果表明,該倍頻式感應(yīng)加熱電源實(shí)現(xiàn)了斬波器和逆變器功率器件的軟開關(guān),有效的減小了開關(guān)損耗,并實(shí)現(xiàn)了數(shù)字化,提高了整機(jī)效率。文章給出了整機(jī)的結(jié)構(gòu)設(shè)計,直流斬波部分控制框圖,逆變控制框圖,驅(qū)動電路的設(shè)計和保護(hù)電路的設(shè)計。同時,給出了關(guān)鍵電路的仿真和實(shí)驗(yàn)波形。

    標(biāo)簽: igbt 電源

    上傳時間: 2022-06-22

    上傳用戶:

主站蜘蛛池模板: 卢湾区| 彭山县| 克拉玛依市| 正定县| 泗阳县| 南京市| 平罗县| 长海县| 吐鲁番市| 新邵县| 海林市| 桓台县| 宝清县| 西平县| 南宁市| 雷山县| 凭祥市| 原阳县| 旌德县| 巴彦淖尔市| 苍梧县| 吉林市| 边坝县| 兴安县| 孙吴县| 洪雅县| 广平县| 惠来县| 上饶县| 苏州市| 成都市| 通州市| 柳州市| 美姑县| 迁安市| 安多县| 湘阴县| 灵宝市| 忻州市| 肇源县| 深水埗区|