電子式互感器與傳統(tǒng)電磁式互感器相比,在帶寬、絕緣和成本等方面具有優(yōu)勢,因而代表了高電壓等級電力系統(tǒng)中電流和電壓測量的一種極具吸引力的發(fā)展方向。隨著信息技術(shù)的發(fā)展和電力市場中競爭機(jī)制的形成,電子式互感器成為人們研究的熱點(diǎn);越來越多的新技術(shù)被引入到電子式互感器設(shè)計(jì)中,以提高其工作可靠性,降低運(yùn)行總成本,減小對生態(tài)環(huán)境的壓力。本文圍繞電子式互感器實(shí)用化中的關(guān)鍵技術(shù)而展開理論與實(shí)驗(yàn)研究,具體包括新型傳感器、雙傳感器的數(shù)據(jù)融合算法、數(shù)字接口、組合式電源、低功耗技術(shù)和自監(jiān)測功能的實(shí)現(xiàn)等。 目前電子式電流互感器(ECT)大多數(shù)采用單傳感器開環(huán)結(jié)構(gòu),對每個環(huán)節(jié)的精度和可靠性的要求都很高,嚴(yán)重制約了ECT整體性能的提高,影響其實(shí)用化。本文介紹了新型傳感器~鐵心線圈式低功率電流傳感器(LPET)和印刷電路板(PCB)空心線圈及其數(shù)字積分器,在此基礎(chǔ)上設(shè)計(jì)了一種基于LPCT和PCB空心線圈的組合結(jié)構(gòu)的新型電流傳感器。該結(jié)構(gòu)具有并聯(lián)的特點(diǎn),結(jié)合了這兩種互感器的優(yōu)點(diǎn),采用數(shù)據(jù)融合算法來處理兩路信號,實(shí)現(xiàn)高精度測量和提高系統(tǒng)可靠性,并探索出辨別LPET飽和的新方法。試驗(yàn)和仿真結(jié)果表明,這種新型電流傳感器可以覆蓋較大的電流測量范圍,達(dá)到IEC 60044-8標(biāo)準(zhǔn)中關(guān)于測量(幅值誤差)、保護(hù)(復(fù)合誤差)和暫態(tài)響應(yīng)(峰值)的準(zhǔn)確度要求,能夠作為多用途電流傳感器使用。 在電子式電壓互感器方面,基于精密電阻分壓器的新型傳感器在原理、結(jié)構(gòu)和輸出信號等方面與傳統(tǒng)的電壓互感器有很大不同,本文設(shè)計(jì)了一種可替代10kV電磁式電壓互感器的精密電阻分壓器。通過試驗(yàn)研究與計(jì)算分析,得出其性能主要受電阻特性和雜散電容的影響,并給出了減小其誤差的方法。測試結(jié)果表明,設(shè)計(jì)的10kV精密電阻分壓器的準(zhǔn)確度滿足IEC 60044-7標(biāo)準(zhǔn)要求,可達(dá)0.2級。 電子式互感器的關(guān)鍵技術(shù)之一是內(nèi)部的數(shù)字化以及其標(biāo)準(zhǔn)化接口,本文以10kV組合型電子式互感器為對象設(shè)計(jì)了一種實(shí)用化的數(shù)字系統(tǒng)。以精密電阻分壓器作為電壓傳感器,電流傳感器則采用基于數(shù)據(jù)融合算法的LPCT和PCB空心線圈的組合結(jié)構(gòu)。本文首先解決了互感器間的同步與傳感器間的內(nèi)部同步問題,進(jìn)而依照IEC61850-9-1標(biāo)準(zhǔn),實(shí)現(xiàn)了組合型電子式互感器的100M以太網(wǎng)接口。 電子式電流互感器在高電壓等級的應(yīng)用研究中,ECT高壓側(cè)的電源問題是關(guān)鍵技術(shù)之一。論文首先分析了兩種電源方案:取電CT電源和激光電源。取電CT電源通過一個特制的電流互感器(取電CT),直接從高壓側(cè)母線電流中獲取電能。在取電CT和整流橋之間設(shè)計(jì)一個串聯(lián)電感,大大降低了施加在整流橋上的的感應(yīng)電壓并限制了取電CT的輸出電流,起到了穩(wěn)定電壓和保護(hù)后續(xù)電路的作用。激光電源方案以先進(jìn)的光電轉(zhuǎn)換器、半導(dǎo)體激光二極管和光纖為基礎(chǔ),單獨(dú)一根上行光纖同時(shí)完成供能和控制信號的傳輸,在不影響光供能穩(wěn)定性的情況下,數(shù)據(jù)通信完成在短暫的供能間隔中。在高電位端控制信號通過在能量變換電路中增加一個比較器電路被提取出來。本文還提出了一種將兩種供能方式結(jié)合使用的組合電源,并設(shè)計(jì)了這兩種電源之間的切換方法,解決了取電CT電源的死區(qū)問題,延長了激光器的使用壽命。作為綜合應(yīng)用實(shí)例,設(shè)計(jì)并完成了以LPCT為傳感器、由組合電源供能、采用低功耗技術(shù)的高壓電子式電流互感器。互感器高壓側(cè)的一次轉(zhuǎn)換器能夠提供兩路傳感器數(shù)據(jù)通道,并且具有溫度補(bǔ)償和采集通道的自校正功能,在更寬溫度、更大電流范圍內(nèi)保證了極高的測量精度:互感器低電位端的二次轉(zhuǎn)換器具有數(shù)字和模擬接口,可以接收數(shù)據(jù)并發(fā)送命令來控制一次轉(zhuǎn)換器,包括同步和校正命令在內(nèi)的數(shù)據(jù)信號可以通過同一根供能光纖傳送到一次轉(zhuǎn)換器。該互感器具有在線監(jiān)測功能,這種預(yù)防性維護(hù)和自檢測功能夠提示維護(hù)或提出警告,提高了可靠性。系統(tǒng)測試表明:具有低功耗光纖發(fā)射驅(qū)動電路的一次轉(zhuǎn)換器平均功耗在40mw以下:上行光纖中通信波特率可以達(dá)到200kb/s,下行光纖中更是高達(dá)2Mb/s;系統(tǒng)準(zhǔn)確度同時(shí)滿足IEC6044-8標(biāo)準(zhǔn)對0.2S級測量和5TPE級保護(hù)電子式互感器的要求。
標(biāo)簽: 電子式互感器 關(guān)鍵技術(shù)
上傳時(shí)間: 2013-06-09
上傳用戶:handless
電流互感器是電力系統(tǒng)中最重要的高壓設(shè)備之一。它被廣泛應(yīng)用于繼電保護(hù)、系統(tǒng)監(jiān)測、電力系統(tǒng)分析之中,關(guān)系到電力系統(tǒng)的安全性與可靠性。隨著電力系統(tǒng)向高電壓、大容量和數(shù)字化方向的發(fā)展,傳統(tǒng)的電磁式電流互感器很難滿足電力系統(tǒng)發(fā)展的進(jìn)一步要求。因此,研究基于計(jì)算機(jī)技術(shù)、現(xiàn)代通信技術(shù)及數(shù)字處理技術(shù)的以電子式電流互感器(ECT)為代表的、新型的高精度電流互感器成了大勢所趨。在電子式電流互感器的應(yīng)用研究中,ECT高壓側(cè)的電源問題是關(guān)鍵技術(shù)之一。 本文對國內(nèi)外電子式電流互感器發(fā)展的現(xiàn)狀進(jìn)行了描述,并對已有的電子式電流互感器的高壓側(cè)供能方式進(jìn)行了總結(jié)。論文根據(jù)本課題組所研究的電子式電流互感器的特點(diǎn),對電子式電流互感器的高壓側(cè)供能系統(tǒng)的設(shè)計(jì)進(jìn)行了研究,提出一種將兩種供能方式結(jié)合使用的組合電源,并設(shè)計(jì)了這兩種電源之間的切換方法。 本文首先設(shè)計(jì)了一種應(yīng)用于高壓電子式電流互感器的數(shù)字化激光電源,包括大功率激光器的驅(qū)動電路、基于16位低功耗單片機(jī)MSP430的過流保護(hù)電路和恒溫控制電路、輸入電路、顯示電路、以及高壓側(cè)變換電路。其供能部分由低電位側(cè)的大功率激光光源產(chǎn)生激光輸出,經(jīng)光纖將激光能量傳輸?shù)竭_(dá)高電位側(cè)的光電池,再由光電池進(jìn)行光功率到電功率的光電變換后,形成滿足光電電流互感器傳感頭部分所需的電壓輸出。實(shí)驗(yàn)結(jié)果表明,該電源可以提供穩(wěn)定的6V電壓,其功率不少于300mW。 本文又設(shè)計(jì)了了一種應(yīng)用于高壓側(cè)電子裝置中的CT電源方案:通過一個特制的電流互感器(CT),直接從高壓側(cè)一次母線電流獲取電能,憑借在CT和整流橋之間串聯(lián)的一個電感,大大降低了施加在整流橋上的的感應(yīng)電壓并限制了CT的輸出電流,起到了穩(wěn)定電壓和保護(hù)后續(xù)電路的作用。實(shí)驗(yàn)結(jié)果表明,該電源能輸出穩(wěn)定的5V直流電壓,紋波不超過25mV。 最后,本文提出了一種將兩種供能方式結(jié)合使用的組合電源,并設(shè)計(jì)了這兩種電源之間的切換方法,解決了取電CT電源的死區(qū)問題,延長了激光器的使用壽命。
上傳時(shí)間: 2013-06-05
上傳用戶:chuandalong
基于DSP在線式UPS不間斷電源控制系統(tǒng)的研究
上傳時(shí)間: 2013-07-08
上傳用戶:yangbo69
在傳統(tǒng)的直線驅(qū)動場合,都是由旋轉(zhuǎn)電機(jī)提供原動力,再由絲杠、絲桿、齒條等中間機(jī)構(gòu)轉(zhuǎn)換為直線運(yùn)動。這樣的設(shè)置,不僅在中間傳動過程中消耗了大量的能量,而且摩擦產(chǎn)生的噪聲也非常明顯,同時(shí)也給系統(tǒng)的維護(hù)工作帶來了麻煩。 直線電機(jī)的出現(xiàn)可以使上述問題得到解決,由于具備直接將電能轉(zhuǎn)化為直線運(yùn)動的能力,直線電機(jī)已經(jīng)在機(jī)床驅(qū)動、集成電路組裝等場合逐漸取代了傳統(tǒng)的旋轉(zhuǎn)電機(jī)的位置。 自19世紀(jì)中期直線電機(jī)的概念被首次提出以來,經(jīng)過孕育、實(shí)驗(yàn)、開發(fā)和實(shí)用這四個階段的發(fā)展,并借助于電力電子技術(shù),以及日漸成熟的直線電機(jī)控制技術(shù),直線電機(jī)已經(jīng)廣泛應(yīng)用到了制造業(yè)、交通運(yùn)輸業(yè)等各個方面。 與旋轉(zhuǎn)電機(jī)類似,按工作原理的不同,直線電機(jī)也有著各種類型,應(yīng)用較多的是直線步進(jìn)電機(jī)、直線同步電機(jī)和直線感應(yīng)電機(jī)。其中直線步進(jìn)電機(jī)更多的是應(yīng)用在需要精確定位的場合,比如半導(dǎo)體工業(yè);后兩者則被應(yīng)用在需要連續(xù)和大推力的場合,比如機(jī)床。而直線同步電機(jī),尤其是永磁直線同步電機(jī),憑借更大的單位面積推力、更高的效率等優(yōu)點(diǎn)受到了更多的青睞,與此同時(shí),由于沒有了勵磁繞組,電機(jī)的整個結(jié)構(gòu)也得以簡化。另一方面,我國豐富的稀土資源也為這種電機(jī)的發(fā)展提供了廣泛空間。 作為一種較為新穎的電機(jī),目前國內(nèi)仍缺乏系統(tǒng)化的永磁直線同步電機(jī)設(shè)計(jì)方案,尤其是電樞繞組部分。常用的方法仍是基于傳統(tǒng)的旋轉(zhuǎn)電機(jī),例如使用雙層疊繞組方案。通過對實(shí)際電機(jī)的軟件模擬,我們發(fā)現(xiàn)這樣的設(shè)計(jì)思路的表現(xiàn)并不能令人滿意,比如造成了動子線圈槽滿率過大,電機(jī)設(shè)計(jì)難以形成系列化等缺點(diǎn),而電機(jī)本身輸出推力的波動也較大。 針對傳統(tǒng)方案的一系列缺點(diǎn),本文提出了一種新的永磁直線同步電機(jī)設(shè)計(jì)方案。該方案基于“單元電機(jī)”的概念,使用單層同心式線圈。當(dāng)目標(biāo)推力要求變化時(shí),只需改變“單元電機(jī)”的數(shù)目和排列組合的方式,就可以達(dá)到改變的目的。而每個單元中的繞組連接方式則不需要改變,由此避免了繁瑣而復(fù)雜的繞組設(shè)計(jì),這就給電機(jī)的系列化設(shè)計(jì)帶來了便捷。同時(shí),單層繞組的使用也更方便嵌線,也更有利于降低銅耗,提高效率。 在完成單元電機(jī)設(shè)計(jì)任務(wù)的基礎(chǔ)上,本文利用加拿大Infolytica公司出品的電磁場有限元分析軟件MagNet對電機(jī)的運(yùn)行進(jìn)行了模擬,并得到了電機(jī)的額定輸出推力曲線和反電動勢曲線,輸出推力曲線較之傳統(tǒng)方案也更平穩(wěn)。體現(xiàn)了該設(shè)計(jì)方案的優(yōu)越性。
上傳時(shí)間: 2013-06-29
上傳用戶:pinksun9
在電力系統(tǒng)容量日益擴(kuò)大和電網(wǎng)電壓運(yùn)行等級不斷提高的潮流下,傳統(tǒng)電磁式互感器在運(yùn)行中暴露出越來越多的弊端,難以滿足電力系統(tǒng)向自動化、標(biāo)準(zhǔn)化和數(shù)字化的發(fā)展需求,電子式互感器取代傳統(tǒng)電磁式互感器已經(jīng)成為一種必然的趨勢,并成為人們研究的熱點(diǎn)。本文圍繞電子式電流互感器高壓側(cè)數(shù)據(jù)采集系統(tǒng)進(jìn)行了研究與設(shè)計(jì)。 Rogowski線圈是電流傳感元件,本文總紿了Rogowski線圈的基本原理,其中包括線圈的等效電路和相量圖,線圈的電磁參數(shù)計(jì)算。在理論研究的基礎(chǔ)上,結(jié)合實(shí)際設(shè)計(jì)一款高精度PCBRogowski線圈。電容分壓器是電壓傳感元件,文章中介紹了傳感器的原理、傳感器的模型結(jié)構(gòu),針對其自身結(jié)構(gòu)缺陷和工作環(huán)境的電磁干擾,提出具有針對性的電磁兼容設(shè)計(jì)方法。 積分器的性能一直是影響Rogowski線圈電流傳感器的精度和穩(wěn)定性的重要因素之一。模擬積分器具有結(jié)構(gòu)簡單、響應(yīng)速度快、輸入動態(tài)范圍大等優(yōu)點(diǎn);數(shù)字積分器具有性能穩(wěn)定,精度高等優(yōu)點(diǎn)。后者的優(yōu)勢使其成為近年來Rogowski線圈電流互感器實(shí)用化研究的一個熱點(diǎn)問題。本文設(shè)計(jì)了一套數(shù)字積分器設(shè)計(jì)的方法,其中包括了積分算法的選擇,積分輸入采樣率和分辨率的確定,數(shù)字積分器的通用結(jié)構(gòu),積分初值的選擇方法等。 為了保證系統(tǒng)的運(yùn)行穩(wěn)定,文章中的系統(tǒng)只采用激光供電模式,降低數(shù)據(jù)采集系統(tǒng)的功耗就成了系統(tǒng)設(shè)計(jì)的一個重要環(huán)節(jié)。文章中介紹了一些實(shí)用的低功耗處理方法,分析了激光器的特性,光電池的特性和光電轉(zhuǎn)換器件的特性,并根據(jù)這些器件的特性,改進(jìn)了數(shù)據(jù)發(fā)送激光器的驅(qū)動電路,大幅度降低了系統(tǒng)的功耗,保證了系統(tǒng)在較低供電功率條件下的正常運(yùn)行。 論文最后對全文工作進(jìn)行總結(jié),提出進(jìn)一步需要解決的問題。
標(biāo)簽: 電子式互感器 數(shù)據(jù)采集系統(tǒng)
上傳時(shí)間: 2013-07-10
上傳用戶:zsjzc
電容式觸摸傳感器設(shè)計(jì)技巧:針對電容式觸摸技術(shù)的一些知識原理說明與技術(shù)設(shè)計(jì)討論.
標(biāo)簽: 電容式 觸摸傳感器 設(shè)計(jì)技巧
上傳時(shí)間: 2013-07-16
上傳用戶:hainan_256
本文介紹了埋弧焊的特點(diǎn)、發(fā)展過程、國內(nèi)外的研究現(xiàn)狀;分析了軟開關(guān)逆變式主回路的優(yōu)點(diǎn)、模擬電路控制系統(tǒng)和數(shù)字化控制系統(tǒng)的優(yōu)缺點(diǎn),指出數(shù)字化控制是逆變埋弧焊機(jī)控制的發(fā)展方向;對埋弧焊接工作原理和埋弧焊機(jī)控制系統(tǒng)進(jìn)行分析,介紹了交流方波埋弧焊的優(yōu)點(diǎn);論述了變動送絲電弧控制系統(tǒng)的原理及影響因素,并且分析了變動送絲情況下焊接電弧的穩(wěn)定性,為逆變式交流方波埋弧焊系統(tǒng)的設(shè)計(jì)提供了理論依據(jù)。 在分析傳統(tǒng)交流方波埋弧焊主回路的基礎(chǔ)上設(shè)計(jì)了主回路結(jié)構(gòu),對主回路中一次、二次逆變回路的軟開關(guān)工作方式進(jìn)行分析并做了簡單仿真。IGBT是逆變電源的核心部件,文中論述了IGBT功率器件的選型和各種保護(hù)措施以保證系統(tǒng)的可靠工作。焊機(jī)工作發(fā)熱量很大,本文介紹了整機(jī)和關(guān)鍵器件的熱設(shè)計(jì)。 數(shù)字化控制方式是逆變埋弧焊機(jī)控制的發(fā)展方向,本文采用“MCU+DSP”的控制結(jié)構(gòu),對埋弧焊的整個焊接過程進(jìn)行精確控制。文中詳細(xì)介紹了主控制板的設(shè)計(jì)思路和電源、電流與電壓反饋、控制芯片最小系統(tǒng)、通信與保護(hù)工作電路。焊機(jī)的工作中,各種干擾不可避免,對各種可能干擾分析的基礎(chǔ)上在硬件電路設(shè)計(jì)和PCB板的制作中采取了相應(yīng)的抗干擾措施。軟件設(shè)計(jì)是焊接穩(wěn)定進(jìn)行的關(guān)鍵因素,文中介紹了控制系統(tǒng)中關(guān)鍵步驟的軟件設(shè)計(jì)思路和流程并在軟件的實(shí)現(xiàn)中采用抗干擾措施。 最后,對采用本控制系統(tǒng)的埋弧焊機(jī)進(jìn)行初步實(shí)驗(yàn),結(jié)果表明本文所設(shè)計(jì)的埋弧焊機(jī)控制系統(tǒng)能夠滿足逆變埋弧自動焊的要求,具有電路簡單,控制精度高,抗干擾能力強(qiáng)、操作方便、工作穩(wěn)定可靠等優(yōu)點(diǎn),提高了焊機(jī)的綜合性能及自動化程度。 本課題所設(shè)計(jì)的逆變式交流方波埋弧焊電源具有良好的輸出特性和控制性能,可滿足埋弧自動焊和手工焊的要求。采用交流方波的焊接波形、對焊接整個過程進(jìn)行實(shí)時(shí)軟件控制,電弧穩(wěn)定,焊接效果好。 關(guān)鍵詞:埋弧焊;交流方波;逆變;軟開關(guān)
上傳時(shí)間: 2013-06-08
上傳用戶:mingaili888
隨著網(wǎng)絡(luò)技術(shù)的飛速發(fā)展,辦公樓宇或住宅小區(qū)的用電管理也正逐步走向智能化、網(wǎng)絡(luò)化。論文針對傳統(tǒng)的電表系統(tǒng)具有抗干擾能力差、計(jì)量不精確、人工抄表費(fèi)時(shí)費(fèi)力、功能單一等缺點(diǎn),提出了一套基于以太網(wǎng)傳輸?shù)娜嚯娏坎杉到y(tǒng)。該系統(tǒng)采用電能計(jì)量芯片CS5460A負(fù)責(zé)采集電量,AT89S53單片機(jī)作為數(shù)據(jù)處理的核心部件,通過SPI總線傳送電流、電壓、有功、無功等實(shí)時(shí)測量值,并用以太網(wǎng)控制器ENC28J60,實(shí)現(xiàn)以太網(wǎng)通信,配合上位機(jī)顯示,對電能進(jìn)行集中管理。 本系統(tǒng)采用電子計(jì)量芯片代替?zhèn)鹘y(tǒng)的機(jī)械脈沖式電能表,并結(jié)合用電特性,使得電能計(jì)量精度大大提高,電量統(tǒng)計(jì)也更加精確。電能表輸出的脈沖信號經(jīng)過網(wǎng)絡(luò)模塊的統(tǒng)計(jì)換算之后,通過以太網(wǎng)傳輸給管理計(jì)算機(jī),使得傳輸距離大大增加。用電量信息經(jīng)過統(tǒng)計(jì)計(jì)算存入數(shù)據(jù)庫,可以生成一個用戶用電報(bào)表并可打印出來,這樣可有效的把電能計(jì)量、收費(fèi)管理、用電過程管理等功能集于一體。采用以太網(wǎng)總線控制,不僅減少了布線的成本和難度,且利于數(shù)據(jù)在局域網(wǎng)內(nèi)的共享。 本文首先對當(dāng)前電子式電能表的發(fā)展情況、技術(shù)特點(diǎn)作了一個簡單的概述。其次闡述了系統(tǒng)的硬件電路設(shè)計(jì)及系統(tǒng)軟件設(shè)計(jì),并對以太網(wǎng)通信的重要依據(jù)-TCP/IP協(xié)議作了全面的分析,介紹了TCP/IP協(xié)議的四個協(xié)議層:鏈路層、網(wǎng)絡(luò)層、傳輸層和應(yīng)用層及其具體實(shí)現(xiàn)方法,精簡了TCP/IP協(xié)議。最后簡單介紹了上位機(jī)上的管理軟件設(shè)計(jì)。
上傳時(shí)間: 2013-06-09
上傳用戶:youth25
隨著電力電子技術(shù)的發(fā)展,交流電源系統(tǒng)的電能質(zhì)量問題受到越來越多的關(guān)注。傳統(tǒng)的整流環(huán)節(jié)廣泛采用二極管不控整流和晶閘管相控整流電路,向電網(wǎng)注入了大量的諧波及無功,造成了嚴(yán)重的污染。提高電網(wǎng)側(cè)功率因數(shù)以及降低輸入電流諧波成為一個研究熱點(diǎn)。功率因數(shù)校正技術(shù)是減小用電設(shè)備對電網(wǎng)造成的諧波污染,提高功率因數(shù)的一項(xiàng)有力措施。本文所做的主要工作包括以下幾部分: 1.分析了單位功率因數(shù)三相橋式整流的工作原理,這種整流拓?fù)鋸墓ぷ髟砩峡梢苑殖蓛刹糠郑汗β室驍?shù)補(bǔ)償網(wǎng)絡(luò)和常規(guī)整流網(wǎng)絡(luò)。在此基礎(chǔ)上,為整流電路建立了精確的數(shù)學(xué)模型。 2.這種單位功率因數(shù)三相橋式整流的輸入電感是在額定負(fù)載下計(jì)算出的,當(dāng)負(fù)載發(fā)生變化時(shí),其功率因數(shù)會降低。針對這種情況,提出了一種新的控制方法。常規(guī)整流網(wǎng)絡(luò)向電網(wǎng)注入的諧波可以由功率因數(shù)補(bǔ)償網(wǎng)絡(luò)進(jìn)行補(bǔ)償,所以輸入功率因數(shù)相應(yīng)提高。負(fù)載消耗的有功由電網(wǎng)提供,補(bǔ)償網(wǎng)絡(luò)既不消耗有功也不提供任何有功。根據(jù)功率平衡理論,可以確定參考補(bǔ)償電流。雙向開關(guān)的導(dǎo)通和關(guān)斷由滯環(huán)電流控制確定。在這一方法的控制下,雙向開關(guān)工作在高頻下,因此輸入電感值相應(yīng)降低。仿真和實(shí)驗(yàn)結(jié)果都表明:新的控制方法下,負(fù)載變化時(shí),輸入電流仍接近于正弦,功率因數(shù)接近1。 3.根據(jù)IEEE-519標(biāo)準(zhǔn)對諧波電流畸變率的要求,為單位功率因數(shù)三相橋式整流提出了另一種控制方法。該方法綜合考慮單次諧波電流畸變率、總諧波畸變率、功率因數(shù)、有功消耗等性能指標(biāo),并進(jìn)行優(yōu)化,推導(dǎo)出最優(yōu)電流補(bǔ)償增益和相移。將三相負(fù)載電流通過具有最優(yōu)電流補(bǔ)償增益和相移的電流補(bǔ)償濾波器,得到補(bǔ)償后期望的電網(wǎng)電流,驅(qū)動雙向開關(guān)導(dǎo)通和關(guān)斷。仿真和實(shí)驗(yàn)都收到了滿意的效果,使這一整流橋可以工作在較寬的負(fù)載范圍內(nèi)。 4.單位功率因數(shù)三相橋式整流中直流側(cè)電容電壓隨負(fù)載的波動而波動,為提高其動、靜態(tài)性能,將簡單自適應(yīng)控制應(yīng)用到了直流側(cè)電容電壓的控制中,并提出利用改進(jìn)的二次型性能指標(biāo)修改自適應(yīng)參數(shù)的方法,可以在實(shí)現(xiàn)對參考模型跟蹤的同時(shí)又不使控制增量過大,與常規(guī)的PI型簡單自適應(yīng)控制相比在適應(yīng)律的計(jì)算中引入了控制量的增量和狀態(tài)誤差在k及k+1時(shí)刻的采樣值。利用該方法為直流側(cè)電壓設(shè)計(jì)了控制器,并進(jìn)行了仿真與實(shí)驗(yàn)研究,結(jié)果表明與PI型適應(yīng)律相比,新的控制器能提高系統(tǒng)的動態(tài)響應(yīng)性能,負(fù)載變化時(shí)系統(tǒng)的魯棒性更強(qiáng)。
上傳時(shí)間: 2013-06-15
上傳用戶:WS Rye
由于下一代微處理器的工作電壓越來越低,所需電流越來越大,現(xiàn)有的5V、12V輸入的電壓調(diào)節(jié)模塊(VRM)已經(jīng)不能滿足它的要求了,因此把VRM的輸入母線電壓提高到48V是必然的趨勢。這樣做能夠減小輸入電流從而使得母線損耗減小,有利于效率提高,同時(shí)可以大大減小輸入濾波器體積。 本課題首先分析了VRM的發(fā)展現(xiàn)狀和常用拓?fù)洌约拔磥淼陌l(fā)展趨勢,并在此基礎(chǔ)上介紹了級聯(lián)式流饋推挽DC/DC變換器的概念。接著,具體分析了Buck與推挽級聯(lián)式流饋DC/DC變換器、雙通道交錯并聯(lián)型Buck與推挽級聯(lián)式流饋DC/DC變換器的原理和工作過程。再接著,分別介紹了Buck與推挽級聯(lián)式流饋DC/DC變換器、雙通道交錯并聯(lián)型Buck與推挽級聯(lián)式流饋DC/DC變換器及其控制同路的建模和設(shè)計(jì)方法,并給出設(shè)計(jì)實(shí)例。最后,分別用這兩種拓?fù)浣Y(jié)構(gòu)制作了兩臺48V輸入、3.3V/10A輸出的樣機(jī),并對兩者進(jìn)行了一定的實(shí)驗(yàn)比較研究,以驗(yàn)證設(shè)計(jì)的有效性。
上傳時(shí)間: 2013-07-29
上傳用戶:gxrui1991
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1