簡易負離子發生器負離子增加,對人有催眠、止汗、鎮痛、增進食欲,使人精神爽快,消除疲勞的作用。圖1是負離子發生器電路圖。220V交流市電經D1整流后向C3和C2充電,當C2充電至氖泡導通并觸發SCR導通時,C3經SCR、B的L1放電,經B感應升壓后,由D2反向整流得8kV直流高壓使發生器M的分子電離而產生負離子。調整R3的阻值可以改變觸發頻率和輸出電壓。調整時必須注意安全,更換元件需撥下電源插頭
標簽: 負離子發生器
上傳時間: 2013-10-29
上傳用戶:731140412
MAX29X是美國MAXIM公司生瓣的8階開關電容低通濾波器,由于價格便宜、使用方便、設計簡單,在通訊、信號自理等領域得到了廣泛的應用。本文就其工作原理、電氣參數、設計注意事項等問題作了討論,具有一定的實用參考價值。關鍵詞:開關電容、濾波器、設計 1 引言 開關電容濾波器在近些年得到了迅速的發展,世界上一些知名的半導體廠家相繼推出了自己的開頭電容濾波器集成電路,使形狀電容濾波器的發展上了一個新臺階。 MAXIM公司在模擬器件生產領域頗具影響,它生產MAX291/292/293/294/295/296/297系列8階低通開關電容濾波器由于使用方便(基本上不需外接元件)、設計簡單(頻率響應函數是固定的,只需確定其拐角頻率即截止頻率)、尺寸?。ㄓ?-pin DIP封裝)等優點,在ADC的反混疊濾波、噪聲分析、電源噪聲抑制等領域得到了廣泛的應用。 MAX219/295為巴特活思(型濾波器,在通頻帶內,它的增益最穩定,波動小,主要用于儀表測量等要求整個通頻帶內增益恒定的場合。MAX292/296為貝塞爾(Bessel)濾波器,在通頻帶內它的群時延時恒定的,相位對頻率呈線性關系,因此脈沖信號通過MAX292/296之后尖峰幅度小,穩定速度快。由于脈沖信號通過貝塞爾濾波器之后所有頻率分量的延遲時間是相同的,故可保證波形基本不變。關于巴特活和貝塞爾濾波器的特性可能圖1來說明。圖1的蹤跡A為加到濾波器輸入端的3kHz的脈沖,這里我們把濾波器的截止頻率設為10kHZ。蹤跡B通過MAX292/296后的波形。從圖中可以看出,由于MAX292/296在通帶內具有線性相位特性,輸出波形基本上保持了方波形狀,只是邊沿處變圓了一些。方波通過MAX291/295之后,由于不同頻率的信號產生的時延不同,輸出波形中就出現了尖峰(overshoot)和鈴流(ringing)。 MAX293/294/297為8階圓型(Elliptic)濾波器,它的滾降速度快,從通頻帶到阻帶的過渡帶可以作得很窄。在橢圓型濾波器中,第一個傳輸零點后輸出將隨頻率的變高而增大,直到第二個零點處。這樣幾番重復就使阻事賓頻響呈現波浪形,如圖2所示。阻帶從fS起算起,高于頻率fS處的增益不會超過fS處的增益。在橢圓型濾波中,通頻帶內的增益存在一定范圍的波動。橢圓型濾波器的一個重要參數就是過渡比。過渡比定義為阻帶頻率fS與拐角頻率(有時也等同為截止頻率)由時鐘頻率確定。時鐘既可以是外接的時鐘,也可以是自己的內部時鐘。使用內部時鐘時只需外接一個定時用的電容既可。 在MAX29X系列濾波器集成電路中,除了濾波器電路外還有一個獨立的運算放大器(其反相輸入端已在內部接地)。用這個運算放大器可以組成配合MAX29X系列濾波器使用后的濾波、反混濾波等連續時間低通濾波器。 下面歸納一下它們的特點: ●全部為8階低通濾波器。MAX291/MAX295為巴特沃思濾波器;MAX292/296為貝塞爾濾波器;MAX293/294/297為橢圓濾波器。 ●通過調整時鐘,截止頻率的調整范圍為:0.1Hz~25kHz(MAX291/292/293*294);0.1Hz~kHz(MAX295/296/297)。 ●既可用外部時鐘也可用內部時鐘作為截止頻率的控制時鐘。 ●時鐘頻率和截止頻率的比率:10∶1(MAX291/292/293/294);50∶1(MAX295/296/297)。 ●既可用單+5V電源供電也可用±5V雙電源供電。 ●有一個獨立的運算放大器可用于其它應用目的。 ●8-pin DIP、8-pin SO和寬SO-16多種封裝。2 管腳排列和主要電氣參數 MAX29X系列開頭電容濾波器的管腳排列如圖3所示。 管腳功能定義如下: CLK:時鐘輸入。 OP OUT:獨立運放的輸出端。 OP INT:獨立運放的同相輸入端。 OUT:濾波器輸出。 IN:濾波器輸入。 V-:負電源 。雙電源供電時搛-2.375~-5.5V之間的電壓,單電源供電時V--=-V。 V+:正電源。雙電源供電時V+=+2.35~+5.5V,單電源供電時V+=+4.75~+11.0V。 GND:地線。單電源工作時GND端必須用電源電壓的一半作偏置電壓。 NC:空腳,無連線。 MAX29X的極限電氣參數如下: 電源(V+~V-):12V 輸入電壓(任意腳):V--0.3V≤VIN≤V++0.3V 連續工作時的功耗:8腳塑封DIP:727mW;8腳SO:471mW;16腳寬SO:762mW;8腳瓷封DIP:640mW。 工作溫度范圍:MAX29-C-:0℃~+70℃;MAX29-E-:-40℃~+85℃;MAX29-MJA:-55℃~+125℃;保存溫度范圍:-65℃~+160℃;焊接溫度(10秒):+300℃; 大多數的形狀電容濾波器都采用四節級連結構,每一節包含兩個濾波器極點。這種方法的特點就是易于設計。但采用這種方法設計出來的濾波器的特性對所用元件的元件值偏差很敏感?;谝陨峡紤],MAX29X系列用帶有相加和比例功能的開關電容持了梯形無源濾波器,這種方法保持了梯形無源濾波器的優點,在這種結構中每個元件的影響作用是對于整個頻率響應曲線的,某元件值的誤差將會分散到所有的極點,因此不值像四節級連結構那樣對某一個極點特別明顯的影響。3 MAX29X的頻率特性 MAX29X的頻率特性如圖4所示。圖中的fs都假定為1kHz。4 設計考慮 下面對MAX29X系列形狀電容濾波器的使用做些討論。4.1 時鐘信號 MAX29X系列開頭電容濾波器推薦使用的時鐘信號最高頻率為2.5MHz。根據對應的時鐘頻率和拐角頻率的比值,MAX291/MAX292/MAX293/MAX294的拐角頻率最高為25kHz.MAX295/MAX296/MAX297的拐角頻率最高為50kHz 。 MAX29X系列開關電容濾波器的時鐘信號既可幅外部時鐘直接驅動也可由內部振蕩器產生。使用外部時鐘時,無論是采用單電源供電還是雙電源供電,CLK可直接和采用+5V供電的CMOS時鐘信號發生器的輸出相連。通過調整外部時鐘的頻率,可完成濾波器拐角的實時調整。 當使用內部時鐘時,振蕩器的頻率由接在CLK端上的電容VCOSC決定: fCOSC (kHz)=105/3COSC (pF) 4.2 供電 MAX29X系列開關電容濾波器既可用單電源工作也可用雙電源工作。雙電源供電時的電源電壓范圍為±2.375~±5.5V。在實際電路中一般要在正負電源和GND之間接一旁路電容。 當采用單電源供電時,V-端接地,而GND端要通過電阻分壓獲得一個電壓參考,該電壓參考的電壓值為1/2的電源電壓,參見圖5。4.3 輸入信號幅度范圍限制 MAX29X允許的輸入信號的最大范圍為V--0.3V~V++0.3V。一般情況下在+5V單電源供電時輸入信號范圍取1V~4V,±5V雙電源供電時,輸入信號幅度范圍取±4V。如果輸入信號超過此范圍,總諧波失真THD和噪聲就大大增加;同樣如果輸入信號幅度過小(VP-P<1V),也會造成THD和噪聲的增加。4.4 獨立運算放大器的用法 MAX29X中都設計有一個獨立的運算放大器,這個放大器和濾波器的實現無直接關系,用這個放大器可組成一個一階和二階濾波器,用于實現MAX29X之前的反混疊濾波功能鄞MAX29X之后的時鐘噪聲抑制功能。這個運算放大器的反相端已在內部和GND相連。 圖6是用該獨立運放組成的2階低通濾波器的電路,它的拐角頻率為10kHz,輸入阻抗為22Ω,可滿足MAX29X形狀電容濾波器的最小負載要求(MAX29X的輸出負載要求不小于20kΩ)可以通過改變R1、R2、R3、C1、C2的元件值改變拐角頻率。具體的元件值和拐角頻率的對應關系參見表1。
上傳時間: 2013-10-18
上傳用戶:macarco
本書全面、系統地介紹了MCS-51系列單片機應用系統的各種實用接口技術及其配置。 內容包括:MCS-51系列單片機組成原理:應用系統擴展、開發與調試;鍵盤輸入接口的設計及調試;打印機和顯示器接口及設計實例;模擬輸入通道接口技術;A/D、D/A、接口技術及在控制系統中的應用設計;V/F轉換器接口技術、串行通訊接口技術以及其它與應用系統設計有關的實用技術等。 本書是為滿足廣大科技工作者從事單片機應用系統軟件、硬件設計的需要而編寫的,具有內容新穎、實用、全面的特色。所有的接口設計都包括詳細的設計步驟、硬件線路圖及故障分析,并附有測試程序清單。書中大部分接口軟、硬件設計實例都是作者多年來從事單片機應用和開發工作的經驗總結,實用性和工程性較強,尤其是對應用系統中必備的鍵盤、顯示器、打印機、A/D、D/A通訊接口設計、模擬信號處理及開發系統應用舉例甚多,目的是讓將要開始和正在從事單片機應用開發的科研人員根據自己的實際需要來選擇應用,一書在手即可基本完成單片機應用系統的開發工作。 本書主要面向從事單片機應用開發工作的廣大工程技術人員,也可作為大專院校有關專業的教材或教學參考書。 第一章MCS-51系列單片機組成原理 1.1概述 1.1.1單片機主流產品系列 1.1.2單片機芯片技術的發展概況 1.1.3單片機的應用領域 1.2MCS-51單片機硬件結構 1.2.1MCS-51單片機硬件結構的特點 1.2.2MCS-51單片機的引腳描述及片外總線結構 1.2.3MCS-51片內總體結構 1.2.4MCS-51單片機中央處理器及其振蕩器、時鐘電路和CPU時序 1.2.5MCS-51單片機的復位狀態及幾種復位電路設計 1.2.6存儲器、特殊功能寄存器及位地址空間 1.2.7輸入/輸出(I/O)口 1.3MCS-51單片機指令系統分析 1.3.1指令系統的尋址方式 1.3.2指令系統的使用要點 1.3.3指令系統分類總結 1.4串行接口與定時/計數器 1.4.1串行接口簡介 1.4.2定時器/計數器的結構 1.4.3定時器/計數器的四種工作模式 1.4.4定時器/計數器對輸入信號的要求 1.4.5定時器/計數器的編程和應用 1.5中斷系統 1.5.1中斷請求源 1.5.2中斷控制 1.5.3中斷的響應過程 1.5.4外部中斷的響應時間 1.5.5外部中斷方式的選擇 第二章MCS-51單片機系統擴展 2.1概述 2.2程序存貯器的擴展 2.2.1外部程序存貯器的擴展原理及時序 2.2.2地址鎖存器 2.2.3EPROM擴展電路 2.2.4EEPROM擴展電路 2.3外部數據存貯器的擴展 2.3.1外部數據存貯器的擴展方法及時序 2.3.2靜態RAM擴展 2.3.3動態RAM擴展 2.4外部I/O口的擴展 2.4.1I/O口擴展概述 2.4.2I/O口地址譯碼技術 2.4.38255A可編程并行I/O擴展接口 2.4.48155/8156可編程并行I/O擴展接口 2.4.58243并行I/O擴展接口 2.4.6用TTL芯片擴展I/O接口 2.4.7用串行口擴展I/O接口 2.4.8中斷系統擴展 第三章MCS-51單片機應用系統的開發 3.1單片機應用系統的設計 3.1.1設計前的準備工作 3.1.2應用系統的硬件設計 3.1.3應用系統的軟件設計 3.1.4應用系統的抗干擾設計 3.2單片機應用系統的開發 3.2.1仿真系統的功能 3.2.2開發手段的選擇 3.2.3應用系統的開發過程 3.3SICE—IV型單片機仿真器 3.3.1SICE-IV仿真器系統結構 3.3.2SICE-IV的仿真特性和軟件功能 3.3.3SICE-IV與主機和終端的連接使用方法 3.4KHK-ICE-51單片機仿真開發系統 3.4.1KHK—ICE-51仿真器系統結構 3.4.2仿真器系統功能特點 3.4.3KHK-ICE-51仿真系統的安裝及其使用 3.5單片機應用系統的調試 3.5.1應用系統聯機前的靜態調試 3.5.2外部數據存儲器RAM的測試 3.5.3程序存儲器的調試 3.5.4輸出功能模塊調試 3.5.5可編程I/O接口芯片的調試 3.5.6外部中斷和定時器中斷的調試 3.6用戶程序的編輯、匯編、調試、固化及運行 3.6.1源程序的編輯 3.6.2源程序的匯編 3.6.3用戶程序的調試 3.6.4用戶程序的固化 3.6.5用戶程序的運行 第四章鍵盤及其接口技術 4.1鍵盤輸入應解決的問題 4.1.1鍵盤輸入的特點 4.1.2按鍵的確認 4.1.3消除按鍵抖動的措施 4.2獨立式按鍵接口設計 4.3矩陣式鍵盤接口設計 4.3.1矩陣鍵盤工作原理 4.3.2按鍵的識別方法 4.3.3鍵盤的編碼 4.3.4鍵盤工作方式 4.3.5矩陣鍵盤接口實例及編程要點 4.3.6雙功能及多功能鍵設計 4.3.7鍵盤處理中的特殊問題一重鍵和連擊 4.48279鍵盤、顯示器接口芯片及應用 4.4.18279的組成和基本工作原理 4.4.28279管腳、引線及功能說明 4.4.38279編程 4.4.48279鍵盤接口實例 4.5功能開關及撥碼盤接口設計 第五章顯示器接口設計 5.1LED顯示器 5.1.1LED段顯示器結構與原理 5.1.2LED顯示器及顯示方式 5.1.3LED顯示器接口實例 5.1.4LED顯示器驅動技術 5.2單片機應用系統中典型鍵盤、顯示接口技術 5.2.1用8255和串行口擴展的鍵盤、顯示器電路 5.2.2由鎖存器組成的鍵盤、顯示器接口電路 5.2.3由8155構成的鍵盤、顯示器接口電路 5.2.4用8279組成的顯示器實例 5.3液晶顯示LCD 5.3.1LCD的基本結構及工作原理 5.3.2LCD的驅動方式 5.3.34位LCD靜態驅動芯片ICM7211系列簡介 5.3.4點陣式液晶顯示控制器HD61830介紹 5.3.5點陣式液晶顯示模塊介紹 5.4熒光管顯示 5.5LED大屏幕顯示器 第六章打印機接口設計 6.1打印機簡介 6.1.1打印機的基本知識 6.1.2打印機的電路構成 6.1.3打印機的接口信號 6.1.4打印機的打印命令 6.2TPμP-40A微打與單片機接口設計 6.2.1TPμP系列微型打印機簡介 6.2.2TPμP-40A打印功能及接口信號 6.2.3TPμP-40A工作方式及打印命令 6.2.48031與TPμP-40A的接口 6.2.5打印編程實例 6.3XLF微型打印機與單片機接口設計 6.3.1XLF微打簡介 6.3.2XLF微打接口信號及與8031接口設計 6.3.3XLF微打控制命令 6.3.4打印機編程 6.4標準寬行打印機與8031接口設計 6.4.1TH3070接口引腳信號及時序 6.4.2與8031的簡單接口 6.4.3通過打印機適配器完成8031與打印機的接口 6.4.4對打印機的編程 第七章模擬輸入通道接口技術 7.1傳感器 7.1.1傳感器的分類 7.1.2溫度傳感器 7.1.3光電傳感器 7.1.4濕度傳感器 7.1.5其他傳感器 7.2模擬信號放大技術 7.2.1基本放大器電路 7.2.2集成運算放大器 7.2.3常用運算放大器及應用舉例 7.2.4測量放大器 7.2.5程控增益放大器 7.2.6隔離放大器 7.3多通道模擬信號輸入技術 7.3.1多路開關 7.3.2常用多路開關 7.3.3模擬多路開關 7.3.4常用模擬多路開關 7.3.5多路模擬開關應用舉例 7.3.6多路開關的選用 7.4采樣/保持電路設計 7.4.1采樣/保持原理 7.4.2集成采樣/保持器 7.4.3常用集成采樣/保持器 7.4.4采樣保持器的應用舉例 7.5有源濾波器的設計 7.5.1濾波器分類 7.5.2有源濾波器的設計 7.5.3常用有源濾波器設計舉例 7.5.4集成有源濾波器 第八章D/A轉換器與MCS-51單片機的接口設計與實踐 8.1D/A轉換器的基本原理及主要技術指標 8.1.1D/A轉換器的基本原理與分類 8.1.2D/A轉換器的主要技術指標 8.2D/A轉換器件選擇指南 8.2.1集成D/A轉換芯片介紹 8.2.2D/A轉換器的選擇要點及選擇指南表 8.2.3D/A轉換器接口設計的幾點實用技術 8.38位D/A轉換器DAC080/0831/0832與MCS-51單片機的接口設計 8.3.1DAC0830/0831/0832的應用特性與引腳功能 8.3.2DAC0830/0831/0832與8031單片機的接口設計 8.3.3DAC0830/0831/0832的調試說明 8.3.4DAC0830/0831/0832應用舉例 8.48位D/A轉換器AD558與MCS-51單片機的接口設計 8.4.1AD558的應用特性與引腳功能 8.4.2AD558與8031單片機的接口及調試說明 8.4.38位D/A轉換器DAC0800系列與8031單片機的接口 8.510位D/A轉換器AD7522與MCS-51的硬件接口設計 8.5.1AD7522的應用特性及引腳功能 8.5.2AD7522與8031單片機的接口設計 8.610位D/A轉換器AD7520/7530/7533與MCS一51單片機的接口設計 8.6.1AD7520/7530/7533的應用特性與引腳功能 8.6.2AD7520系列與8031單片機的接口 8.6.3DAC1020/DAC1220/AD7521系列D/A轉換器接口設計 8.712位D/A轉換器DAC1208/1209/1210與MCS-51單片機的接口設計 8.7.1DAC1208/1209/1210的內部結構與引腳功能 8.7.2DAC1208/1209/1210與8031單片機的接口設計 8.7.312位D/A轉換器DAC1230/1231/1232的應用設計說明 8.7.412位D/A轉換器AD7542與8031單片機的接口設計 8.812位串行DAC-AD7543與MCS-51單片機的接口設計 8.8.1AD7543的應用特性與引腳功能 8.8.2AD7543與8031單片機的接口設計 8.914位D/A轉換器AD75335與MCS-51單片機的接口設計 8.9.1AD8635的內部結構與引腳功能 8.9.2AD7535與8031單片機的接口設計 8.1016位D/A轉換器AD1147/1148與MCS-51單片機的接口設計 8.10.1AD1147/AD1148的內部結構及引腳功能 8.10.2AD1147/AD1148與8031單片機的接口設計 8.10.3AD1147/AD1148接口電路的應用調試說明 8.10.416位D/A轉換器AD1145與8031單片機的接口設計 第九章A/D轉換器與MCS-51單片機的接口設計與實踐 9.1A/D轉換器的基本原理及主要技術指標 9.1.1A/D轉換器的基本原理與分類 9.1.2A/D轉換器的主要技術指標 9.2面對課題如何選擇A/D轉換器件 9.2.1常用A/D轉換器簡介 9.2.2A/D轉換器的選擇要點及應用設計的幾點實用技術 9.38位D/A轉換器ADC0801/0802/0803/0804/0805與MCS-51單片機的接口設計 9.3.1ADC0801~ADC0805芯片的引腳功能及應用特性 9.3.2ADC0801~ADC0805與8031單片機的接口設計 9.48路8位A/D轉換器ADC0808/0809與MCS一51單片機的接口設計 9.4.1ADC0808/0809的內部結構及引腳功能 9.4.2ADC0808/0809與8031單片機的接口設計 9.4.3接口電路設計中的幾點注意事項 9.4.416路8位A/D轉換器ADC0816/0817與MCS-51單片機的接口設計 9.510位A/D轉換器AD571與MCS-51單片機的接口設計 9.5.1AD571芯片的引腳功能及應用特性 9.5.2AD571與8031單片機的接口 9.5.38位A/D轉換器AD570與8031單片機的硬件接口 9.612位A/D轉換器ADC1210/1211與MCS-51單片機的接口設計 9.6.1ADC1210/1211的引腳功能與應用特性 9.6.2ADC1210/1211與8031單片機的硬件接口 9.6.3硬件接口電路的設計要點及幾點說明 9.712位A/D轉換器AD574A/1374/1674A與MCS-51單片機的接口設計 9.7.1AD574A的內部結構與引腳功能 9.7.2AD574A的應用特性及校準 9.7.3AD574A與8031單片機的硬件接口設計 9.7.4AD574A的應用調試說明 9.7.5AD674A/AD1674與8031單片機的接口設計 9.8高速12位A/D轉換器AD578/AD678/AD1678與MCS—51單片機的接口設計 9.8.1AD578的應用特性與引腳功能 9.8.2AD578高速A/D轉換器與8031單片機的接口設計 9.8.3AD578高速A/D轉換器的應用調試說明 9.8.4AD678/AD1678采樣A/D轉換器與8031單片機的接口設計 9.914位A/D轉換器AD679/1679與MCS-51單片機的接口設計 9.9.1AD679/AD1679的應用特性及引腳功能 9.9.2AD679/1679與8031單片機的接口設計 9.9.3AD679/1679的調試說明 9.1016位ADC-ADC1143與MCS-51單片機的接口設計 9.10.1ADC1143的應用特性及引腳功能 9.10.2ADC1143與8031單片機的接口設計 9.113位半積分A/D轉換器5G14433與MCS-51單片機的接口設計 9.11.15G14433的內部結構及引腳功能 9.11.25G14433的外部電路連接與元件參數選擇 9.11.35G14433與8031單片機的接口設計 9.11.45G14433的應用舉例 9.124位半積分A/D轉換器ICL7135與MCS—51單片機的接口設計 9.12.1ICL7135的內部結構及芯片引腳功能 9.12.2ICL7135的外部電路連接與元件參數選擇 9.12.3ICL7135與8031單片機的硬件接口設計 9.124ICL7135的應用舉例 9.1312位雙積分A/D轉換器ICL7109與MCS—51單片機的接口設計 9.13.1ICL7109的內部結構與芯片引腳功能 9.13.2ICL7109的外部電路連接與元件參數選擇 9.13.3ICL7109與8031單片機的硬件接口設計 9.1416位積分型ADC一ICL7104與MCS-51單片機的接口設計 9.14.1ICL7104的主要應用特性及引腳功能 9.14.2ICL7104與8031單片機的接口設計 9.14.3其它積分型A/D轉換器簡介 第十章V/F轉換器接口技術 10.1V/F轉換的特點及應用環境 10.2V/F轉換原理及用V/F轉換器實現A/D轉換的方法 10.2.1V/F轉換原理 10.2.2用V/F轉換器實現A/D轉換的方法 10.3常用V/F轉換器簡介 10.3.1VFC32 10.3.2LMX31系列V/F轉換器 10.3.3AD650 10.3.4AD651 10.4V/F轉換應用系統中的通道結構 10.5LM331應用實例 10.5.1線路原理 10.5.2軟件設計 10.6AD650應用實例 10.6.1AD650外圍電路設計 10.6.2定時/計數器(8253—5簡介) 10.6.3線路原理 10.6.4軟件設計 第十一章串行通訊接口技術 11.1串行通訊基礎 11.1.1異步通訊和同步通訊 11.1.2波特率和接收/發送時鐘 11.1.3單工、半雙工、全雙工通訊方式 11.14信號的調制與解調 11.1.5通訊數據的差錯檢測和校正 11.1.6串行通訊接口電路UART、USRT和USART 11.2串行通訊總線標準及其接口 11.2.1串行通訊接口 11.2.2RS-232C接口 11.2.3RS-449、RS-422、RS-423及RS485 11.2.420mA電流環路串行接口 11.3MCS-51單片機串行接口 11.3.1串行口的結構 11.3.2串行接口的工作方式 11.3.3串行通訊中波特率設置 11.4MCS-51單片機串行接口通訊技術 11.4.1單片機雙機通訊技術 11.4.2單片機多機通訊技術 11.5IBMPC系列機與單片機的通訊技術 11.5.1異步通訊適配器 11.5.2IBM-PC機與8031雙機通訊技術 11.5.3IBM—PC機與8031多機通訊技術 11.6MCS-51單片機串行接口的擴展 11.6.1Intel8251A可編程通訊接口 11.6.2擴展多路串行口的硬件設計 11.6.3通訊軟件設計 第十二章應用系統設計中的實用技術 12.1MCS-51單片機低功耗系統設計 12.1.1CHMOS型單片機80C31/80C51/87C51的組成與使用要點 12.1.2CHMOS型單片機的空閑、掉電工作方式 12.1.3CHMOS型單片機的I/O接口及應用系統實例 12.1.4HMOS型單片機的節電運行方式 12.2邏輯電平接口技術 12.2.1集電極開路門輸出接口 12.2.2TTL、HTL、ECL、CMOS電平轉換接口 12.3電壓/電流轉換 12.3.1電壓/0~10mA轉換 12.3.2電壓1~5V/4~20mA轉換 12.3.30~10mA/0~5V轉換 12.344~20mA/0~5V轉換 12.3.5集成V/I轉換電路 12.4開關量輸出接口技術 12.4.1輸出接口隔離技術 12.4.2低壓開關量信號輸出技術 12.4.3繼電器輸出接口技術 12.4.4可控硅(晶閘管)輸出接口技術 12.4.5固態繼電器輸出接口 12.4.6集成功率電子開關輸出接口 12.5集成穩壓電路 12.5.1電源隔離技術 12.5.2三端集成穩壓器 12.5.3高精度電壓基準 12.6量程自動轉換技術 12.6.1自動轉換量程的硬件電路 12.6.2自動轉換量程的軟件設計 附錄AMCS-51單片機指令速查表 附錄B常用EPROM固化電壓參考表 參考文獻
上傳時間: 2013-10-15
上傳用戶:himbly
關于PCB封裝的資料收集整理. 大的來說,元件有插裝和貼裝.零件封裝是指實際零件焊接到電路板時所指示的外觀和焊點的位置。是純粹的空間概念.因此不同的元件可共用同一零件封裝,同種元件也可有不同的零件封裝。像電阻,有傳統的針插式,這種元件體積較大,電路板必須鉆孔才能安置元件,完成鉆孔后,插入元件,再過錫爐或噴錫(也可手焊),成本較高,較新的設計都是采用體積小的表面貼片式元件(SMD)這種元件不必鉆孔,用鋼膜將半熔狀錫膏倒入電路板,再把SMD 元件放上,即可焊接在電路板上了。晶體管是我們常用的的元件之一,在DEVICE。LIB庫中,簡簡單單的只有NPN與PNP之分,但實際上,如果它是NPN的2N3055那它有可能是鐵殼子的TO—3,如果它是NPN的2N3054,則有可能是鐵殼的TO-66或TO-5,而學用的CS9013,有TO-92A,TO-92B,還有TO-5,TO-46,TO-52等等,千變萬化。還有一個就是電阻,在DEVICE 庫中,它也是簡單地把它們稱為RES1 和RES2,不管它是100Ω 還是470KΩ都一樣,對電路板而言,它與歐姆數根本不相關,完全是按該電阻的功率數來決定的我們選用的1/4W 和甚至1/2W 的電阻,都可以用AXIAL0.3 元件封裝,而功率數大一點的話,可用AXIAL0.4,AXIAL0.5等等。現將常用的元件封裝整理如下:電阻類及無極性雙端元件:AXIAL0.3-AXIAL1.0無極性電容:RAD0.1-RAD0.4有極性電容:RB.2/.4-RB.5/1.0二極管:DIODE0.4及DIODE0.7石英晶體振蕩器:XTAL1晶體管、FET、UJT:TO-xxx(TO-3,TO-5)可變電阻(POT1、POT2):VR1-VR5這些常用的元件封裝,大家最好能把它背下來,這些元件封裝,大家可以把它拆分成兩部分來記如電阻AXIAL0.3 可拆成AXIAL 和0.3,AXIAL 翻譯成中文就是軸狀的,0.3 則是該電阻在印刷電路板上的焊盤間的距離也就是300mil(因為在電機領域里,是以英制單位為主的。同樣的,對于無極性的電容,RAD0.1-RAD0.4也是一樣;對有極性的電容如電解電容,其封裝為RB.2/.4,RB.3/.6 等,其中“.2”為焊盤間距,“.4”為電容圓筒的外徑。對于晶體管,那就直接看它的外形及功率,大功率的晶體管,就用TO—3,中功率的晶體管,如果是扁平的,就用TO-220,如果是金屬殼的,就用TO-66,小功率的晶體管,就用TO-5,TO-46,TO-92A等都可以,反正它的管腳也長,彎一下也可以。對于常用的集成IC電路,有DIPxx,就是雙列直插的元件封裝,DIP8就是雙排,每排有4個引腳,兩排間距離是300mil,焊盤間的距離是100mil。SIPxx 就是單排的封裝。等等。值得我們注意的是晶體管與可變電阻,它們的包裝才是最令人頭痛的,同樣的包裝,其管腳可不一定一樣。例如,對于TO-92B之類的包裝,通常是1 腳為E(發射極),而2 腳有可能是B 極(基極),也可能是C(集電極);同樣的,3腳有可能是C,也有可能是B,具體是那個,只有拿到了元件才能確定。因此,電路軟件不敢硬性定義焊盤名稱(管腳名稱),同樣的,場效應管,MOS 管也可以用跟晶體管一樣的封裝,它可以通用于三個引腳的元件。Q1-B,在PCB 里,加載這種網絡表的時候,就會找不到節點(對不上)。在可變電阻
上傳時間: 2013-11-03
上傳用戶:daguogai
EZ-USB FX系列單片機USB外圍設備設計與應用:PART 1 USB的基本概念第1章 USB的基本特性1.1 USB簡介21.2 USB的發展歷程31.2.1 USB 1.131.2.2 USB 2.041.2.3 USB與IEEE 1394的比較41.3 USB基本架構與總線架構61.4 USB的總線結構81.5 USB數據流的模式與管線的概念91.6 USB硬件規范101.6.1 USB的硬件特性111.6.2 USB接口的電氣特性121.6.3USB的電源管理141.7 USB的編碼方式141.8 結論161.9 問題與討論16第2章 USB通信協議2.1 USB通信協議172.2 USB封包中的數據域類型182.2.1 數據域位的格式182.3 封包格式192.4 USB傳輸的類型232.4.1 控制傳輸242.4.2 中斷傳輸292.4.3 批量傳輸292.4.4 等時傳輸292.5 USB數據交換格式302.6 USB描述符342.7 USB設備請求422.8 USB設備群組442.9 結論462.10 問題與討論46第3章 設備列舉3.1注冊表編輯器473.2設備列舉的步驟493.3設備列舉步驟的實現--使用CATC分析工具513.4結論613.5問題與討論61第4章 USB芯片與EZUSB4.1USB芯片的簡介624.2USB接口芯片644.2.1Philips接口芯片644.2.2National Semiconductor接口芯片664.3內含USB單元的微處理器684.3.1Motorola694.3.2Microchip694.3.3SIEMENS704.3.4Cypress714.4USB芯片總攬介紹734.5USB芯片的選擇與評估744.6問題與討論80第5章 設備與驅動程序5.1階層式的驅動程序815.2主機的驅動程序835.3驅動程序的選擇865.4結論865.5問題與討論87第6章 HID群組6.1HID簡介886.2HID群組的傳輸速率886.3HID描述符906.3.1報告描述符936.3.2主要 main 項目類型966.3.3整體 global 項目卷標976.3.4區域 local 項目卷標986.3.5簡易的報告描述符996.3.6Descriptor Tool 描述符工具 1006.3.7兼容測試程序1016.4HID設備的基本請求1026.5Windows通信程序1036.6問題與討論106PART 2 硬件技術篇第7章 EZUSB FX簡介7.1簡介1097.2EZUSB FX硬件框圖1097.3封包與PID碼1117.4主機是個主控者1137.4.1從主機接收數據1137.4.2傳送數據至主機1137.5USB方向1137.6幀1147.7EZUSB FX傳輸類型1147.7.1批量傳輸1147.7.2中斷傳輸1147.7.3等時傳輸1157.7.4控制傳輸1157.8設備列舉1167.9USB核心1167.10EZUSB FX單片機1177.11重新設備列舉1177.12EZUSB FX端點1187.12.1EZUSB FX批量端點1187.12.2EZUSB FX控制端點01187.12.3EZUSB FX中斷端點1197.12.4EZUSB FX等時端點1197.13快速傳送模式1197.14中斷1207.15重置與電源管理1207.16EZUSB 2100系列1207.17FX系列--從FIFO1227.18FX系列--GPIF 通用型可程序化的接口 1227.19AN2122/26各種特性的摘要1227.20修訂ID1237.21引腳描述123第8章 EZUSB FX CPU8.1簡介1308.28051增強模式1308.3EZUSB FX所增強的部分1318.4EZUSB FX寄存器接口1318.5EZUSB FX內部RAM1318.6I/O端口1328.7中斷1328.8電源控制1338.9特殊功能寄存器 SFR 1348.10內部總線1358.11重置136第9章 EZUSB FX內存9.1簡介1379.28051內存1389.3擴充的EZUSB FX內存1399.4CS#與OE#信號1409.5EZUSB FX ROM版本141第10章 EZUSB FX輸入/輸出端口10.1簡介14310.2I/O端口14310.3EZUSB輸入/輸出端口寄存器14610.3.1端口配置寄存器14710.3.2I/O端口寄存器14710.4EZUSB FX輸入/輸出端口寄存器14910.5EZUSB FX端口配置表15110.6I2C控制器15610.78051 I2C控制器15610.8控制位15810.8.1START位15810.8.2STOP位15810.8.3LASTRD位15810.9狀態位15910.9.1DONE位15910.9.2ACK位15910.9.3BERR位15910.9.4ID1, ID015910.10送出 WRITE I2C數據16010.11接收 READ I2C數據16010.12I2C激活加載器16010.13SFR尋址 FX 16210.14端口A~E的SFR控制165第11章 EZUSB FX設備列舉與重新設備列舉11.1簡介16711.2預設的USB設備16911.3USB核心對于EP0設備請求的響應17011.4固件下載17111.5設備列舉模式17211.6沒有存在EEPROM17311.7存在著EEPROM, 第一個字節是0xB0 0xB4, FX系列11.8存在著EEPROM, 第一個字節是0xB2 0xB6, FX系列11.9配置字節0,FX系列17711.10重新設備列舉 ReNumerationTM 17811.11多重重新設備列舉 ReNumerationTM 17911.12預設描述符179第12章 EZUSB FX批量傳輸12.1簡介18812.2批量輸入傳輸18912.3中斷傳輸19112.4EZUSB FX批量IN的例子19112.5批量OUT傳輸19212.6端點對19412.7IN端點對的狀態19412.8OUT端點對的狀態19512.9使用批量緩沖區內存19512.10Data Toggle控制19612.11輪詢的批量傳輸的范例19712.12設備列舉說明19912.13批量端點中斷19912.14中斷批量傳輸的范例20112.15設備列舉說明20512.16自動指針器205第13章 EZUSB控制端點013.1簡介20913.2控制端點EP021013.3USB請求21213.3.1取得狀態 Get_Status 21413.3.2設置特性(Set_Feature)21713.3.3清除特性(Clear_Feature)21813.3.4取得描述符(Get_Descriptor)21913.3.5設置描述符(Set Descriptor)22313.3.6設置配置(Set_Configuration)22513.3.7取得配置(Get_Configuration)22513.3.8設置接口(Set_Interface)22513.3.9取得接口(Get_Interface)22613.3.10設置地址(Set_Address)22713.3.11同步幀22713.3.12固件加載228第14章 EZUSB FX等時傳輸14.1簡介22914.2等時IN傳輸23014.2.1初始化設置23014.2.2IN數據傳輸23014.3等時OUT傳輸23114.3.1初始化設置23114.3.2數據傳輸23214.4設置等時FIFO的大小23214.5等時傳輸速度23414.5.1EZUSB 2100系列23414.5.2EZUSB FX系列23514.6快速傳輸 僅存于2100系列 23614.6.1快速寫入23614.6.2快速讀取23714.7快速傳輸的時序 僅存于2100系列 23714.7.1快速寫入波形23814.7.2快速讀取波形23914.8快速傳輸速度(僅存于2100系列)23914.9其余的等時寄存器24014.9.1除能等時寄存器24014.9.20字節計數位24114.10以無數據來響應等時IN令牌24214.11使用等時FIFO242第15章 EZUSB FX中斷15.1簡介24315.2USB核心中斷24415.3喚醒中斷24415.4USB中斷信號源24515.5SUTOK與SUDAV中斷24815.6SOF中斷24915.7中止 suspend 中斷24915.8USB重置中斷24915.9批量端點中斷25015.10USB自動向量25015.11USB自動向量譯碼25115.12I2C中斷25215.13IN批量NAK中斷 僅存于AN2122/26與FX系列 25315.14I2C STOP反相中斷 僅存于AN2122/26與FX系列 25415.15從FIFO中斷 INT4 255第16章 EZUSB FX重置16.1簡介25716.2EZUSB FX打開電源重置 POR 25716.38051重置的釋放25916.3.1RAM的下載26016.3.2下載EEPROM26016.3.3外部ROM26016.48051重置所產生的影響26016.5USB總線重置26116.6EZUSB脫離26216.7各種重置狀態的總結263第17章 EZUSB FX電源管理17.1簡介26517.2中止 suspend 26617.3回復 resume 26717.4遠程喚醒 remote wakeup 269第18章 EZUSB FX系統18.1簡介27118.2DMA寄存器描述27218.2.1來源. 目的. 傳輸長度地址寄存器27218.2.2DMA起始與狀態寄存器27518.2.3DMA同步突發使能寄存器27518.2.4虛擬寄存器27818.3RD/FRD與WR/FWR DMA閃控的選擇27818.4DMA閃控波形與延伸位的交互影響27918.4.1DMA外部寫入27918.4.2DMA外部讀取280第19章 EZUSB FX寄存器19.1簡介28219.2批量數據緩沖區寄存器28319.3等時數據FIFO寄存器28419.4等時字節計數寄存器28519.5CPU寄存器28719.6I/O端口配置寄存器28819.7I/O端口A~C輸入/輸出寄存器28919.8230 Kbaud UART操作--AN2122/26寄存器29119.9等時控制/狀態寄存器29119.10I2C寄存器29219.11中斷29419.12端點0控制與狀態寄存器29919.13端點1~7的控制與狀態寄存器30019.14整體USB寄存器30519.15快速傳輸30919.16SETUP數據31119.17等時FIFO的容量大小31119.18通用I/F中斷使能31219.19通用中斷請求31219.20輸入/輸出端口寄存器D與E31319.20.1端口D輸出31319.20.2輸入端口D腳位31319.20.3端口D輸出使能31319.20.4端口E輸出31319.20.5輸入端口E腳位31419.20.6端口E輸出使能31419.21端口設置31419.22接口配置31419.23端口A與端口C切換配置31619.23.1端口A切換配置#231619.23.2端口C切換配置#231719.24DMA寄存器31919.24.1來源. 目的. 傳輸長度地址寄存器31919.24.2DMA起始與狀態寄存器32019.24.3DMA同步突發使能寄存器32019.24.4選擇8051 A/D總線作為外部FIFO321PART 3 固件技術篇第20章 EZUSB FX固件架構與函數庫20.1固件架構總覽32320.2固件架構的建立32520.3固件架構的副函數鉤子32520.3.1工作分配器32620.3.2設備請求 device request 32620.3.3USB中斷服務例程32920.4固件架構整體變量33220.5描述符表33320.5.1設備描述符33320.5.2配置描述符33420.5.3接口描述符33420.5.4端點描述符33520.5.5字符串描述符33520.5.6群組描述符33520.6EZUSB FX固件的函數庫33620.6.1包含文件 *.H 33620.6.2子程序33620.6.3整體變量33820.7固件架構的原始程序代碼338第21章 EZUSB FX固件范例程序21.1范例程序的簡介34621.2外圍I/O測試程序34721.3端點對, EP_PAIR范例35221.4批量測試, BulkTest范例36221.5等時傳輸, ISOstrm范例36821.6問題與討論373PART 4 實驗篇第22章 EZUSB FX仿真器22?1簡介37522?2所需的工具37622?3EZUSB FX框圖37722.4EZUSB最終版本的系統框圖37822?5第一次下載程序37822.6EZUSB FX開發系統框圖37922.7設置開發環境38022.8EZUSB FX開發工具組的內容38122.9EZUSB FX開發工具組軟件38222.9.1初步安裝程序38222.9.2確認主機 個人計算機 是否支持USB38222.10安裝EZUSB控制平臺. 驅動程序以及文件38322.11EZUSB FX開發電路板38522.11.1簡介38522.11.2開發電路板的瀏覽38522.11.3所使用的8051資源38622.11.4詳細電路38622.11.5LED的顯示38722.11.6Jumper38722.11.7連接器39122.11.8內存映象圖39222.11.9PLD信號39422.11.10PLD源文件文件39522.11.11雛形板的擴充連接器P1~P639722.11.12Philips PCF8574 I/O擴充IC40022.12DMA USB FX I/O LAB開發工具介紹40122.12.1USBFX簡介40122.12.2USBFX及外圍整體環境介紹40322?12?3USBFX與PC連接軟件介紹40422.12.4USBFX硬件功能介紹404第23章 LED顯示器輸出實驗23.1硬件設計與基本概念40923.2固件設計41023.3.1固件架構文件FW.C41123.3.2描述符文件DESCR.A5141223.3.3外圍接口文件PERIPH.C41723.4固件程序代碼的編譯與鏈接42123.5Windows程序, VB設計42323.6INF文件的編寫設計42423.7結論42623.8問題與討論427第24章 七段顯示器與鍵盤的輸入/輸出實驗24.1硬件設計與基本概念42824.2固件設計43124.2.1七段顯示器43124.2.24×4鍵盤掃描43324.3固件程序代碼的編譯與鏈接43424.4Windows程序, VB設計43624.5問題與討論437第25章 LCD文字型液晶顯示器輸出實驗25.1硬件設計與基本概念43825.1.1液晶顯示器LCD43825.2固件設計45225.3固件程序代碼的編譯與鏈接45625.4Windows程序, VB設計45725.5問題與討論458第26章 LED點陣輸出實驗26.1硬件設計與基本概念45926.2固件設計46326.3固件程序代碼的編譯與鏈接46326.4Windows程序, VB設計46526.5問題與討論465第27章 步進電機輸出實驗27.1硬件設計與基本概念46627.1.11相激磁46727.1.22相激磁46727.1.31-2相激磁46827?1?4PMM8713介紹46927.2固件設計47327.3固件程序代碼的編譯與鏈接47427.4Windows程序, VB設計47627.5問題與討論477第28章 I2C接口輸入/輸出實驗28.1硬件設計與基本概念47828.2固件設計48128.3固件程序代碼的編譯與鏈接48328.4Windows程序, VB設計48428.5問題與討論485第29章 A/D轉換器與D/A轉換器的輸入/輸出實驗29.1硬件設計與基本概念48629.1.1A/D轉換器48629.1.2D/A轉換器49029.2固件設計49329.2.1A/D轉換器的固件設計49329.2.2D/A轉換器的固件設計49629.3固件程序代碼的編譯與鏈接49729.4Windows程序, VB設計49829.5問題與討論499第30章 LCG繪圖型液晶顯示器輸出實驗30.1硬件設計與基本概念50030.1.1繪圖型LCD50030.1.2繪圖型LCD控制指令集50330.1.3繪圖型LCD讀取與寫入時序圖50530.2固件設計50630.2.1LCG驅動程序50630.2.2USB固件碼51330.3固件程序代碼的編譯與鏈接51630.4Windows程序, VB設計51730.5問題與討論518附錄A Cypress控制平臺的操作A.1EZUSB控制平臺總覽519A.2主畫面520A.3熱插拔新的USB設備521A.4各種工具欄的使用524A.5故障排除526A.6控制平臺的進階操作527A.7測試Unary Op工具欄上的按鈕功能528A.8測試制造商請求的工具欄 2100 系列的開發電路板 529A.9測試等時傳輸工具欄532A.10測試批量傳輸工具欄533A.11測試重置管線工具欄535A.12測試設置接口工具欄537A.13測試制造商請求工具欄 FX系列開發電路板A.14執行Get Device Descriptor 操作來驗證開發板的功能是否正確539A.15從EZUSB控制平臺中, 加載dev_io的范例并且加以執行540A.16從Keil偵錯應用程序中, 加載dev_io范例程序代碼, 然后再加以執行542A.17將dev_io 目標文件移開, 且使用Keil IDE 集成開發環境 來重建545A.18在偵錯器下執行dev_io目標文件, 并且使用具有偵錯能力的IDE547A.19在EZUSB控制平臺下, 執行ep_pair目標文件A.20如何修改fw范例, 并在開發電路板上產生等時傳輸550附錄BEZUSB 2100系列及EZUSB FX系列引腳表B.1EZUSB 2100系列引腳表555B?2EZUSB FX系列引腳圖表561附錄C EZUSB FX寄存器總覽附錄D EEPROM燒錄方式
上傳時間: 2013-11-21
上傳用戶:努力努力再努力
MSP430系列flash型超低功耗16位單片機MSP430系列單片機在超低功耗和功能集成等方面有明顯的特點。該系列單片機自問世以來,頗受用戶關注。在2000年該系列單片機又出現了幾個FLASH型的成員,它們除了仍然具備適合應用在自動信號采集系統、電池供電便攜式裝置、超長時間連續工作的設備等領域的特點外,更具有開發方便、可以現場編程等優點。這些技術特點正是應用工程師特別感興趣的。《MSP430系列FLASH型超低功耗16位單片機》對該系列單片機的FLASH型成員的原理、結構、內部各功能模塊及開發方法與工具作詳細介紹。MSP430系列FLASH型超低功耗16位單片機 目錄 第1章 引 論1.1 MSP430系列單片機1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 結構概述2.1 引 言2.2 CPU2.3 程序存儲器2.4 數據存儲器2.5 運行控制2.6 外圍模塊2.7 振蕩器與時鐘發生器第3章 系統復位、中斷及工作模式3.1 系統復位和初始化3.1.1 引 言3.1.2 系統復位后的設備初始化3.2 中斷系統結構3.3 MSP430 中斷優先級3.3.1 中斷操作--復位/NMI3.3.2 中斷操作--振蕩器失效控制3.4 中斷處理 3.4.1 SFR中的中斷控制位3.4.2 中斷向量地址3.4.3 外部中斷3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗應用的要點23第4章 存儲空間4.1 引 言4.2 存儲器中的數據4.3 片內ROM組織4.3.1 ROM 表的處理4.3.2 計算分支跳轉和子程序調用4.4 RAM 和外圍模塊組織4.4.1 RAM4.4.2 外圍模塊--地址定位4.4.3 外圍模塊--SFR4.5 FLASH存儲器4.5.1 FLASH存儲器的組織4.5.2 FALSH存儲器的數據結構4.5.3 FLASH存儲器的控制寄存器4.5.4 FLASH存儲器的安全鍵值與中斷4.5.5 經JTAG接口訪問FLASH存儲器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序計數器PC5.1.2 系統堆棧指針SP5.1.3 狀態寄存器SR5.1.4 常數發生寄存器CG1和CG25.2 尋址模式5.2.1 寄存器模式5.2.2 變址模式5.2.3 符號模式5.2.4 絕對模式5.2.5 間接模式5.2.6 間接增量模式5.2.7 立即模式5.2.8 指令的時鐘周期與長度5.3 指令組概述5.3.1 雙操作數指令5.3.2 單操作數指令5.3.3 條件跳轉5.3.4 模擬指令的簡短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 無符號數相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符號數相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 無符號數乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符號數乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的軟件限制6.4.1 尋址模式6.4.2 中斷程序6.4.3 MACS第7章 基礎時鐘模塊7.1 基礎時鐘模塊7.2 LFXT1與XT27.2.1 LFXT1振蕩器7.2.2 XT2振蕩器7.2.3 振蕩器失效檢測7.2.4 XT振蕩器失效時的DCO7.3 DCO振蕩器7.3.1 DCO振蕩器的特性7.3.2 DCO調整器7.4 時鐘與運行模式7.4.1 由PUC啟動7.4.2 基礎時鐘調整7.4.3 用于低功耗的基礎時鐘特性7.4.4 選擇晶振產生MCLK7.4.5 時鐘信號的同步7.5 基礎時鐘模塊控制寄存器7.5.1 DCO時鐘頻率控制7.5.2 振蕩器與時鐘控制寄存器7.5.3 SFR控制位第8章 輸入輸出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中斷控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口邏輯第9章 看門狗定時器WDT9.1 看門狗定時器9.2 WDT寄存器9.3 WDT中斷控制功能9.4 WDT操作第10章 16位定時器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定時器模式控制10.2.2 時鐘源選擇和分頻10.2.3 定時器啟動10.3 定時器模式10.3.1 停止模式10.3.2 增計數模式10.3.3 連續模式10.3.4 增/減計數模式10.4 捕獲/比較模塊10.4.1 捕獲模式10.4.2 比較模式10.5 輸出單元10.5.1 輸出模式10.5.2 輸出控制模塊10.5.3 輸出舉例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕獲/比較控制寄存器CCTLx10.6.4 Timer_A中斷向量寄存器10.7 Timer_A的UART應用 第11章 16位定時器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定時器長度11.2.2 定時器模式控制11.2.3 時鐘源選擇和分頻11.2.4 定時器啟動11.3 定時器模式11.3.1 停止模式11.3.2 增計數模式11.3.3 連續模式11.3.4 增/減計數模式11.4 捕獲/比較模塊11.4.1 捕獲模式11.4.2 比較模式11.5 輸出單元11.5.1 輸出模式11.5.2 輸出控制模塊11.5.3 輸出舉例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕獲/比較控制寄存器CCTLx11.6.4 Timer_B中斷向量寄存器第12章 USART通信模塊的UART功能12.1 異步模式12.1.1 異步幀格式12.1.2 異步通信的波特率發生器12.1.3 異步通信格式12.1.4 線路空閑多機模式12.1.5 地址位多機通信格式12.2 中斷和中斷允許12.2.1 USART接收允許12.2.2 USART發送允許12.2.3 USART接收中斷操作12.2.4 USART發送中斷操作12.3 控制和狀態寄存器12.3.1 USART控制寄存器UCTL12.3.2 發送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率選擇和調整控制寄存器12.3.5 USART接收數據緩存URXBUF12.3.6 USART發送數據緩存UTXBUF12.4 UART模式,低功耗模式應用特性12.4.1 由UART幀啟動接收操作12.4.2 時鐘頻率的充分利用與UART的波特率12.4.3 多處理機模式對節約MSP430資源的支持12.5 波特率計算 第13章 USART通信模塊的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的從模式13.2 中斷與控制功能 13.2.1 USART接收/發送允許位及接收操作13.2.2 USART接收/發送允許位及發送操作13.2.3 USART接收中斷操作13.2.4 USART發送中斷操作13.3 控制與狀態寄存器13.3.1 USART控制寄存器13.3.2 發送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率選擇和調制控制寄存器13.3.5 USART接收數據緩存URXBUF13.3.6 USART發送數據緩存UTXBUF第14章 比較器Comparator_A14.1 概 述14.2 比較器A原理14.2.1 輸入模擬開關14.2.2 輸入多路切換14.2.3 比較器14.2.4 輸出濾波器14.2.5 參考電平發生器14.2.6 比較器A中斷電路14.3 比較器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比較器A應用14.4.1 模擬信號在數字端口的輸入14.4.2 比較器A測量電阻元件14.4.3 兩個獨立電阻元件的測量系統14.4.4 比較器A檢測電流或電壓14.4.5 比較器A測量電流或電壓14.4.6 測量比較器A的偏壓14.4.7 比較器A的偏壓補償14.4.8 增加比較器A的回差第15章 模數轉換器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC內核15.2.2 參考電平15.3 模擬輸入與多路切換15.3.1 模擬多路切換15.3.2 輸入信號15.3.3 熱敏二極管的使用15.4 轉換存儲15.5 轉換模式15.5.1 單通道單次轉換模式15.5.2 序列通道單次轉換模式15.5.3 單通道重復轉換模式15.5.4 序列通道重復轉換模式15.5.5 轉換模式之間的切換15.5.6 低功耗15.6 轉換時鐘與轉換速度15.7 采 樣15.7.1 采樣操作15.7.2 采樣信號輸入選擇15.7.3 采樣模式15.7.4 MSC位的使用15.7.5 采樣時序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 轉換存儲寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中斷標志寄存器ADC12IFG.x和中斷允許寄存器ADC12IEN.x15.8.5 中斷向量寄存器ADC12IV15.9 ADC12接地與降噪第16章 FLASH型芯片的開發16.1 開發系統概述16.1.1 開發技術16.1.2 MSP430系列的開發16.1.3 MSP430F系列的開發16.2 FLASH型的FET開發方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 標準復位過程和進入BSL過程16.3.2 BSL的UART協議16.3.3 數據格式16.3.4 退出BSL16.3.5 保護口令16.3.6 BSL的內部設置和資源附錄A 尋址空間附錄B 指令說明B.1 指令匯總B.2 指令格式B.3 不增加ROM開銷的模擬指令B.4 指令說明(字母順序)B.5 用幾條指令模擬的宏指令附錄C MSP430系列單片機參數表附錄D MSP430系列單片機封裝形式附錄E MSP430系列器件命名
上傳時間: 2014-04-28
上傳用戶:sssnaxie
介紹用PIC16F84單片機制作的電子密碼鎖。PIC16F84單片機共18個引腳,13個可用I/O接口。芯片內有1K×14的FLASHROM程序存儲器,36×8的靜態RAM的通用寄存器,64×8的EEPROM的數據存儲器,8級深度的硬堆棧。 用PIC單片機設計的電子密碼鎖微芯公司生產的PIC8位COMS單片機,采用類RISC指令集和哈弗總線結構,以及先進的流水線時序,與傳統51單片機相比其在速度和性能方面更具優越性和先進性。PIC單片機的另一個優點是片上硬件資源豐富,集成常見的EPROM、DAC、PWM以及看門狗電路。這使得硬件電路的設計更加簡單,節約設計成本,提高整機性能。因此PIC單片機已成為產品開發,尤其是產品設計和研制階段的首選控制器。本文介紹用PIC16F84單片機制作的電子密碼鎖。PIC16F84單片機共18個引腳,13個可用I/O接口。芯片內有1K×14的FLASHROM程序存儲器,36×8的靜態RAM的通用寄存器,64×8的EEPROM的數據存儲器,8級深度的硬堆棧。硬件設計 電路原理見圖1。Xx8位數據線接4x4鍵盤矩陣電路,面板布局見表1,A、B、C、D為備用功能鍵。RA0、RA7輸出4組編碼二進制數據,經74LS139譯碼后輸出逐行掃描信號,送RB4-RB7列信號輸入端。余下半個139譯碼器動揚聲器。RB2接中功率三極管基極,驅動繼電器動作。有效密碼長度為4位,根據實際情況,可通過修改源程序增加密碼位數。產品初始密碼為3345,這是一隨機數,無特殊意義,目的是為防止被套解。用戶可按*號鍵修改密碼,按#號鍵結束。輸入密碼并按#號確認之后,腳輸出RB2腳輸出高電平,繼電器閉合,執行一次開鎖動作。 若用戶輸入的密碼正確,揚聲器發出一聲稍長的“滴”提示聲,若輸入的密碼與上次修改的不符,則發出短促的“滴”聲。連續3次輸入密碼錯誤之后,程序鎖死,揚聲器報警。直到CPU被復位或從新上電。軟件設計 軟件流程圖見圖3。CPU上電或復位之后將最近一次修改并保存到EEPROM的密碼讀出,最為參照密匙。然后等待用戶輸入開鎖密碼。若5分鐘以內沒有接受到用戶的任何輸入,CPU自動轉入掉電模式,用戶輸入任意值可喚醒CPU。每次修改密碼之后,CPU將新的密碼存入內部4個連續的EEPROM單元,掉電后該數據任有效。每執行一次開鎖指令,CPU將當前輸入密碼與該值比較,看是否真確,并給出相應的提示和控制。布 局 所有元件均使用SMD表貼封裝,縮小體積,便于產品安裝,60X60雙面PCB板,頂層是一體化輸入鍵盤,底層是元件層。成型后的產品體積小巧,能很方便的嵌入防盜鐵門、保險箱柜。
上傳時間: 2013-10-31
上傳用戶:uuuuuuu
摘 要:用一種新的思路和方法,先計算低通、再計算高通濾波器的有關參數,然后組合成帶通濾波器.關鍵詞:濾波器;參數;新思路中圖分類號: TN713. 5 文獻識別碼:B 文章編號:1008 - 1666 (1999) 04 - 0089 - 03A New Consideration of the Band Filter’s CalculationGuo Wencheng( S hao Yang B usiness and Technology school , S haoyang , Hunan ,422000 )Abstract :This essay deals with a new method of calculating the band filters - first calculatingthe relevant parameters of low - pass filters ,then calculating the ones of high - pass filters.Key words :filter ; parameters ;new considercation八十年代后,信息產業得到了迅猛發展. 帶通濾波器在微波通信、廣播電視和精密儀器設備中得到了廣泛應用. 帶通濾波器性能的優劣,對提高接收機信噪比,防止鄰近信道干擾,提高設備的技術指標,有著十分重要的意義.我在長期的教學實踐中,用切比雪夫型方法設計、計算出寬帶濾波器集中參數元件的數據. 該濾波器可運用在檢測微波頻率的儀器和其他設備中. 再將其思路和計算方法介紹給大家,供參考.
上傳時間: 2014-12-28
上傳用戶:Yukiseop
一、傳感器的定義信息處理技術取得的進展以及微處理器和計算機技術的高速發展,都需要在傳感器的開發方面有相應的進展。微處理器現在已經在測量和控制系統中得到了廣泛的應用。隨著這些系統能力的增強,作為信息采集系統的前端單元,傳感器的作用越來越重要。傳感器已成為自動化系統和機器人技術中的關鍵部件,作為系統中的一個結構組成,其重要性變得越來越明顯。最廣義地來說,傳感器是一種能把物理量或化學量轉變成便于利用的電信號的器件。國際電工委員會(IEC:International Electrotechnical Committee)的定義為:“傳感器是測量系統中的一種前置部件,它將輸入變量轉換成可供測量的信號”。按照Gopel等的說法是:“傳感器是包括承載體和電路連接的敏感元件”,而“傳感器系統則是組合有某種信息處理(模擬或數字)能力的傳感器”。傳感器是傳感器系統的一個組成部分,它是被測量信號輸入的第一道關口。傳感器系統的原則框圖示于圖1-1,進入傳感器的信號幅度是很小的,而且混雜有干擾信號和噪聲。為了方便隨后的處理過程,首先要將信號整形成具有最佳特性的波形,有時還需要將信號線性化,該工作是由放大器、濾波器以及其他一些模擬電路完成的。在某些情況下,這些電路的一部分是和傳感器部件直接相鄰的。成形后的信號隨后轉換成數字信號,并輸入到微處理器。德國和俄羅斯學者認為傳感器應是由二部分組成的,即直接感知被測量信號的敏感元件部分和初始處理信號的電路部分。按這種理解,傳感器還包含了信號成形器的電路部分。傳感器系統的性能主要取決于傳感器,傳感器把某種形式的能量轉換成另一種形式的能量。有兩類傳感器:有源的和無源的。有源傳感器能將一種能量形式直接轉變成另一種,不需要外接的能源或激勵源(參閱圖1-2(a))。有源(a)和無源(b)傳感器的信號流程無源傳感器不能直接轉換能量形式,但它能控制從另一輸入端輸入的能量或激勵能傳感器承擔將某個對象或過程的特定特性轉換成數量的工作。其“對象”可以是固體、液體或氣體,而它們的狀態可以是靜態的,也可以是動態(即過程)的。對象特性被轉換量化后可以通過多種方式檢測。對象的特性可以是物理性質的,也可以是化學性質的。按照其工作原理,傳感器將對象特性或狀態參數轉換成可測定的電學量,然后將此電信號分離出來,送入傳感器系統加以評測或標示。各種物理效應和工作機理被用于制作不同功能的傳感器。傳感器可以直接接觸被測量對象,也可以不接觸。用于傳感器的工作機制和效應類型不斷增加,其包含的處理過程日益完善。常將傳感器的功能與人類5大感覺器官相比擬: 光敏傳感器——視覺;聲敏傳感器——聽覺;氣敏傳感器——嗅覺;化學傳感器——味覺;壓敏、溫敏、流體傳感器——觸覺。與當代的傳感器相比,人類的感覺能力好得多,但也有一些傳感器比人的感覺功能優越,例如人類沒有能力感知紫外或紅外線輻射,感覺不到電磁場、無色無味的氣體等。對傳感器設定了許多技術要求,有一些是對所有類型傳感器都適用的,也有只對特定類型傳感器適用的特殊要求。針對傳感器的工作原理和結構在不同場合均需要的基本要求是: 高靈敏度,抗干擾的穩定性(對噪聲不敏感),線性,容易調節(校準簡易),高精度,高可靠性,無遲滯性,工作壽命長(耐用性) ,可重復性,抗老化,高響應速率,抗環境影響(熱、振動、酸、堿、空氣、水、塵埃)的能力 ,選擇性,安全性(傳感器應是無污染的),互換性 低成本 ,寬測量范圍,小尺寸、重量輕和高強度,寬工作溫度范圍 。二、傳感器的分類可以用不同的觀點對傳感器進行分類:它們的轉換原理(傳感器工作的基本物理或化學效應);它們的用途;它們的輸出信號類型以及制作它們的材料和工藝等。根據傳感器工作原理,可分為物理傳感器和化學傳感器二大類:傳感器工作原理的分類物理傳感器應用的是物理效應,諸如壓電效應,磁致伸縮現象,離化、極化、熱電、光電、磁電等效應。被測信號量的微小變化都將轉換成電信號。化學傳感器包括那些以化學吸附、電化學反應等現象為因果關系的傳感器,被測信號量的微小變化也將轉換成電信號。有些傳感器既不能劃分到物理類,也不能劃分為化學類。大多數傳感器是以物理原理為基礎運作的?;瘜W傳感器技術問題較多,例如可靠性問題,規模生產的可能性,價格問題等,解決了這類難題,化學傳感器的應用將會有巨大增長。常見傳感器的應用領域和工作原理列于表1.1。按照其用途,傳感器可分類為: 壓力敏和力敏傳感器 ,位置傳感器 , 液面傳感器 能耗傳感器 ,速度傳感器 ,熱敏傳感器,加速度傳感器,射線輻射傳感器 ,振動傳感器,濕敏傳感器 ,磁敏傳感器,氣敏傳感器,真空度傳感器,生物傳感器等。以其輸出信號為標準可將傳感器分為: 模擬傳感器——將被測量的非電學量轉換成模擬電信號。數字傳感器——將被測量的非電學量轉換成數字輸出信號(包括直接和間接轉換)。膺數字傳感器——將被測量的信號量轉換成頻率信號或短周期信號的輸出(包括直接或間接轉換)。開關傳感器——當一個被測量的信號達到某個特定的閾值時,傳感器相應地輸出一個設定的低電平或高電平信號。
上傳時間: 2013-10-11
上傳用戶:zhangdebiao
附件有二個文當,都是dxp2004教程 ,第一部份DXP2004的相關快捷鍵,以及中英文對照的意思。第二部份細致的講解的如何使用DXP2004。 dxp2004教程第一部份: 目錄 1 快捷鍵 2 常用元件及封裝 7 創建自己的集成庫 12 板層介紹 14 過孔 15 生成BOM清單 16 頂層原理圖: 16 生成PCB 17 包地 18 電路板設計規則 18 PCB設計注意事項 20 畫板心得 22 DRC 規則英文對照 22 一、Error Reporting 中英文對照 22 A : Violations Associated with Buses 有關總線電氣錯誤的各類型(共 12 項) 22 B :Violations Associated Components 有關元件符號電氣錯誤(共 20 項) 22 C : violations associated with document 相關的文檔電氣錯誤(共 10 項) 23 D : violations associated with nets 有關網絡電氣錯誤(共 19 項) 23 E : Violations associated with others 有關原理圖的各種類型的錯誤 (3 項 ) 24 二、 Comparator 規則比較 24 A : Differences associated with components 原理圖和 PCB 上有關的不同 ( 共 16 項 ) 24 B : Differences associated with nets 原理圖和 PCB 上有關網絡不同(共 6 項) 25 C : Differences associated with parameters 原理圖和 PCB 上有關的參數不同(共 3 項) 25 Violations Associated withBuses欄 —總線電氣錯誤類型 25 Violations Associated with Components欄 ——元件電氣錯誤類型 26 Violations Associated with documents欄 —文檔電氣連接錯誤類型 27 Violations Associated with Nets欄 ——網絡電氣連接錯誤類型 27 Violations Associated with Parameters欄 ——參數錯誤類型 28 dxp2004教程第二部份 路設計自動化( Electronic Design Automation ) EDA 指的就是將電路設計中各種工作交由計算機來協助完成。如電路圖( Schematic )的繪制,印刷電路板( PCB )文件的制作執行電路仿真( Simulation )等設計工作。隨著電子工業的發展,大規模、超大規模集成電路的使用是電路板走線愈加精密和復雜。電子線路 CAD 軟件產生了, Protel 是突出的代表,它操作簡單、易學易用、功能強大。 1.1 Protel 的產生及發展 1985 年 誕生 dos 版 Protel 1991 年 Protel for Widows 1998 年 Protel98 這個 32 位產品是第一個包含 5 個核心模塊的 EDA 工具 1999 年 Protel99 既有原理圖的邏輯功能驗證的混合信號仿真,又有了 PCB 信號完整性 分析的板級仿真,構成從電路設計到真實板分析的完整體系。 2000 年 Protel99se 性能進一步提高,可以對設計過程有更大控制力。 2002 年 Protel DXP 集成了更多工具,使用方便,功能更強大。 1.2 Protel DXP 主要特點 1 、通過設計檔包的方式,將原理圖編輯、電路仿真、 PCB 設計及打印這些功能有機地結合在一起,提供了一個集成開發環境。 2 、提供了混合電路仿真功能,為設計實驗原理圖電路中某些功能模塊的正確與否提供了方便。 3 、提供了豐富的原理圖組件庫和 PCB 封裝庫,并且為設計新的器件提供了封裝向導程序,簡化了封裝設計過程。 4 、提供了層次原理圖設計方法,支持“自上向下”的設計思想,使大型電路設計的工作組開發方式成為可能。 5 、提供了強大的查錯功能。原理圖中的 ERC (電氣法則檢查)工具和 PCB 的 DRC (設計規則檢查)工具能幫助設計者更快地查出和改正錯誤。 6 、全面兼容 Protel 系列以前版本的設計文件,并提供了 OrCAD 格式文件的轉換功能。 7 、提供了全新的 FPGA 設計的功能,這好似以前的版本所沒有提供的功能。
上傳時間: 2015-01-01
上傳用戶:zhyfjj