摘要:本文詳細的介紹了基于施耐德Modicon Premium T PCX 57 PLC在郵政自動化分揀系統中控制系統的應用,系統的網絡拓撲結構,工藝流程和信息采集等。關鍵詞:T PCX57 PLC FIPIO總線 OPC Momentum I/O模塊 分揀系統
上傳時間: 2013-11-10
上傳用戶:kristycreasy
上下文無關文法(Context-Free Grammar, CFG)是一個4元組G=(V, T, S, P),其中,V和T是不相交的有限集,S∈V,P是一組有限的產生式規則集,形如A→α,其中A∈V,且α∈(V∪T)*。V的元素稱為非終結符,T的元素稱為終結符,S是一個特殊的非終結符,稱為文法開始符。 設G=(V, T, S, P)是一個CFG,則G產生的語言是所有可由G產生的字符串組成的集合,即L(G)={x∈T* | Sx}。一個語言L是上下文無關語言(Context-Free Language, CFL),當且僅當存在一個CFG G,使得L=L(G)。 *⇒ 例如,設文法G:S→AB A→aA|a B→bB|b 則L(G)={a^nb^m | n,m>=1} 其中非終結符都是大寫字母,開始符都是S,終結符都是小寫字母。
標簽: Context-Free Grammar CFG
上傳時間: 2013-12-10
上傳用戶:gaojiao1999
一維信號的計盒分形維數,用 m a t l a b編輯的
上傳時間: 2013-12-14
上傳用戶:685
文件名 :test3.c * 文件描述:預測分析法實現的語法分析器。分析如下文法: * E->E+T | E-T | T * T->T*F | T/F |F * F->(E) | i * 輸入:每行含一個表達式的文本文件(#號結束)。 * 輸出:分析成功或不成功信息。 * 創建人:余洪周 <nick19842000.cublog.cn> 2006-12-16 * 版本號:1.0 * 說明 :為了表示的方便采用了如下的所示表示方法: * A=E B=T * 非終結符:0=E 1=E 2=T 3=T 4=F * 終結符 :0=i 1=+ 2=- 3=* 4=/ 5=( 6=) 7=#
上傳時間: 2013-12-21
上傳用戶:cylnpy
實現最優二叉樹的構造;在此基礎上完成哈夫曼編碼器與譯碼器。 假設報文中只會出現如下表所示的字符: 字符 A B C D E F G H I J K L M N 頻度 186 64 13 22 32 103 21 15 47 57 1 5 32 20 57 字符 O P Q R S T U V W X Y Z , . 頻度 63 15 1 48 51 80 23 8 18 1 16 1 6 2 要求完成的系統應具備如下的功能: 1.初始化。從終端(文件)讀入字符集的數據信息,。建立哈夫曼樹。 2.編碼:利用已建好的哈夫曼樹對明文文件進行編碼,并存入目標文件(哈夫曼碼文件)。 3.譯碼:利用已建好的哈夫曼樹對目標文件(哈夫曼碼文件)進行編碼,并存入指定的明文文件。 4.輸出哈夫曼編碼文件:輸出每一個字符的哈夫曼編碼。
上傳時間: 2014-11-23
上傳用戶:shanml
無級 變 速 器又稱CVT( continuouslyv ariable transmission,CV T),其速比可以連續變化,使用 這種變速器,可有效地利用發動機的性能,使發動 機與傳動系得到最佳的匹配,從而提高汽車的燃 油經濟性和動力性。無級變速器是迄今為止最理 想的變速器,它代表著當今汽車變速器發展的水 平和方向。
標簽: continuouslyv transmission ariable CVT
上傳時間: 2016-06-03
上傳用戶:Zxcvbnm
Fortran - Tóm tắ t nộ i dung mô n họ c Các khái niệ m và yế u tố trong ngô n ngữ lậ p trình FORTRAN. Các câ u lệ nh củ a ngô n ngữ FORTRAN. Cơ bả n về chư ơ ng chư ơ ng dị ch và mô i trư ờ ng lậ p trình DIGITAL Visual Fortran. Viế t và chạ y các chư ơ ng trình cho các bài toán đ ơ n giả n bằ ng ngô n ngữ FORTRAN.
上傳時間: 2013-12-25
上傳用戶:songrui
metricmatlab ch ¬ ng 4 Ma trË n - c¸ c phÐ p to¸ n vÒ ma trË n. 4.1 Kh¸ i niÖ m: - Trong MATLAB d÷ liÖ u ® Ó ® a vµ o xö lý d íi d¹ ng ma trË n. - Ma trË n A cã n hµ ng, m cét ® î c gä i lµ ma trË n cì n m. § î c ký hiÖ u An m - PhÇ n tö aij cñ a ma trË n An m lµ phÇ n tö n» m ë hµ ng thø i, cét j . - Ma trË n ® ¬ n ( sè ® ¬ n lÎ ) lµ ma trË n 1 hµ ng 1 cét. - Ma trË n hµ ng ( 1 m ) sè liÖ u ® î c bè trÝ trª n mét hµ ng. a11 a12 a13 ... a1m - Ma trË n cét ( n 1) sè liÖ u ® î c bè trÝ trª n 1 cét.
標簽: metricmatlab 203 184 tr
上傳時間: 2017-07-29
上傳用戶:來茴
JB標準,給晶閘管使用者一個參考。。本標準規定了器件的型式、尺寸、額定值、特性值、檢驗規則、標志核包裝等技術要求。本標準適用于空腔形按管殼額定的通態方均根電流5~1000A的雙向晶閘管(以下簡稱器件)。 JB/T 4192-1996 雙向晶閘管
標簽: JB標準
上傳時間: 2016-09-14
上傳用戶:i05690
神經網絡在智能機器人導航系統中的應用研究1神經網絡在環境感知中的應 用 對環境 的感 知 ,環境模型 妁表示 是非常重要 的。未 知 環境中的障礙物的幾何形狀是不確定的,常用的表示方浩是 槽格法。如果用冊格法表示范圍較大的工作環境,在滿足 精度要求 的情況下,必定要占用大量的內存,并且采用柵 格法進行路徑規劃,其計算量是相當大的。Kohon~n自組織 神經瞬絡為機器人對未知環境的蒜知提供了一條途徑。 Kohone~沖經網絡是一十自組織神經網絡,其學習的結 果能體現出輸入樣本的分布情況,從而對輸入樣本實現數 據壓縮 。基于 網絡 的這些特 性,可采 用K0h0n曲 神經元 的 權向量來表示 自由空間,其方法是在 自由空間中隨機地選 取坐標點xltl【可由傳感器獲得】作為網絡輸入,神經嘲絡通 過對大量的輸八樣本的學習,其神經元就會體現出一定的 分布形 式 學習過程如下:開 始時網絡的權值隨機地賦值 , 其后接下式進行學 習: , 、 Jm(,)+叫f)f,)一珥ff)) ∈N,(f) (,) VfeN.(f1 其 中M(f1:神經元 1在t時刻對 應的權值 ;a(∽ 謂整系 數 ; (『l網絡的輸八矢量;Ⅳ():學習的 I域。每個神經元能最 大限度 地表示一 定 的自由空間 。神經 元權 向量的最 小生成 樹可以表示出自由空問的基本框架。網絡學習的鄰域 (,) 可 以動 態地 定義 成矩形 、多邊 形 。神經 元數量 的選取取 決 于環境 的復雜度 ,如果神 經元 的數量 太少 .它們就 不能 覆 蓋整十空間,結果會導致節點穿過障礙物區域 如果節點 妁數量太大 .節點就會表示更多的區域,也就得不到距障 礙物的最大距離。在這種情況下,節點是對整個 自由空間 的學 習,而不是 學習最 小框架空 間 。節 點的數 量可 以動態 地定義,在每個學習階段的結柬.機器人會檢查所有的路 徑.如檢鍘刊路徑上有障礙物 ,就意味著沒有足夠的節點 來 覆蓋整 十 自由窯 間,需要增加 網絡節點來 重新學 習 所 138一 以為了收斂于最小框架表示 ,應該采用較少的網絡 節點升 始學習,逐步增加其數量。這種方法比較適臺對擁擠的'E{= 境的學習,自由空間教小,就可用線段表示;若自由空問 較大,就需要由二維結構表示 。 采用Kohonen~沖經阿絡表示環境是一個新的方法。由 于網絡的并行結構,可在較短的時間內進行大量的計算。并 且不需要了解障礙物的過細信息.如形狀、位置等 通過 學習可用樹結構表示自由空問的基本框架,起、終點問路 徑 可利用樹的遍 歷技術報容易地被找到 在機器人對環境的感知的過程中,可采用人】:神經嘲 絡技術對 多傳 感器的信息進 行融臺 。由于單個傳感器僅能 提 供部分不 完全 的環境信息 ,因此只有秉 甩 多種傳感器 才 能提高機器凡的感知能力。 2 神經 網絡在局部路徑規射中的應 用 局部路徑 規刪足稱動吝避碰 規劃 ,足以全局規荊為指 導 利用在線得到的局部環境信息,在盡可能短的時問內
上傳時間: 2022-02-12
上傳用戶:qingfengchizhu