目前的國內(nèi)的CCD高清攝相頭能夠輸出一組視頻信號和數(shù)字圖像信號,雖然視頻信號能夠直接在監(jiān)視器顯示,但是輸出的數(shù)字圖像信號占用存儲空間太大,不便于進行傳輸。本文設(shè)計了一種基于FPGA的數(shù)字圖像壓縮卡。 在過去的十幾年中,國際標(biāo)準(zhǔn)化組織制訂了一系列的國際視頻編碼標(biāo)準(zhǔn)并廣泛應(yīng)用到各種領(lǐng)域。It.264/AVC是ITU-T和ISO聯(lián)合推出的新標(biāo)準(zhǔn),采用了近幾年視頻編碼方面的先進技術(shù),以較高編碼效率和網(wǎng)絡(luò)友好性成為新一代國際視頻編碼標(biāo)準(zhǔn)。 新發(fā)展的H.264/AVC比原有的視頻編碼標(biāo)準(zhǔn)大幅度提高了編碼效率,但其運算復(fù)雜度也大大增加,本文簡要分析了H.264/AVC的復(fù)雜度及其優(yōu)化的途徑,給出了主要模塊的優(yōu)化算法實驗結(jié)果。 H.264/AVC仍基于以前視頻編碼標(biāo)準(zhǔn)的運動補償混合編碼方案,主要不同有:增強的運動預(yù)測能力,準(zhǔn)確匹配的較小塊變換,自適應(yīng)環(huán)內(nèi)濾波器,增強的熵編碼。測試結(jié)果表明這些新特征使H.264/AVC編碼器提高50%編碼效率的同時,增加了一個數(shù)量級的復(fù)雜度。實際中恰當(dāng)?shù)厥褂肏.264/AVC編碼工具可以較低的實現(xiàn)復(fù)雜度得到與復(fù)雜配置相當(dāng)?shù)木幋a效率。故實際編碼系統(tǒng)開發(fā)需要在運算復(fù)雜性和編碼效率之間進行折衷、兼顧考慮。H.264/AVC引入的新編碼特征既增加基本模塊的復(fù)雜度,也成倍增加算法的復(fù)雜度。針對它們的作用和實現(xiàn)方法的不同,可采用不同的硬件實現(xiàn)方法。本文基于上述思路進行優(yōu)化,具體的工作包括:針對去塊濾波的復(fù)雜性,本文提出一種適合硬件實現(xiàn)的算法,使其在節(jié)省了資源的同時,很好的達到了標(biāo)準(zhǔn)所定義的性能。針對變換量化的復(fù)雜性,本文提出一種既滿足整體的硬件流水結(jié)構(gòu),又極大的降低了硬件資源的實現(xiàn)方法。針對碼率控制的實現(xiàn),本文提出了一種有別于傳統(tǒng)實現(xiàn)方式的算法,在保證實時性的同時,極大的提高了編碼器的性能。本文基于上述算法還進行Baseline Profile編碼器的研究,給出了一種實時編碼器結(jié)構(gòu),實現(xiàn)了對高清圖像格式(720P)的實時編碼,并將其和當(dāng)前業(yè)界先進水平進行了對比,表明本文所實現(xiàn)得結(jié)構(gòu)能夠達到當(dāng)前業(yè)界的先進水平。
上傳時間: 2013-07-23
上傳用戶:yepeng139
圖像增強技術(shù)是數(shù)字圖像處理領(lǐng)域中的一項重要內(nèi)容,隨著數(shù)字圖像處理應(yīng)用領(lǐng)域的不斷擴大,快速、實時圖像處理技術(shù)成為研究的熱點。超大規(guī)模集成電路技術(shù)的飛速發(fā)展為數(shù)字圖像實時處理技術(shù)提供了硬件基礎(chǔ),尤其是FPGA(Field Programmable Gate Array,現(xiàn)場可編程門陣列)憑借其高速并行、可重配置的架構(gòu)和基于查找表的獨特結(jié)構(gòu)等優(yōu)點使得在數(shù)字信號處理領(lǐng)域的應(yīng)用持續(xù)上升。國內(nèi)外,越來越多的實時圖像處理應(yīng)用逐漸轉(zhuǎn)向FPGA平臺。 本文基于FPGA的圖像增強技術(shù)研究主要是針對空間域方法,這種方法是指在空間域內(nèi)直接對像素灰度值進行運算處理,算法簡單并且存在并行性,非常適合于用硬件實現(xiàn)。FPGA可以靈活地實現(xiàn)并行、實時處理圖像數(shù)據(jù),正是利用這一特點,本文提出了一種基于FPGA的圖像增強處理系統(tǒng)設(shè)計。該系統(tǒng)采用SOPC技術(shù),完成圖像增強處理。文中給出了系統(tǒng)設(shè)計思路,并分析了該系統(tǒng)的結(jié)構(gòu)及功能實現(xiàn),說明了系統(tǒng)實現(xiàn)過程。其硬件平臺的核心部分是Altera公司Stratix系列的.FPGA EPlS40芯片,采用自頂向下的設(shè)計方法構(gòu)造圖像增強處理功能模塊,利用硬件描述語言vHDL對圖像增強模塊進行電路描述,并進行設(shè)計優(yōu)化、仿真,在生成系統(tǒng)配置文件后加載到FPGA上進行板級調(diào)試。完成了基于FPGA的圖像增強算法模塊的設(shè)計,重點設(shè)計實現(xiàn)了點運算增強處理模塊、中值濾波器模塊,并對中值濾波器進行了改進設(shè)計實現(xiàn),采用FPGA完成了對圖像增強算法的硬件加速。
上傳時間: 2013-06-16
上傳用戶:songrui
本文設(shè)計了一款基于STM32的多功能MP3,功能包括:MP3/WMA/WAV/MIDI音頻文件播放、JPEG/JPG/BMP圖片瀏覽、游戲、鬧鐘、萬年歷、電子書、調(diào)頻收音機、彩色臺燈、功率放大等。
上傳時間: 2013-07-13
上傳用戶:sy_jiadeyi
隨著電子技術(shù)和集成電路技術(shù)的飛速發(fā)展,數(shù)字信號處理已經(jīng)廣泛地應(yīng)用于通信、信號處理、生物醫(yī)學(xué)以及自動控制等領(lǐng)域中。離散傅立葉變換(DFT)及其快速算法FFT作為數(shù)字信號處理中的基本變換,有著廣泛的應(yīng)用。特別是近年來,基于FFT的ODFM技術(shù)的興起,進一步推動了對高速FFT處理器的研究。 FFT 算法從出現(xiàn)到現(xiàn)在已有四十多年代歷史,算法理論已經(jīng)趨于成熟,但是其具體實現(xiàn)方法卻值得研究。面向高速、大容量數(shù)據(jù)流的FFT實時處理,可以通過數(shù)據(jù)并行處理或者采用多級流水線結(jié)構(gòu)來實現(xiàn)。特別是流水線結(jié)構(gòu)使得FFT處理器在進行不同點數(shù)的FFT計算時可以通過對模塊級數(shù)的控制很容易的實現(xiàn)。 本文在分析和比較了各種FFT算法后,選擇了基2和基4混合頻域抽取算法作為FFr處理器的實現(xiàn)算法,并提出了一種高速、處理點數(shù)可變的流水線結(jié)構(gòu)FFT處理器的實現(xiàn)方法。利用這種方法實現(xiàn)的FFT處理器成功的應(yīng)用到DAB接收機中,RTL級仿真結(jié)果表明FFT輸出結(jié)果與C模型輸出一致,在FPGA環(huán)境下仿真波形正確,用Ouaaus Ⅱ軟件綜合的最高工作頻率達到133MHz,滿足了高速處理的設(shè)計要求。
標(biāo)簽: FFT 流水線結(jié)構(gòu) 處理器
上傳時間: 2013-05-29
上傳用戶:GavinNeko
隨著數(shù)字電視技術(shù)的飛速發(fā)展,數(shù)字機頂盒已成為現(xiàn)在模擬電視收看數(shù)字電視節(jié)目必不可少的設(shè)備。而數(shù)字機頂盒需要在解碼后的模擬視頻信號上加入屏幕顯示信息(如亮度、色度、信息服務(wù)菜單等)以提供給觀眾良好的界面和靈活的人機交互。 v屏幕顯示系統(tǒng)(OSG,On-Screen-Graphics)解決了現(xiàn)有模擬電視無法實現(xiàn)的疊加屏幕顯示信息的問題,提供同步輸出疊加有各種圖形、文字的電視節(jié)目圖像的功能,其中最主要的部分是OSD(On-Screen-Display),即屏幕顯示單元。OSD將疊加的位圖圖像分為多個OSD塊,一般定義為矩形區(qū)域。每個矩形區(qū)域,例如臺標(biāo)、參數(shù)調(diào)節(jié)框、字幕等,都有獨立的4色、16色或256色顏色查找表。同時OSG系統(tǒng)也支持真彩模式。OSD塊經(jīng)由編碼/混合器與視頻圖像進行alpha混合后輸出到電視屏幕上。 本文詳細介紹了應(yīng)用FPGA設(shè)計包括屏幕顯示單元在內(nèi)的OSG系統(tǒng)的思路和設(shè)計過程,描述了模塊的劃分與功能仿真。在論文前半部分,本文給出了圖文屏幕顯示系統(tǒng)各子單元的工作流程,接著論文的后半部分,給出了詳細的模塊接口說明和硬件實現(xiàn)。
上傳時間: 2013-07-27
上傳用戶:萬有引力
可靠通信要求消息從信源到信宿盡量無誤傳輸,這就要求通信系統(tǒng)具有很好的糾錯能力,如使用差錯控制編碼。自仙農(nóng)定理提出以來,先后有許多糾錯編碼被相繼提出,例如漢明碼,BCH碼和RS碼等,而C。Berrou等人于1993年提出的Turbo碼以其優(yōu)異的糾錯性能成為通信界的一個里程碑。 然而,Turbo碼迭代譯碼復(fù)雜度大,導(dǎo)致其譯碼延時大,故而在工程中的應(yīng)用受到一定限制,而并行Turbo譯碼可以很好地解決上述問題。本論文的主要工作是通過硬件實現(xiàn)一種基于幀分裂和歸零處理的新型并行Turbo編譯碼算法。論文提出了一種基于多端口存儲器的并行子交織器解決方法,很好地解決了并行訪問存儲器沖突的問題。 本論文在現(xiàn)場可編程門陣列(FPGA)平臺上實現(xiàn)了一種基于幀分裂和籬笆圖歸零處理的并行Turbo編譯碼器。所實現(xiàn)的并行Turbo編譯碼器在時鐘頻率為33MHz,幀長為1024比特,并行子譯碼器數(shù)和最大迭代次數(shù)均為4時,可支持8.2Mbps的編譯碼數(shù)掘吞吐量,而譯碼時延小于124us。本文還使用EP2C35FPGA芯片設(shè)計了系統(tǒng)開發(fā)板。該開發(fā)板可提供高速以太網(wǎng)MAC/PHY和PCI接口,很好地滿足了通信系統(tǒng)需求。系統(tǒng)測試結(jié)果表明,本文所實現(xiàn)的并行Turbo編譯碼器及其開發(fā)板運行正確、有效且可靠。 本論文主要分為五章,第一章為緒論,介紹Turbo碼背景和硬件實現(xiàn)相關(guān)技術(shù)。第二章為基于幀分裂和歸零的并行Turbo編碼的設(shè)計與實現(xiàn),分別介紹了編碼器和譯碼器的RTL設(shè)計,還提出了一種基于多端口存儲器的并行子交織器和解交織器設(shè)計。第三章討論了使用NIOS處理器的SOC架構(gòu),使用SOC架構(gòu)處理系統(tǒng)和基于NIOSII處理器和uC/0S一2操作系統(tǒng)的架構(gòu)。第四章介紹了FPGA系統(tǒng)開發(fā)板設(shè)計與調(diào)試的一些工作。最后一章為本文總結(jié)及其展望。
上傳時間: 2013-04-24
上傳用戶:ziyu_job1234
8051處理器自誕生起近30年來,一直都是嵌入式應(yīng)用的主流處理器,不同規(guī)模的805l處理器涵蓋了從低成本到高性能、從低密度到高密度的產(chǎn)品。該處理器極具靈活性,可讓開發(fā)者自行定義部分指令,量身訂制所需的功能模塊和外設(shè)接口,而且有標(biāo)準(zhǔn)版和經(jīng)濟版等多種版本可供選擇,可讓設(shè)計人員各取所需,實現(xiàn)更高性價比的結(jié)構(gòu)。如此多的優(yōu)越性使得8051處理器牢固地占據(jù)著龐大的應(yīng)用市場,因此研究和發(fā)展8051及與其兼容的接口具有極大的應(yīng)用前景。在眾多8051的外設(shè)接口中,I2C總線接口扮演著重要的角色。通用的12C接口器件,如帶12C總線的RAM,ROM,AD/DA,LCD驅(qū)動器等,越來越多地應(yīng)用于計算機及自動控制系統(tǒng)中。因此,本論文的根本目的就是針對如何在8051內(nèi)核上擴展I2C外設(shè)接口進行較深入的研究。 本課題項目采用可編程技術(shù)來開發(fā)805l核以及12C接口。由于8051內(nèi)核指令集相容,我們能借助在現(xiàn)有架構(gòu)方面的經(jīng)驗,發(fā)揮現(xiàn)有的大量代碼和工具的優(yōu)勢,較快地完成設(shè)計。在8051核模塊里,我們主要實現(xiàn)中央處理器、程序存儲器、數(shù)據(jù)存儲器、定時/計數(shù)器、并行接口、串行接口和中斷系統(tǒng)等七大單元及數(shù)據(jù)總線、地址總線和控制總線等三大總線,這些都是標(biāo)準(zhǔn)8051核所具有的模塊。在其之上我們再嵌入12C的串行通信模塊,采用自下而上的方法,逐次實現(xiàn)一位的收發(fā)、一個字節(jié)的收發(fā)、一個命令的收發(fā),直至實現(xiàn)I2C的整個通信協(xié)議。 8051核及I2C總線的研究通過可編程邏輯器件和一塊外圍I2C從設(shè)備TMPl01來驗證。本課題的最終目的是可編程邏輯器件實現(xiàn)的8051核成功并高效地控制擴展的12C接口與從設(shè)備TMPl01通信。 用EP2C35F672C6芯片開發(fā)的12C接口,數(shù)據(jù)的傳輸速率由該芯片嵌入8051微處理的時鐘頻率決定。經(jīng)測試其傳輸速率可達普通速率和快速速率。 目前集成了該12C接口的8051核已經(jīng)在工作中投入使用,主要用于POS設(shè)備的用戶數(shù)據(jù)加密及對設(shè)備溫度的實時控制。雖然該設(shè)備尚未大批量投產(chǎn),但它已成功通過PCI(PaymentCardIndustry)協(xié)會認證。
標(biāo)簽: FPGA 8051 I2C 內(nèi)核
上傳時間: 2013-06-18
上傳用戶:731140412
自適應(yīng)濾波器是智能天線技術(shù)中核心部分-自適應(yīng)波束成形器的關(guān)鍵技術(shù),算法的高效穩(wěn)定性及硬件時鐘速率的快慢是判斷波束成形器性能優(yōu)劣的主要標(biāo)準(zhǔn)。 首先選取工程領(lǐng)域最常用的自適應(yīng)橫向LMS濾波算法作為研究對象,提出了利用最小均方誤差意義下自適應(yīng)濾波器的輸出信號與主通道噪聲信號的等效關(guān)系,得到濾波器最佳自適應(yīng)參數(shù)的方法。并分析了在平穩(wěn)和非平穩(wěn)環(huán)境噪聲下,濾波器的收斂速度、權(quán)系數(shù)穩(wěn)定性、跟蹤輸入信號的能力和信噪比的改善等特性。 在分析梯度自適應(yīng)格型算法的基礎(chǔ)上,提出利用最佳反射系數(shù)的收斂性和穩(wěn)定性,得到了梯度自適應(yīng)格型濾波器的定步長改進方法;并以改進的梯度自適應(yīng)格型和線性組合器組成梯度自適應(yīng)格型聯(lián)合處理算法,在同樣環(huán)境噪聲下,相比自適應(yīng)橫向LMS算法,其各項性能指標(biāo)都得到了極大地改善,而且有利于節(jié)省硬件資源。 設(shè)計了自適應(yīng)橫向LMS濾波器和梯度自適應(yīng)格型聯(lián)合處理濾波器的電路模型,并用馳豫超前技術(shù)對兩類濾波器進行了流水線優(yōu)化。利用Altera公司的CycloneⅡ系列EP2C5T144C6芯片和多種EDA工具,完成了濾波器的FPGA硬件設(shè)計與仿真實現(xiàn)。并以FPGA實現(xiàn)的3節(jié)梯度自適應(yīng)格型聯(lián)合處理器為核心,設(shè)計了一種TD-SCDMA系統(tǒng)的自適應(yīng)波束成形器,分析表明可以很好地利用系統(tǒng)提供的參考信號對下行波束進行自適應(yīng)成形。
標(biāo)簽: FPGA 自適應(yīng)濾波器 算法設(shè)計
上傳時間: 2013-07-16
上傳用戶:xyipie
隨著多媒體編碼技術(shù)的發(fā)展,視頻壓縮標(biāo)準(zhǔn)在很多領(lǐng)域都得到了成功應(yīng)用,如視頻會議(H.263)、DVD(MPEG-2)、機頂盒(MPEG-2)等等,而網(wǎng)絡(luò)帶寬的不斷提升和高效視頻壓縮技術(shù)的發(fā)展使人們逐漸把關(guān)注的焦點轉(zhuǎn)移到了寬帶網(wǎng)絡(luò)數(shù)字電視(IPTV)、流媒體等基于傳輸?shù)臉I(yè)務(wù)上來。帶寬的增加為流式媒體的發(fā)展鋪平了道路,而高效的視頻壓縮標(biāo)準(zhǔn)的出臺則是流媒體技術(shù)發(fā)展的關(guān)鍵。H.264/AVC是由國際電信聯(lián)合會和國際標(biāo)準(zhǔn)化組織共同發(fā)展的下一代視頻壓縮標(biāo)準(zhǔn)之一。新標(biāo)準(zhǔn)中采用了新的視頻壓縮技術(shù),如多模式幀間預(yù)測、1/4像素精度預(yù)測、整數(shù)DCT變換、變塊尺寸運動補償、基于上下文的二元算術(shù)編碼(CABAC)、基于上下文的變長編碼(CAVLC)等等,這些技術(shù)的采用大大提高了視頻壓縮的效率,更有利于寬帶網(wǎng)絡(luò)數(shù)字電視(IPTV)、流媒體等基于傳輸?shù)臉I(yè)務(wù)的實現(xiàn)。 本文主要根據(jù)視頻會議應(yīng)用的需要對JM8.6代碼進行優(yōu)化,目標(biāo)是實現(xiàn)基于Baseline的低復(fù)雜度的CIF編碼器,并對部分功能模塊進行電路設(shè)計。在設(shè)計方法上采用自頂向下的設(shè)計方法,首先對H.264編碼器的C代碼和算法進行優(yōu)化,并對優(yōu)化后的結(jié)果進行測試比較,結(jié)果顯示在圖像質(zhì)量沒有明顯降低的情況下,H.264編碼器編碼CIF格式視頻每秒達到15幀以上,滿足了視頻會議應(yīng)用的實時性要求。然后,以C模型為參考對H.264編碼器的部分功能模塊電路進行設(shè)計。采用Verilog HDL實現(xiàn)了這些模塊,并在Quartus Ⅱ中進行了綜合、仿真、驗證。主要完成了Zig-zag掃描和CAVLC模塊的設(shè)計,詳細說明模塊的工作原理和過程,然后進行多組的仿真測試,結(jié)果與C模型相應(yīng)部分的結(jié)果一致,證明了設(shè)計的正確性。
上傳時間: 2013-06-11
上傳用戶:kjgkadjg
使用Java語言有非常多的好處,如安全的對象引用、語言級支持多線程和跨平臺等特性。但是嵌入式系統(tǒng)中Java語言的應(yīng)用卻很少見,這是由于Java如下兩方面的不足: (1)Java虛擬機實現(xiàn)需要大量的硬件資源;(2)Java語言的運行時間不可預(yù)測。 為此,本論文將實現(xiàn)一個能夠應(yīng)用在低端FPGA器件的實時Java虛擬機。論文的主要創(chuàng)新點如下: 1.使用基于堆棧的RISC模型處理器實現(xiàn)CISC模型的JVM; 2.處理器微指令無任何相關(guān)性; 3.所設(shè)計的JVM能使Java程序擁有足夠的底層訪問能力。 論文的主要內(nèi)容和工作如下: 1.制定基于堆棧的RISC結(jié)構(gòu)處理器各級結(jié)構(gòu)。 2.設(shè)計簡潔高效的處理器微指令,并且微指令能夠滿足字節(jié)碼的需要。 3.制定Java字節(jié)碼到處理器代碼的轉(zhuǎn)換關(guān)系和快速轉(zhuǎn)換結(jié)構(gòu)。 4.設(shè)計中使用高速緩存,提高運行速度。 5.優(yōu)化堆棧的硬件結(jié)構(gòu),使得出棧入棧操作更加簡潔快速。 6.設(shè)計一系列的本地方法,使得Java程序能夠直接訪問底層資源。 7.將Java類庫使用本地方法實現(xiàn)。 8.自定義程序在內(nèi)存中的結(jié)構(gòu),并使用裝載工具實現(xiàn)。 9.制定處理外圍數(shù)據(jù)處理機制,如IO和內(nèi)存接口10.制定中斷處理方式,并且實現(xiàn)軟中斷的機制。
上傳時間: 2013-06-11
上傳用戶:417313137
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1