亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

大功率

  • 串聯鋰離子電池組均衡電路的研究.rar

    隨著鋰電池技術的發展和節能環保概念的普及,大容量鋰離子電池在大功率場合的應用前景也越來越廣闊,比如電動汽車、電動自行車、混合動力汽車、太陽能發電系統等新能源以及航空航天領域。 但是鋰離子電池組串聯使用時容量不均衡的問題大大限制其廣泛應用,加入均衡電路是有效的解決方法。尤其是對于大容量的鋰電池組,價格昂貴,更是需要有效可靠的均衡電路與均衡策略。可以說,要實現大容量鋰離子電池在大功率場合的廣泛應用,電池單體的有效均衡是目前的技術瓶頸之一。因此深入研究鋰離子電池組均衡電路的關鍵問題很有意義。 本文主要研究了以下幾個方面的內容: 1.總結和比較了現在均衡電路的研究現狀,包括均衡拓撲和控制策略。 2.結合均衡電路的需要,對鋰電池的特性做了詳細的測試和深入的研究,得出了對均衡有指導意義的結論。 3.介紹了本課題所采用的鋰離子電池組均衡電路的工作原理和設計流程,并給出了具體電路和參數設計的結果。 4.基于鋰離子電池的特性,提出了新穎的過均衡加滯環控制的方案。最后,給出了實驗和仿真結果,驗證了方案的可行性。 5.基于本文的研究工作對串聯鋰離子電池的均衡做了一些總結和展望。

    標簽: 串聯 鋰離子電池組 均衡電路

    上傳時間: 2013-06-11

    上傳用戶:liuchee

  • 光伏發電系統關鍵技術的研究.rar

    近年來,世界各國競相發展綠色可再生能源,太陽能因其潔凈、儲量巨大等優點倍受青睞。在太陽能的各種應用中,光伏發電倍受關注。隨著光伏組件價格的不斷降低和電力電子技術的發展,光伏發電的系統容量和變換設備的轉換效率不斷增加,體積逐漸減小,對光伏發電系統相關設備的設計和制造提出了新的要求。 本文從提高光伏發電系統整體效率的角度出發,以光伏發電系統中電能變換裝置作為研究目標,研究光伏發電中的關鍵性技術之一——光伏陣列的最大功率點跟蹤技術。主要研究適用于光伏發電系統的最大功率點跟蹤變換器的拓撲;研究光伏發電系統的最大功率點跟蹤變換器的控制方法。論文在分析研究光伏電池的工作原理及輸出特性的基礎上,分析研究了幾種基于DC/DC變換器的最大功率跟蹤算法及各自優缺點和適用場合。在拓撲研究方面,分析研究了Buck、Boost和全橋電路應用于光伏發電中的優缺點以及適用的最佳功率等級,并對這三種電路的功率損耗進行分析,通過仿真進行驗證。探討了把軟開關技術、三電平技術應用于光伏發電系統的可行性,并詳細分析了應用于光伏發電系統的移相全橋ZVS DC/DC變換器電路的換流過程。在理論分析的基礎上,論文設計實現了應用移相全橋軟開關DC/DC變換電路作為主電路的MPPT變換器,構建了1000W小型獨立光伏發電系統,進行仿真和實驗,對實驗結果進行損耗分析。證實了移相全橋ZVS DC/DC變換電路作為中小型光伏發電系統的前級變換器,可以在實現太陽能光伏陣列的最大功率點跟蹤的同時,保證開關管實現軟開關,從而提高了系統的轉換效率和功率密度。

    標簽: 光伏發電系統 關鍵技術

    上傳時間: 2013-05-23

    上傳用戶:huannan88

  • 輸入并聯輸出串聯組合變換器控制策略的研究.rar

    近些年來,隨著電力電子技術的發展,電力電子系統集成受到越來越多的關注,其中標準化模塊的串并聯技術成為研究熱點之一。輸入并聯輸出串聯型(Input-Parallel and Output-Series,IPOS)組合變換器適用于大功率高輸出電壓的場合。 要保證IPOS組合變換器正常工作,必須保證其各模塊的輸出電壓均衡。本文首先揭示了IPOS組合變換器中每個模塊輸入電流均分和輸出電壓均分之間的關系,在此基礎上提出一種輸出均壓控制方案,該方案對系統輸出電壓調節沒有影響。選擇移相控制全橋(Full-Bridge,FB)變換器作為基本模塊,對n個全橋模塊組成的IPOS組合變換器建立小信號數學模型,推導出采用輸出均壓控制方案的IPOS-FB系統的數學模型,該模型證明各模塊輸出均壓閉環不影響系統輸出電壓閉環的調節,給出了模塊輸出均壓閉環和系統輸出電壓閉環的補償網絡參數設計。對于IPOS組合變換器,采用交錯控制,由于電流紋波抵消效應,輸入濾波電容容量可大大減小;由于電壓紋波抵消作用,在相同的系統輸出電壓紋波下,各模塊的輸出濾波電容可大大減小,由此可以提高變換器的功率密度。 根據所提出的輸出均壓控制策略,在實驗室研制了一臺由兩個1kW全橋模塊組成的IPOS-FB原理樣機,每個模塊輸入電壓為270V,輸出電壓為180V。并進行了仿真和實驗驗證,結果均表明本控制方案是正確有效的。

    標簽: 輸入 并聯 串聯

    上傳時間: 2013-06-17

    上傳用戶:cwyd0822

  • 基于DSP的新型PWM大功率感應加熱電源的研究.rar

    本文從感應加熱基本原理出發,概述了感應加熱技術的現狀及發展趨勢,在分析串聯諧振逆變器各種功率控制策略原理及優缺點的基礎上,對于移相調功輕載時的缺陷,本文將有限雙極性PWM法引入逆變器輕載時的輸出控制,通過DPLL鎖相,使滯后橋臂的電壓與電流始終保持一定的相位,同時結合非輕載時移相功率調節良好的特性,提出了一種基于DSP的新型功率控制策略,克服了傳統移相全橋的缺點,使得高頻逆變電源在輕載條件下仍能實現軟開關,且輕載時電流連續調節范圍廣,三角畸變程度輕于PSPWM,大幅度的擴大了負載的適用范圍,提高了電源整機效率。 在對新型PWM功率控制串聯諧振逆變器工作過程進行分析的基礎上,解決了所有開關管的軟開關問題;并通過分析功率輸出單元的輸出電壓、電流、功率等,進而得到一個脈沖周期的輸出電壓、電流及功率的計算式。在這些理論分析的基礎上,本文設計了基于新型PWM功率控制策略的感應加熱電源實驗系統,對主電路各元器件進行了精確計算與設計,設計了以TMS320LF2407A為核心的控制與保護電路,并對DSP外圍電路進行設計,同時編寫了基于新型PWM功率控制策略,以數字環相環及功率控制算法為核心的DSP程序,相關的仿真與實驗系統得到的輸出波形很好的驗證了新型PWM控制策略的可行性。

    標簽: DSP PWM 大功率

    上傳時間: 2013-04-24

    上傳用戶:gokk

  • 基于DSP的光伏并網發電系統研究.rar

    隨著能源消耗的不斷增長和生態環境的日益惡化,世界各國都在積極尋找一種可持續發展且無污染的新能源。太陽能作為一種高效無污染的新能源,尤其受到人類的重視。近年來,許多國家都非常重視發展太陽能光伏發電系統,光伏并網發電技術已成為太陽能光伏應用的主流。本文對光伏并網發電系統進行了詳細介紹,并對其控制方法進行了研究。太陽能光伏并網發電系統的兩大核心部分是太陽能電池板的最大功率點跟蹤(MPPT)控制和光伏并網逆變控制。首先,本文對太陽能電池的工作原理及工作特性進行介紹,詳細分析太陽能電池工作的等效電路和數學模型。其次,本文對幾種傳統的最大功率點跟蹤(MPPT)控制算法進行了研究、分析和比較,提出各自優缺點。基于最大功率跟蹤過程的快速性和穩定性,設計采用逐步逼近法實現光伏發電系統中太陽能電池的最大功率輸出,以提高系統的性能和最大功率點跟蹤速度。再次,基于光伏并網逆變器的控制目標,研究了光伏并網逆變器的常用控制方法,參考國內外資料,選擇重復-PI控制作為光伏并網逆變器的控制策略。最后,基于TMS320LF2407高速數字信號處理器,設計光伏并網發電系統,給出系統的硬件參數和軟件流程圖,并針對實驗和仿真波形進行分析。

    標簽: DSP 光伏并網發電 系統研究

    上傳時間: 2013-06-06

    上傳用戶:lo25643

  • 50kHzIGBT串聯諧振感應加熱電源研制.rar

    目前以IGBT為開關器件的串聯諧振感應加熱電源在大功率和高頻下的研究是一個熱點和難點,為彌補采用模擬電路搭建而成的控制系統的不足,對感應加熱電源數字化控制研究是必然趨勢。本文以串聯諧振型感應加熱電源為研究對象,采用TI公司的TMS320F2812為控制芯片實現電源控制系統的數字化。 首先分析了串聯諧振型感應加熱電源的負載特性和調功方式,確定了采用相控整流調功控制方式,接著分析了串聯諧振逆變器在感性和容性狀態下的工作過程確定了系統安全可靠的運行狀態。本文設計了電源主電路參數并在Matlab/Simulink仿真環境下搭建了整個系統,仿真分析了串聯諧振型感應加熱電源的半壓啟動模式及鎖相環頻率跟蹤能力和功率調節控制。 針對感應加熱電源的數字控制系統,在討論了晶閘管相控觸發和鎖相環的工作原理及研究現狀下詳細地分析了本課題基于DSP晶閘管相控脈沖數字觸發和數字鎖相環(DPLL)的實現,得出它們各自的優越性,同時分析了感應加熱電源的功率控制策略,得出了采用數字PI積分分離的控制方法。本文采用TI公司的TMS320F2812作為系統的控制芯片,搭建了控制系統的DSP外圍硬件電路,分析了系統的運行過程并編寫了整個控制系統的程序。最后對控制系統進行了試驗,驗證了理論分析的正確性和控制方案的可行性。

    標簽: kHzIGBT 50 串聯諧振

    上傳時間: 2013-05-25

    上傳用戶:kennyplds

  • 500kWIGBT并聯諧振感應加熱電源研制.rar

    本課題是針對陜西美泰電氣有限公司的一個開發研究項目。在國內,中頻大功率感應加熱電源雖然有許多研究,但是在控制方式上與選取的功率元件上卻有不同,特別是針對DSP控制與選取IGBT作為功率元件的相關文獻較少。數字化控制將是一種趨勢,而IGBT控制靈活,驅動簡單,從而將逐步取代晶閘管,GTO等元件。 本課題主要以并聯諧振型感應加熱電源為研究對象,采用了IGBT為功率開關元件的主電路,比較了直流調功和逆變調功的優缺點,最終選擇了三相全控晶閘管整流的調功方式,同時也描述了重疊時間對逆變器的影響。計算分析了整流側和逆變側的必要參數以及并聯諧振槽路的參數,本文在MATLAB/Simulink環境下建立了10kHz/500kW并聯諧振型感應加熱系統的仿真模型,對整流調功、鎖相環頻率跟蹤、逆變器的啟動等仿真波形進行了重點分析并得出結論。在此理論基礎上,設計了基于DSPTMS320F2812 10kHz/500kW感應加熱電源的控制器,其中重點研究了閉環調功控制系統、鎖相環頻率跟蹤系統、重疊時間、整流側晶閘管脈沖觸發產生和相序判斷以及逆變器啟動的全數字化控制。同時,設計了過壓過流保護電路以及外圍采樣電路、檢測電路,特別是過壓保護,本文給出了一種箝位思想并對此思想進行了仿真證明了其正確性和可行性,以便使電源和IGBT更安全的工作。最后,對本文所提出的控制方案進行實驗驗證,證明了本文理論計算分析的正確性和控制方案的可行性。

    標簽: kWIGBT 500 并聯諧振

    上傳時間: 2013-06-09

    上傳用戶:czh415

  • 基于UC3854的兩級有源功率因數校正電路的研究.rar

    近幾十年來,由于大功率電力電子裝置的廣泛應用,使公用電網受到諧波電流和諧波電壓的污染日益嚴重,功率因數低,電能利用率低。為了抑制電網的諧波,提高功率因數,人們通常采用無功補償、有源、無源濾波器等對電網環境進行改善。近年來,功率因數校正技術作為抑制諧波電流,提高功率因數的行之有效的方法,備受人們的關注。 本文在參閱國內外大量文獻的基礎上,綜述了近年來國內外功率因數校正的發展狀況,簡要分析了無源功率因數與有源功率因數的優、缺點,并詳細分析了有源功率因數校正的基本原理和控制方法。在通過對主電路拓撲與控制方法的優、缺點比較后,選擇BOOST變換器作為主電路拓撲,采用基于平均電流控制的UC3854控制器,設計了容量為300W的兩級有源功率因數校正電路的前一級電路,計算了主電路與控制電路的元件參數。根據此參數,基于MATLAB環境下對功率因數校正前、后的電路進行了仿真,通過仿真波形的分析。最后搭建實驗電路進行實驗,采集實驗波形,對實驗結果進行分析,進-步驗證了本設計參數的正確性與準確性。 本文功率因數校正電路的設計,使電路的功率因數得到了明顯的改善,達到了設計要求,同時電路的總諧波畸變因數控制在了一定的范圍,減少了對電網的污染。并且電路的輸出電壓穩定,為后一級的電路設計奠定了基礎。

    標簽: 3854 UC 有源功率因數

    上傳時間: 2013-05-22

    上傳用戶:源碼3

  • 光伏并網發電系統控制方法的研究.rar

    太陽能作為一種新型能源以其清潔、儲量大、無污染等優點使其利用越來越受到人們的重視,而光伏發電技術的應用更是人們普遍關注的焦點。本文主要研究了光伏并網發電系統的控制方法。由于目前光伏電池的價格高,轉換效率比較低,為了降低系統造價和有效的利用太陽能,對光伏并網系統的控制方法的研究顯得尤為重要。 本文針對光伏并網發電系統的特點,將其分為三部分進行研究。研究了光伏電池的工作原理及輸出特性,在此基礎上建立了其仿真模型。利用PSIM仿真軟件對不同環境及不同日照強度下的太陽能電池輸出特性進行了仿真。仿真與實測數據的對比驗證了其仿真模型的正確性,為后續的仿真奠定基礎。 光伏板的最大功率點的控制是實現光伏并網高效率的輸出的必要條件。采用基于模糊控制的方法求取最大功率點驅動boost升壓變換器,用以實現最大功率點跟蹤和控制。針對電導增量法和干擾法的不足,研究了基于模糊控制的方法。從仿真及實驗的結果均能看出系統的穩態功率損耗大大縮小,提高了其穩態性能。 闡述了并網逆變器的工作原理和控制策略。基于逆變控制方法的研究,對系統進行了仿真與實驗。其中控制方法采用電流滯環跟蹤控制。從仿真及實驗結果中可以看出實現了輸出功率因數為1的控制目標。 開發了光伏并網的實驗系統,設計了基于DSP的最大功率點控制系統和逆變并網系統。實驗結果表明,本文采用的控制策略和設計方法是可行有效的,主電路和控制電路的設計是合理的。

    標簽: 光伏并網發電 系統控制 法的研究

    上傳時間: 2013-07-28

    上傳用戶:yepeng139

  • 基于瞬時無功功率理論的DSP型TSC控制器.rar

    無功功率是影響電壓穩定的一個重要因素,它關系到整個電力系統能否安全穩定的運行。由于工業企業存在大量低功率因數、沖擊性負載,導致大量無功的產生;同時,隨著電力電子技術的發展,在工業領域內大功率的電力電子設備得到廣泛運用,然而,由于電力電子設備的非線性特性,運行時又會產生大量諧波,因此,如何將無功補償與諧波抑制同時進行考慮,是未來無功補償技術領域的重要研究課題之一。 本文介紹了功率理論的發展,以及常用的無功補償方式的原理和特點,同時重點介紹了瞬時無功功率理論以及以此為基礎的TSC無功補償控制器。在硬件方面,本文設計了基于LF2407ADSP芯片的TSC控制器、控制器外圍電路及主電路三大模塊。在軟件方面,本文包括數據采集軟件、控制投切算法、觸發控制軟件三部分。其中著重介紹了無沖擊電流投入電容的設計思路,得出了一個好的電路。 軟件仿真和樣機實測結果表明,這種TSC裝置在提供動態無功功率補償和減小沖擊涌流方面具有優良的性能。

    標簽: DSP TSC 瞬時無功功率

    上傳時間: 2013-04-24

    上傳用戶:hoperingcong

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久精品夜夜夜夜久久| 久久成人国产| 黄页网站一区| 久久九九免费视频| 亚洲手机视频| 亚洲精品久久久蜜桃 | 黑丝一区二区| 国产精品一区二区久久国产| 欧美成人午夜免费视在线看片| 国产情侣一区| 亚洲国产精品一区二区第一页| 欧美日韩国产美女| 久久久久久9| 99v久久综合狠狠综合久久| 欧美一区二区高清| 亚洲黄色成人| 国产精品色午夜在线观看| 久久夜色精品国产欧美乱极品| 一区二区久久久久久| 韩国av一区二区三区| 欧美日韩一区视频| 免费影视亚洲| 久久久久久一区二区| 亚洲欧美另类在线| 亚洲国产日韩欧美在线图片| 国产日韩欧美另类| 国产精品国产三级国产aⅴ无密码 国产精品国产三级国产aⅴ入口 | 欧美日韩国产精品| 久久香蕉精品| 欧美成人dvd在线视频| 国产精品亚洲综合一区在线观看 | 快播亚洲色图| 国产精品免费福利| 一区二区三区av| 久久人人九九| 欧美日韩一区二区免费在线观看| 欧美区在线观看| 亚洲福利视频专区| 欧美日韩免费视频| 一区二区三区视频在线看| 久久久久久久一区二区三区| 在线电影国产精品| 农夫在线精品视频免费观看| 亚洲福利视频二区| 欧美午夜精品久久久久久孕妇 | 欧美阿v一级看视频| 欧美一区二视频在线免费观看| 亚洲一区二区三区四区五区午夜 | 小黄鸭精品aⅴ导航网站入口| 国产精品99久久久久久久vr| 一本色道久久综合亚洲精品高清 | 性色一区二区三区| 欧美影院在线| 久久影视精品| 欧美高清视频一区二区三区在线观看 | 国外视频精品毛片| 国产一区二区三区直播精品电影| 国产精品久久午夜| 欧美日韩一区二区在线视频 | 99视频精品免费观看| 亚洲二区免费| 亚洲人成久久| 一区二区日韩欧美| 欧美一级淫片aaaaaaa视频| 欧美一区亚洲二区| 国产亚洲欧美一区| 欧美日本不卡| 国产精品久久久免费| 国内成+人亚洲| 亚洲日本va午夜在线影院| 久久中文在线| 欧美日韩无遮挡| 国产视频一区免费看| 1769国内精品视频在线播放| 国产一区美女| 在线看欧美视频| 国产精品99久久久久久久vr| 欧美自拍偷拍| 欧美日韩一区二区视频在线| 国产视频欧美| 夜夜爽99久久国产综合精品女不卡| 午夜精品久久久久久久99黑人| 免费欧美日韩国产三级电影| 国产精品久久久久久久久婷婷| 在线观看视频一区二区欧美日韩| 亚洲五月婷婷| 欧美国产免费| 亚洲人在线视频| 美女露胸一区二区三区| 国产欧美日韩一区二区三区在线| 亚洲精品黄色| 猛干欧美女孩| 在线成人小视频| 久久av红桃一区二区小说| 欧美精品www| 亚洲精品日本| 欧美aa在线视频| 狠狠88综合久久久久综合网| 亚洲欧美日韩另类精品一区二区三区| 美国成人毛片| 亚洲国产日韩欧美综合久久| 国产一区二区三区免费不卡 | 久久三级福利| 国产一级精品aaaaa看| 亚洲午夜av在线| 国产精品一区二区三区乱码| 亚洲男女毛片无遮挡| 国产精品网站视频| 欧美一区二区免费观在线| 国产精品自拍三区| 一区二区三区日韩欧美精品| 欧美理论大片| 在线亚洲电影| 国产日韩av一区二区| 性做久久久久久久免费看| 亚洲欧洲精品一区二区三区| 新片速递亚洲合集欧美合集| 久久久免费精品视频| 夜夜嗨av一区二区三区四区| 韩国福利一区| 国产精品视频内| 欧美人牲a欧美精品| 久久久久www| 欧美一级淫片播放口| 亚洲级视频在线观看免费1级| 国产欧美亚洲日本| 欧美激情亚洲自拍| 亚洲欧美国产精品va在线观看| 一区视频在线看| 欧美视频导航| 嫩草国产精品入口| 亚洲综合导航| 9l视频自拍蝌蚪9l视频成人| 欧美99久久| 久久9热精品视频| 亚洲一区二区三区色| 91久久中文字幕| 欧美日韩亚洲成人| 久久亚洲一区| 亚洲欧美日韩一区| 99精品国产99久久久久久福利| 亚洲国产成人精品女人久久久 | 麻豆久久久9性大片| 久久噜噜噜精品国产亚洲综合| 最新国产成人av网站网址麻豆| 激情久久影院| 国产精品啊啊啊| 欧美午夜精品久久久久久人妖 | 欧美激情亚洲视频| 欧美一区国产二区| 久久精品成人一区二区三区蜜臀| 亚洲欧美另类综合偷拍| 在线一区二区视频| 99v久久综合狠狠综合久久| 亚洲精品欧美精品| 亚洲黄色在线观看| 亚洲国产欧美一区二区三区久久| 国产乱肥老妇国产一区二| 国产欧美精品一区| 国产一区二区剧情av在线| 狠狠色综合一区二区| 亚洲丁香婷深爱综合| 亚洲国产老妈| 一二三区精品| 欧美中文字幕在线视频| 久久久中精品2020中文| 免费影视亚洲| 欧美午夜a级限制福利片| 国际精品欧美精品| 亚洲精品欧美日韩| 亚洲欧美日韩综合| 欧美肥婆在线| 国产拍揄自揄精品视频麻豆| 亚洲日韩成人| 久久夜色精品| 国外成人在线视频| 欧美一区二区高清| 国产精品亚洲成人| 亚洲免费激情| 国产精品久久久久久久久借妻| 黑人巨大精品欧美黑白配亚洲| 最新亚洲激情| 欧美一区二区三区另类| 欧美成人dvd在线视频| 国产精品福利网站| 亚洲国产mv| 久久国产视频网站| 欧美日韩国产探花| 亚洲高清视频在线观看| 亚洲国产91| 久久久国产91| 国产精品久久久久久久免费软件 | 国产毛片精品国产一区二区三区| 欧美h视频在线| 亚洲国产精彩中文乱码av在线播放| 久久久精品五月天| 国产精品专区一| 亚洲在线网站| 久久天天躁夜夜躁狠狠躁2022| 亚洲欧美国产三级|