永磁無刷直流電動(dòng)機(jī)利用轉(zhuǎn)子上的永磁體激磁,采用電子換相取代機(jī)械換相,結(jié)構(gòu)簡單、體積小、效率高,在許多領(lǐng)域得到了廣泛應(yīng)用。但是,由于永磁無刷直流電動(dòng)機(jī)本身存在較大的轉(zhuǎn)矩脈動(dòng),從而使電機(jī)運(yùn)行性能存在缺陷,限制了它在精密傳動(dòng)系統(tǒng)中的應(yīng)用。本文在開發(fā)完成永磁無刷直流電動(dòng)機(jī)控制系統(tǒng)的基礎(chǔ)上,針對(duì)如何減小和抑制自控式永磁電動(dòng)機(jī)轉(zhuǎn)矩脈動(dòng)這一問題,提出了一種混合控制策略:利用原有的六個(gè)離散位置信號(hào),在三三導(dǎo)通控制策略的基礎(chǔ)上,融入矢量控制策略,使得電機(jī)在運(yùn)行過程中定子的基波磁勢(shì)與轉(zhuǎn)子磁勢(shì)盡量保持在90°左右,來實(shí)現(xiàn)近似正弦波電流驅(qū)動(dòng),可以在不增加系統(tǒng)成本的基礎(chǔ)上,較好地抑制電磁轉(zhuǎn)矩脈動(dòng),并通過實(shí)驗(yàn)驗(yàn)證其正確性,其主要內(nèi)容如下: 第二章主要闡述了永磁無刷直流電動(dòng)機(jī)的運(yùn)行原理,給出了電機(jī)的數(shù)學(xué)模型,在此基礎(chǔ)上,利用Matlab/Simulink軟件建立了電機(jī)及控制系統(tǒng)的仿真模型,并給出了仿真和實(shí)驗(yàn)波形。 第三章介紹基于TI公司TMS320F240PQA芯片的永磁直流無刷電機(jī)控制器的設(shè)計(jì),并對(duì)系統(tǒng)主電路、驅(qū)動(dòng)模塊、電流檢測、過壓保護(hù)等電路作了詳細(xì)的介紹,對(duì)設(shè)計(jì)中容易出現(xiàn)的問題進(jìn)行分析,搭建了整個(gè)系統(tǒng)的硬件平臺(tái)。 第四章介紹了常規(guī)的矢量控制技術(shù),提出了一種混合控制策略的新方法:利用霍爾位置傳感器的六個(gè)位置信號(hào),使得電機(jī)在運(yùn)行過程中定子的基波磁勢(shì)與轉(zhuǎn)子磁勢(shì)盡量保持在90°左右,從而達(dá)到控制器簡單、轉(zhuǎn)矩脈動(dòng)降低的目的。并分析了這種控制策略在勻速、加減速情況下的運(yùn)行性能。 第五章在前幾章分析的基礎(chǔ)上,完整給出了混合控制策略的軟件編程方法,并按照模塊化的思想,把軟件分成多個(gè)獨(dú)立模塊,并重點(diǎn)介紹了系統(tǒng)啟動(dòng)、轉(zhuǎn)速計(jì)算、轉(zhuǎn)子位置計(jì)算、sinθ和cosθ的計(jì)算、PWM輸出等幾個(gè)部分,并給出實(shí)驗(yàn)波形驗(yàn)證其可行性。
標(biāo)簽: 直流無刷電機(jī) 方法研究 驅(qū)動(dòng)
上傳時(shí)間: 2013-05-30
上傳用戶:時(shí)代將軍
作為數(shù)控機(jī)床、機(jī)器人等的重要組成部分,隨著加工制造、汽車等行業(yè)的發(fā)展,永磁交流伺服系統(tǒng)成為國內(nèi)外研究和應(yīng)用的一個(gè)重要領(lǐng)域。同時(shí)隨著功率電子器件和微處理器的進(jìn)步,伺服系統(tǒng)也逐步向全數(shù)字化方向發(fā)展,全數(shù)字化系統(tǒng)具有可靠性高、實(shí)現(xiàn)新控制策略容易、功能豐富等優(yōu)點(diǎn)。 本文論述了永磁同步電機(jī)空間矢量脈寬調(diào)制控制的最新發(fā)展,分析了從基礎(chǔ)理論到最新的控制算法的有關(guān)永磁同步電機(jī)空間矢量控制的許多問題。在對(duì)永磁同步電動(dòng)機(jī)(PMSM)的數(shù)學(xué)模型和控制理論進(jìn)行全面、深入研究的基礎(chǔ)上,本文在PMSM 的電壓空間矢量的弱磁控制方面做了大量的理論和實(shí)驗(yàn)研究,提出一種基于空間矢量PWM (SVPWM)的PMSM 定子磁鏈弱磁控制定方法,在電機(jī)轉(zhuǎn)速達(dá)到基本轉(zhuǎn)速之前采用最大轉(zhuǎn)矩/電流策略控制,超過基本轉(zhuǎn)速之后采用弱磁擴(kuò)速的電流控制策略,使電機(jī)具有更大的調(diào)速空間,該策略可實(shí)現(xiàn)電壓矢量近似連續(xù)調(diào)節(jié),有效減小了PMSM 的轉(zhuǎn)矩脈動(dòng),提高了系統(tǒng)的性能,仿真結(jié)果證明了這一結(jié)論。 在上述工作的基礎(chǔ)上,研制開發(fā)了一套基于TMS320LF2407A 的高性能全數(shù)字永磁交流調(diào)速系統(tǒng)。該系統(tǒng)以空間矢量PWM 控制為核心。
標(biāo)簽: 永磁同步電動(dòng)機(jī) 調(diào)速控制
上傳時(shí)間: 2013-06-08
上傳用戶:bjgaofei
感應(yīng)電機(jī)雙饋調(diào)速系統(tǒng)是一種性能優(yōu)越的電力拖動(dòng)控制系統(tǒng),它不僅降低了功率變換器的額定功率,而且能夠通過調(diào)節(jié)轉(zhuǎn)子電壓的幅值、相位和頻率來實(shí)現(xiàn)電機(jī)定子側(cè)功率因數(shù)的調(diào)節(jié)。由于系統(tǒng)控制方法的靈活性和多樣性,使得雙饋電機(jī)在工業(yè)傳動(dòng)領(lǐng)域、風(fēng)力發(fā)電以及抽水蓄能電站中擁有廣闊的應(yīng)用前景。 本文主要對(duì)雙饋電機(jī)矢量控制系統(tǒng)進(jìn)行了相關(guān)研究。首先,比較雙饋調(diào)速系統(tǒng)和傳統(tǒng)的異步電機(jī)變頻調(diào)速系統(tǒng)的異同點(diǎn),闡述了雙饋電機(jī)的工作原理,各種不同的磁場定向控制方式,并分析了它的穩(wěn)態(tài)特性;接著,利用雙饋調(diào)速系統(tǒng)控制方法靈活多樣的特點(diǎn),構(gòu)建了一套交直交變換器勵(lì)磁的矢量調(diào)速系統(tǒng),系統(tǒng)模型建立在以轉(zhuǎn)子磁鏈定向了同步旋轉(zhuǎn)的坐標(biāo)軸系中,可以實(shí)現(xiàn)雙饋電機(jī)轉(zhuǎn)速與無功功率的解耦控制,同時(shí),控制交直交變換器能量的雙向流動(dòng),雙饋電機(jī)可以在超同步、亞同步方式下運(yùn)行,通過計(jì)算機(jī)仿真,驗(yàn)證了這種控制方式的可行性和正確性;隨后,闡述了雙饋電機(jī)的功角特性,通過功角特性分析了電機(jī)的靜態(tài)穩(wěn)定性,并建立了雙饋電機(jī)的開環(huán)電壓控制、開環(huán)電流控制以及矢量控制的小信號(hào)模型,對(duì)上述幾種控制方式下的雙饋電機(jī)暫態(tài)穩(wěn)定性進(jìn)行了深入研究;最后,綜合上述討論結(jié)果,設(shè)計(jì)了雙饋電機(jī)的控制系統(tǒng)硬件部分,并給出了部分軟件設(shè)計(jì)流程。
標(biāo)簽: 感應(yīng)電機(jī) 雙饋 仿真
上傳時(shí)間: 2013-07-25
上傳用戶:Wwill
超級(jí)電容器是一種介于電池和靜電電容之間的新型儲(chǔ)能元件,其功率密度比電池高數(shù)十倍,能量密度比靜電電容高數(shù)十倍。具有充放電速度快、對(duì)環(huán)境無污染、循環(huán)壽命長等優(yōu)點(diǎn),有希望成為21世紀(jì)的新型綠色能源。 設(shè)計(jì)了一個(gè)主回路以BUCK降壓電路為主,控制回路以單片機(jī)89C51為核心的超級(jí)電容器充放電測試系統(tǒng),用于測試超級(jí)電容器充放電性能。本系統(tǒng)通過檢測超級(jí)電容器的端電壓、電流和溫度,并將采集到的信號(hào)由ADC0809轉(zhuǎn)換為數(shù)字信號(hào),送入89C51分析處理后,再經(jīng)DAC0832輸出,調(diào)節(jié)脈寬調(diào)制器TL494的電壓信號(hào),調(diào)整PWM的輸出值,控制BUCK轉(zhuǎn)換電路中MOSFET功率開關(guān)的占空比,從而改變輸出直流電壓的大小,實(shí)現(xiàn)恒流控制。超級(jí)電容器充電方法采用分階段恒流充電,依照充電狀態(tài)的不同,適時(shí)調(diào)整充電電流大小,避免過充電造成超級(jí)電容器損害。在其控制方法和實(shí)現(xiàn)手段上,主要通過單片機(jī)的設(shè)定值與實(shí)測值的比較來控制電路的輸出,也可以通過模糊控制技術(shù)來實(shí)現(xiàn),并用MATLAB進(jìn)行了仿真實(shí)驗(yàn),仿真結(jié)果證明采用模糊控制能夠取得更好的效果。在整個(gè)系統(tǒng)的保護(hù)功能方面,采用了過壓、過流以及過熱等的保護(hù)方法,實(shí)現(xiàn)軟硬件對(duì)系統(tǒng)的保護(hù)。 利用本測試系統(tǒng)可以對(duì)超級(jí)電容器進(jìn)行恒電流充放電,其充放電曲線基本上呈現(xiàn)線性。模糊控制能針對(duì)電容器充電狀態(tài)的不同,適時(shí)給予不同的充電電流,不至于發(fā)生大電流過充造成超級(jí)電容器受損的情況,確保使用壽命。 解決了系統(tǒng)的電磁兼容,從而能夠保證系統(tǒng)能夠安全可靠地工作。在電路裝置硬件電路、軟件以及印制電路板設(shè)計(jì)中所采取了一些抗干擾措施,可以有效地預(yù)防一些干擾帶來的誤差,提高了系統(tǒng)的可靠性和穩(wěn)定性。
上傳時(shí)間: 2013-04-24
上傳用戶:Kecpolo
電機(jī)是現(xiàn)代生產(chǎn)中的重要電氣設(shè)備,電機(jī)的故障會(huì)對(duì)生產(chǎn)造成重大影響,因此需要監(jiān)測電機(jī)的運(yùn)行狀態(tài)。同時(shí),不斷提高的環(huán)保標(biāo)準(zhǔn)要求控制電機(jī)的噪聲。測試和分析電機(jī)的振動(dòng)為電機(jī)的故障診斷和電機(jī)的噪聲控制提供了途徑,因此有必要建立一個(gè)電機(jī)振動(dòng)測試分析系統(tǒng)。 過去20多年來,虛擬儀器技術(shù)取得了長足發(fā)展,在工程測試等領(lǐng)域得到了廣泛的應(yīng)用。相比于傳統(tǒng)儀器,虛擬儀器技術(shù)具有性能高,擴(kuò)展性強(qiáng)等諸多優(yōu)勢(shì)。LabVIEW是虛擬儀器軟件開發(fā)平臺(tái)中最常用的一個(gè)。 本文在虛擬儀器的基礎(chǔ)上開發(fā)了電機(jī)振動(dòng)測試分析系統(tǒng),主要內(nèi)容包括以下幾個(gè)方面: 1.電機(jī)振動(dòng)測試分析平臺(tái)的建立,以LabVIEW為軟件開發(fā)平臺(tái),配合數(shù)據(jù)采集卡,加速度傳感器等硬件設(shè)備建立了電機(jī)振動(dòng)信號(hào)采集與處理的虛擬儀器系統(tǒng),完成振動(dòng)信號(hào)的采集、顯示、處理、數(shù)據(jù)管理等一系列功能; 2.電機(jī)振動(dòng)信號(hào)處理方法的研究,深入分析了傅里葉變換、時(shí)頻分析、小波分析等在電機(jī)振動(dòng)信號(hào)處理中的優(yōu)缺點(diǎn),著重研究了獨(dú)立分量分析等新技術(shù)在電機(jī)內(nèi)部振動(dòng)信號(hào)處理上的應(yīng)用,針對(duì)電機(jī)振動(dòng)的特性,給出了各種信號(hào)處理方法的參數(shù)優(yōu)化: 3.電機(jī)故障診斷的研究,針對(duì)電機(jī)故障特征量的提取和選擇提出了作者自己的見解,建立了基于振動(dòng)的最小二乘支持向量機(jī)電機(jī)故障診斷,實(shí)例證明了支持向量機(jī)在電機(jī)故障診斷上的有效性; 4.針對(duì)電機(jī)故障診斷中故障樣本不易獲得的特點(diǎn),提出了基于支持向量數(shù)據(jù)描述的多層分類器,是一種較有應(yīng)用價(jià)值的新方法。
標(biāo)簽: 虛擬儀器 電機(jī)振動(dòng) 測試
上傳時(shí)間: 2013-06-24
上傳用戶:黃華強(qiáng)
本課題是國家自然科學(xué)基金重點(diǎn)資助項(xiàng)目“微型燃?xì)廨啓C(jī)一高速發(fā)電機(jī)分布式發(fā)電與能量轉(zhuǎn)換系統(tǒng)研究”(50437010)的部分研究內(nèi)容。高速電機(jī)的體積小、功率密度大和效率高,正在成為電機(jī)領(lǐng)域的研究熱點(diǎn)之一。高速電機(jī)的主要特點(diǎn)有兩個(gè):一是轉(zhuǎn)子的高速旋轉(zhuǎn),二是定子繞組電流和鐵心中磁通的高頻率,由此決定了不同于普通電機(jī)的高速電機(jī)特有的關(guān)鍵技術(shù)。本文針對(duì)高速永磁電機(jī)的機(jī)械與電磁特性及其關(guān)鍵技術(shù)進(jìn)行了深入地研究,主要包括以下內(nèi)容: 首先,進(jìn)行了高速永磁電機(jī)轉(zhuǎn)子的結(jié)構(gòu)設(shè)計(jì)與強(qiáng)度分析。根據(jù)永磁體抗壓強(qiáng)度遠(yuǎn)大于抗拉強(qiáng)度的特點(diǎn),提出了一種采用整體永磁體外加非導(dǎo)磁高強(qiáng)度合金鋼護(hù)套的新型轉(zhuǎn)子結(jié)構(gòu)。永磁體與護(hù)套之間采用過盈配合,用護(hù)套對(duì)永磁體施加的靜態(tài)預(yù)壓力抵消高速旋轉(zhuǎn)離心力產(chǎn)生的拉應(yīng)力,使永磁體高速旋轉(zhuǎn)時(shí)仍承受一定的壓應(yīng)力,從而保證永磁轉(zhuǎn)子的安全運(yùn)行。基于彈性力學(xué)厚壁筒理論與有限元接觸理論,建立了新型高速永磁轉(zhuǎn)子應(yīng)力計(jì)算模型,確定了護(hù)套和永磁體之間的過盈量,計(jì)算了永磁體和護(hù)套中的應(yīng)力分布。該種轉(zhuǎn)子結(jié)構(gòu)和強(qiáng)度計(jì)算方法已應(yīng)用于高速永磁電機(jī)的樣機(jī)設(shè)計(jì)。 其次,進(jìn)行了高速永磁轉(zhuǎn)子的剛度分析和磁力軸承—轉(zhuǎn)子系統(tǒng)的臨界轉(zhuǎn)速計(jì)算。基于電磁場理論分析了磁力軸承支承的各向同性,利用氣隙靜態(tài)偏置磁通密度計(jì)算了磁力軸承的線性支承剛度,在對(duì)高速電機(jī)轉(zhuǎn)子結(jié)構(gòu)離散化的基礎(chǔ)上建立了磁力軸承—轉(zhuǎn)子系統(tǒng)的動(dòng)力學(xué)方程,采用有限元法計(jì)算了高速永磁電機(jī)轉(zhuǎn)子的臨界轉(zhuǎn)速。利用該計(jì)算方法設(shè)計(jì)的1臺(tái)采用磁力軸承的高速電機(jī),已成功實(shí)現(xiàn)60000r/min的運(yùn)行。 再次,進(jìn)行了高速永磁電機(jī)的定子設(shè)計(jì),提出了一種新型環(huán)形繞組結(jié)構(gòu)。環(huán)型繞組線圈的下層邊放在定子鐵心的6個(gè)槽中,而上層邊分布在定子鐵心軛部外緣的24個(gè)槽中,不但增加了定子表面的通風(fēng)散熱面積,使冷卻氣流直接冷卻定子繞組,更為重要的是,解決了傳統(tǒng)2極電機(jī)繞組端部軸向過長的難題,使轉(zhuǎn)子軸向長度大為縮短,從而增加了高速永磁電機(jī)轉(zhuǎn)子系統(tǒng)的剛度。 然后,采用場路耦合以及解析與實(shí)驗(yàn)相結(jié)合的方法,分析計(jì)算了高速永磁電機(jī)的損耗和溫升,并對(duì)高速永磁發(fā)電機(jī)的電磁特性進(jìn)行了仿真。高速電機(jī)的優(yōu)點(diǎn)是體積小和功率密度大,然而隨之而來的缺點(diǎn)是單位體積的損耗大,以及因散熱面積小造成的散熱困難。損耗和溫升的準(zhǔn)確計(jì)算對(duì)高速電機(jī)的安全運(yùn)行至關(guān)重要。為了準(zhǔn)確計(jì)算高速電機(jī)的高頻鐵耗,對(duì)定子鐵心所采用的各向異性冷軋電工鋼片制作的試件,進(jìn)行了不同頻率和不同軋制方向的導(dǎo)磁性能和損耗系數(shù)測定。然后采用場路耦合的方法,分析計(jì)算了高速電機(jī)的定子鐵耗和銅耗、轉(zhuǎn)子護(hù)套和永磁體內(nèi)的高頻附加損耗以及轉(zhuǎn)子表面的風(fēng)磨損耗。在損耗分析的基礎(chǔ)上,計(jì)算了高速電機(jī)的溫升。最后,設(shè)計(jì)制造了一臺(tái)額定轉(zhuǎn)速為60000r/min的高速永磁電機(jī)試驗(yàn)樣機(jī),并進(jìn)行了初步的試驗(yàn)研究。測量了電機(jī)在不同轉(zhuǎn)速下空載運(yùn)行時(shí)的定、轉(zhuǎn)子溫升及定子繞組的反電動(dòng)勢(shì)波形。通過與仿真結(jié)果的對(duì)比,部分驗(yàn)證了高速永磁電機(jī)理論分析和設(shè)計(jì)方法的正確性。在此基礎(chǔ)上,提出一種高速永磁電機(jī)的改進(jìn)設(shè)計(jì)方案,為進(jìn)一步的研究工作打下了基礎(chǔ)。
上傳時(shí)間: 2013-04-24
上傳用戶:woshiayin
本文利用Maxwell 3D軟件對(duì)交流接觸器的電磁機(jī)構(gòu)的靜態(tài)、動(dòng)態(tài)特性進(jìn)行分析與仿真。Maxwell 3D是美國的Ansoft公司開發(fā)的專門用于三維電磁場仿真的軟件。本文主要以CJ20-25交流接觸器的電磁機(jī)構(gòu)為例,對(duì)不同激勵(lì)下交流接觸器電磁機(jī)構(gòu)的靜態(tài)特性進(jìn)行分析;編寫電磁機(jī)構(gòu)動(dòng)態(tài)仿真程序,對(duì)其進(jìn)行動(dòng)態(tài)仿真,并進(jìn)一步分析其動(dòng)態(tài)特性;同時(shí)對(duì)電磁機(jī)構(gòu)的設(shè)計(jì)參數(shù)對(duì)交流接觸器特性的影響進(jìn)行了分析。主要為以下幾個(gè)方面: 首先,利用Maxwell 3D軟件建立交流接觸器電磁機(jī)構(gòu)的三維有限元模型,對(duì)模型進(jìn)行有限元分析,計(jì)算不同電流和氣隙下的靜態(tài)吸力,仿真電磁機(jī)構(gòu)的靜態(tài)特性。繪制出交流接觸器的靜態(tài)電磁場分布及吸力特性。 其次,用Visual C++編程語言編制程序,仿真交流接觸器電磁機(jī)構(gòu)運(yùn)動(dòng)過程。 再次,對(duì)交流接觸器電磁機(jī)構(gòu)進(jìn)行瞬態(tài)分析。得出CJ20-25型交流接觸器動(dòng)態(tài)電流、吸力特性,并對(duì)動(dòng)鐵心末速度、靜鐵心迎擊距離、動(dòng)態(tài)吸力與反力特性的匹配、總動(dòng)能和碰撞損失能量與合閘相角的關(guān)系特性進(jìn)行了具體分析。同時(shí),將迎擊式與非迎擊的兩種類型的交流接觸器的動(dòng)態(tài)特性作了比較。 最后,利用Maxwell 3D軟件分析接觸器各個(gè)設(shè)計(jì)參數(shù)對(duì)交流接觸器電磁機(jī)構(gòu)靜態(tài)吸力、動(dòng)態(tài)特性的影響。 經(jīng)過以上各方面的分析可知:采用Maxwell 3D軟件的強(qiáng)大的電磁場有限元分析功能進(jìn)行電磁機(jī)構(gòu)的靜態(tài)及動(dòng)態(tài)特性的分析與仿真,模擬真實(shí)的工作環(huán)境,可以在樣機(jī)制作前,精確掌握電器產(chǎn)品的性能,減少樣機(jī)制作,降低試驗(yàn)費(fèi)用,加快產(chǎn)品開發(fā)周期,提高產(chǎn)品性能指標(biāo),具有實(shí)際意義。
標(biāo)簽: 交流接觸器 電磁 機(jī)構(gòu)
上傳時(shí)間: 2013-07-15
上傳用戶:電子世界
隨著人類生活水平的提高,人們對(duì)能源的需求也日益提高。太陽能作為一種新型的綠色可再生能源,具有儲(chǔ)量大、利用經(jīng)濟(jì)、清潔環(huán)保等優(yōu)點(diǎn)。因此,太陽能的利用越來越受到人們的重視,而太陽能光伏發(fā)電技術(shù)的應(yīng)用更是人們普遍關(guān)注的焦點(diǎn)。在不久的將來,太陽能光伏利用的主要形式將是并網(wǎng)發(fā)電系統(tǒng)。高性能的數(shù)字信號(hào)處理器芯片(DSP)的出現(xiàn),使得一些先進(jìn)的控制策略應(yīng)用于光伏并網(wǎng)的控制成為可能。 一套基本的光伏并網(wǎng)發(fā)電系統(tǒng)一般是由太陽能電池板、太陽能控制器和逆變器構(gòu)成。其中,太陽能控制器和逆變器是光伏并網(wǎng)系統(tǒng)的核心部分,本文針對(duì)如何提高太陽能光伏并網(wǎng)系統(tǒng)的轉(zhuǎn)換效率,從建模仿真方面對(duì)具有最大功率點(diǎn)跟蹤的光伏并網(wǎng)系統(tǒng)進(jìn)行了研究。首先,概述了太陽能光伏發(fā)電系統(tǒng)的組成,介紹了目前我國太陽能光伏發(fā)電技術(shù)的應(yīng)用。其次,使用MATLAB中的POWER SYSTEM BLOCKSETS 工具軟件建立了光伏并網(wǎng)發(fā)電系統(tǒng)的動(dòng)態(tài)模型,并進(jìn)行了仿真,給具體的硬件設(shè)計(jì)提供了極為有效的幫助。再次,通過比較幾種常用的DC/DC 變換器的工作原理,提出利用推挽式DC/DC 變換器實(shí)現(xiàn)轉(zhuǎn)換,對(duì)參數(shù)進(jìn)行分析后建立了推挽式DC/DC 變換器的仿真模型。MPPT(最大功率點(diǎn)跟蹤)是光伏系統(tǒng)中經(jīng)常遇見的問題。本文詳細(xì)地分析了常用的幾種MPPT 方案,并提出了幾種新的MPPT 方案。分析了基于DSP 芯片(TMS320F240)的光伏并網(wǎng)發(fā)電系統(tǒng)的控制設(shè)計(jì)思想。采用電網(wǎng)電壓前饋和電流跟蹤技術(shù),建立了相關(guān)的控制模型,實(shí)現(xiàn)了網(wǎng)側(cè)電流正弦化和單位功率因數(shù)。最后本文結(jié)合實(shí)際系統(tǒng)給出了SPWM的設(shè)計(jì)方案和軟件流程圖。
標(biāo)簽: DSP 光伏并網(wǎng) 逆變系統(tǒng)
上傳時(shí)間: 2013-07-22
上傳用戶:jcljkh
直驅(qū)永磁同步風(fēng)力發(fā)電機(jī)去掉了風(fēng)力發(fā)電系統(tǒng)中常見的齒輪箱,讓風(fēng)力機(jī)直接拖動(dòng)電機(jī)轉(zhuǎn)子運(yùn)轉(zhuǎn)在低速狀態(tài),這就沒有了齒輪箱所帶來的噪聲、故障率高和維護(hù)成本大等問題,提高了運(yùn)行可靠性。它不同于電勵(lì)磁的凸極同步發(fā)電機(jī),而是采用高磁能積的永磁材料作為磁極,就省去了勵(lì)磁繞組產(chǎn)生的損耗,使得電機(jī)的結(jié)構(gòu)變得簡單,效率也隨之提高。 直驅(qū)永磁同步風(fēng)力發(fā)電機(jī)運(yùn)行轉(zhuǎn)速低,一般定子外徑都比較大。為了電機(jī)的運(yùn)輸方便和良好的冷卻效果,本文選擇內(nèi)轉(zhuǎn)子永磁同步發(fā)電機(jī)作為設(shè)計(jì)類型。首先提出了電機(jī)設(shè)計(jì)的目標(biāo),即在滿足電機(jī)設(shè)計(jì)要求的基礎(chǔ)上提高運(yùn)行的可靠性和降低成本。然后根據(jù)等效磁路法編制了電磁計(jì)算程序,據(jù)此進(jìn)行了電機(jī)的初始設(shè)計(jì)。然后使用有限元的方法分析了電機(jī)在各種運(yùn)行狀態(tài)下的性能,最后設(shè)計(jì)了電機(jī)的通風(fēng)系統(tǒng)并進(jìn)行了通風(fēng)計(jì)算。
標(biāo)簽: 直驅(qū) 永磁同步 電機(jī)設(shè)計(jì)
上傳時(shí)間: 2013-07-06
上傳用戶:hanwu
論文針對(duì)兩輪電動(dòng)車輛(EV)用稀土永磁(REPM)無刷同步電動(dòng)機(jī)(SM),分別進(jìn)行了正弦波和方波兩種工作方式下的控制技術(shù)研究。論文在全面分析正弦波和方波無刷電機(jī)工作原理、調(diào)速控制方法及其性能特點(diǎn)的基礎(chǔ)上,分別對(duì)36VDC電動(dòng)自行車和96VDC電動(dòng)摩托車用稀土永磁無刷同步電動(dòng)機(jī)進(jìn)行了正弦波、方波驅(qū)動(dòng)系統(tǒng)的構(gòu)建和控制電路設(shè)計(jì)。 論文采用高集成度智能專用芯片與廉價(jià)的EEPROM配合作為核心控制單元,生成穩(wěn)定的SPWM脈沖信號(hào),構(gòu)成36VDC正弦波驅(qū)動(dòng)系統(tǒng),其外圍電路簡單緊湊,克服了傳統(tǒng)SPWM信號(hào)產(chǎn)生方法中微處理機(jī)程序容易“跑飛”和模擬系統(tǒng)復(fù)雜的缺陷。同時(shí),采用專用PWM調(diào)制芯片和硬件邏輯器件構(gòu)成96VDC方波驅(qū)動(dòng)系統(tǒng),采用寬范圍輸入電壓的開關(guān)電源實(shí)現(xiàn)系統(tǒng)的控制供電,將直流電機(jī)系統(tǒng)常用的電流截止負(fù)反饋電路引入無刷電機(jī)驅(qū)動(dòng)系統(tǒng)中,提高了大功率方波驅(qū)動(dòng)系統(tǒng)的可靠性,其原理樣機(jī)性能穩(wěn)定,負(fù)載電流可達(dá)30A。 兩種系統(tǒng)測試結(jié)果分析對(duì)比表明:相同結(jié)構(gòu)的稀土永磁無刷同步電動(dòng)機(jī),采用正弦波或方波驅(qū)動(dòng)控制各有利弊。正弦波驅(qū)動(dòng)采用變頻調(diào)速,電機(jī)運(yùn)行平穩(wěn),利用弱磁調(diào)速,還可實(shí)現(xiàn)超高速恒功率運(yùn)行,但易于失步;而方波驅(qū)動(dòng)采用PWM調(diào)壓調(diào)速,電機(jī)則具有良好的控制特性,機(jī)械特性較硬,起動(dòng)轉(zhuǎn)矩大,車輛提速快,適于爬坡,但轉(zhuǎn)矩脈動(dòng)較大。 綜上所述,采用方波驅(qū)動(dòng)更適合于兩輪電動(dòng)車輛的運(yùn)行特點(diǎn),論文介紹的方波驅(qū)動(dòng)系統(tǒng)在電動(dòng)車輛應(yīng)用領(lǐng)域有著較好的發(fā)展前景。
標(biāo)簽: 電動(dòng)車輛 驅(qū)動(dòng)控制 系統(tǒng)研究
上傳時(shí)間: 2013-04-24
上傳用戶:yangbo69
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1