隨著大功率開關器件、集成電路及高性能的磁性材料的進步,采用電子換相原理工作的無刷直流電機得到了長足的發展。無刷直流電動機既具有交流電動機的結構簡單、運行可靠維護方便等一系列優點,又具備直流電動機的運行效率高、無勵磁損耗及調速性能好等諸多優點,在當今國民經濟各個領域的應用同益普及。 普通無刷直流電機存在著轉子位置傳感器,當電機尺寸較小時轉子位置傳感器難于安裝并且維修困難,另外傳統的霍爾元件溫度特性不好,導致系統可靠性變差,所以在一些小型,輕載啟動條件下,無位置傳感器無刷直流電機就成為理想選擇,并具有廣闊的發展前景。 同時隨著微處理器技術的發展,微處理器越來越多的用在控制系統中。許多復雜但有效的算法越來越多的用于電機控制當中。但是在無位置傳感器無刷直流電機,應用時往往需要精確的速度控制,尤其在高速運行場合,對信號反饋控制靈敏度的要求更為嚴格,并且算法也比較復雜。傳統的微處理器如 5l、96系列在實現對其的控制時,由于本身指令功能不強,乘除法所用周期過多,外圍電路數據轉換速度慢,資源相對較少,使其不能很好的完成對無位置傳感器無刷直流電機的控制。美國TI公司專門為電機的數字化控制設計的16位定點DSP控制器 TMS320X240集DSP的信號高速處理能力及適用于電機控制的優化的外圍電路于一體,可以為高性能,復雜傳動控制提供可靠高效的信號處理與控制硬件。本論文所研究的無位置傳感器無刷直流電機DSP控制系統即為滿足這一需要而設計的。 本論文首先對無刷直流電動機及其無位置傳感器控制的基本原理以及DSP芯片 TMS320F240進行了必要的介紹,并且對基于反電勢檢測法的DSP實現作了詳細的分析,包括對反電勢檢測及其相位實時修正方法,電機換流的實現,速度、電流雙閉環控制算法,電機的啟動分析,正反轉控制,速度的調節,制動、保護等都做了——詳細論述。本論文還對控制系統的控制及功率部分硬件作了詳細的分析。最后本論文對軟件的具體實現作了具體的闡述。 根據本論文所述的設計方案設計的無刷電機無位置傳感器DSP控制系統,可以獲得良好的速度控制性能。而且,DSP技術不僅使系統獲得了高精度,高可靠性,還簡化了系統結構,增加了系統的可靠性。具有控制靈活,智能水平高,參數易改等優點。
上傳時間: 2013-05-28
上傳用戶:Alibabgu
隨著新型電力電子器件的不斷涌現和計算技術的不斷發展,高性能的異步電動機調速系統得到了廣泛的應用.而高壓變頻調速是近幾年剛剛開始應用的一種高新技術,不僅解決了大功率風機、水泵的軟起動和調速問題,而且節能顯著,具有較大的應用市場和廣闊的發展空間.該文首先對高壓變頻調速存在的對電網、電機和用電設備產生電磁污染的問題進行認真的分析,并針對高壓變頻調速系統存在的問題,根據增加電壓矢量種類,能降低高壓交流電輸出諧波的原理,采用了功率單元串聯的方法,設計出一種適用于風機和水泵調速的新型拓撲結構的高壓變頻器,供給普通異步電動機做調速驅動.測試結果表明,這種新型變頻器的輸出電壓波形符合實際的要求,解決了由于高壓變頻調速由于輸出諧波引起的電磁污染問題.該變頻器的拓撲結構復雜,主控制器的計算繁瑣、數據傳輸量大和控制難度高.為了得到良好的控制性能,該文結合同類產品,設計出以雙DSP(TM320F240)為核心的主控制器和系統總控制結構,同時給出了控制系統的軟件流程圖.最后,舉例說明功率單元串聯的新型高壓變頻器在風機上應用,論證了該高壓變頻調速系統的經濟效益和社會效益以及廣闊的應用前景.
上傳時間: 2013-07-26
上傳用戶:buffer
本文通過對永磁同步電機進行了建模,提出了永磁同步電機的數學模型。分析了永磁同步電機矢量控制的原理和特點,選取了采用基于id=0轉子磁場定向的方案,確立了基于矢量控制PMSM三閉環調節的伺服控制系統的實施方案。給出了伺服系統的設計及伺服控制中的一些控制策略,并進行了仿真驗證,表明該方案是切實可行的。在此基礎上,確立了以MC56F8357為核心的永磁同步電機伺服驅動控制器的硬件系統,搭建了相應的試驗平臺。在Codewarrior集成開發環境下完成了整個伺服控制系統的軟件設計,并在PCMaster的基礎上完成了伺服控制系統上位機控制界面的設計。實驗及使用證明,所研制的試驗軟硬件平臺能很好地完成永磁同步電機位置伺服控制功能,能夠完全滿足高性能伺服控制系統的基本要求。
上傳時間: 2013-08-02
上傳用戶:sh19831212
本文論述了基于ST7FMC的電動摩托車控制系統的研究。 近年來,由于燃油交通工具尾氣排放對城市空氣造成的嚴重污染,以及人們生活水平、環保意識的逐漸提高,綠色交通工具己成為時代發展的重要課題。考慮到我國目前的國情,發展電動車具有重要的環保意義。 隨著電機技術及功率器件性能的不斷提高,電動車的控制器發展迅速。但是目前市場上大多數的電動車產品均采用低集成度元件控制裝置,功能過于簡單,不能充分發揮系統潛力及處理一些特殊的控制問題。 提出了基于意法半導體芯片ST7FMC的永磁無刷直流電動機的控制系統設計方案,進行了低成本、高智能的無刷直流電機控制系統設計,能滿足更多應用場合的需要。主要從以下幾個方面進行了分析與研究: 首先,建立無刷直流電機的數學模型,并分析其電機運行特性。 其次,根據ST專用單片機的特點詳細設計了系統的控制策略:將調速系統設計為電流、速度雙閉環的PI算法控制,以保證調速性能和電流控制精度;采用ST芯片固有的寄存器進行速度的檢測,比較精確;將相電流檢測設計成母線電流PWM On中點檢測;采用了高性能的驅動集成電路IR2136來驅動MOSFET組成的全橋逆變電路;驅動方式采用新型的凸形波驅動控制方法。 最后,組裝了試驗樣車,通過實驗室觀測及實地運行,驗證了系統運行的可靠性。 由此得出結論:本課題設計的基于ST7FMC的電動摩托車控制系統具有運行性能良好、可靠性高的特點,為后續的研究工作提供了一定的基礎。
上傳時間: 2013-05-17
上傳用戶:電子世界
張紅梅—太陽能光伏電池及其應用.rar 詳細 簡單易了解
上傳時間: 2013-04-24
上傳用戶:xg262122
劉樹林—太陽能光伏發電系統的設計與施工太陽能光伏發電系統的設計與施工.rar
標簽: 太陽能光伏發電系統
上傳時間: 2013-05-22
上傳用戶:zhqzal1014
羅玉峰—太陽能光伏發電技術羅玉峰—太陽能光伏發電技術.rar
上傳時間: 2013-06-17
上傳用戶:chuckbassboy
超聲波電機是上個世紀八十年代逐步發展起來的新型微電機。它利用壓電陶瓷逆壓電效應激發的超聲振動作為驅動力,通過定轉子間的摩擦力來驅動轉子運動。與傳統的電磁馬達相比,它具有低速大轉矩、無電磁干擾、動作相應快、運行無噪聲、無輸入時能自鎖等卓越特性,在非連續運動領域、精密控制領域要比傳統的電磁電機性能優越得多。目前,旋轉型超聲波電機,尤其是環形行波型超聲波電機,在工業、辦公、過程自動化等領域的伺服系統中作為直接驅動執行器得到廣泛的關注。 本論文主要研究并設計了用于超聲波電機控制驅動的小型控制系統。其目的是針對市場需要,提供給用戶一種價格較低、體積小、性能指標適中,操作簡便,能夠實現快速定位,速度可調節的標準的閉環控制器。 控制器的核心為MSP430F167。課題對外圍檢測、控制、驅動電路進行相關的研究和設計,并按照控制器的需求設計相應的軟件。最后給出實驗結果:系統運行穩定,速度曲線較為理想,達到了最初的設計要求。 系統總結了超聲波電機的發展、特點、分類,通過與傳統電磁電機的對比給出了超聲波電機的廣闊的應用前景。在此基礎上,指出了超聲波電機研究的發展方向,明確了本文的研究內容。 總結了環形行波型超聲波電機的結構特點、運行機理,并在此基礎上總結了環形行波型超聲波電機調頻、調相、調幅等控制方法以及推挽、半橋和全橋驅動逆變電路的優缺點。 本課題設計了基于超聲波電機的控制驅動系統電路。首先,提出了本次設計的設計思想及目的;其次,介紹了本設計的控制器硬件電路具體設計過程以及調頻調速的實現方式。然后,詳細介紹了該控制系統的軟件構成,包括上位機軟件、下位機軟件以及通訊部分。詳細闡述了在本控制系統中的調速、定位原理。最后通過實驗結果說明了該小型控制系統的有效性。
上傳時間: 2013-07-18
上傳用戶:caixiaoxu26
低壓斷路器是電力系統中低壓配電網中的主要電器開關之一,它不僅可以接通和分斷正常負載電流和過載電流,而且可以接通和分斷短路電流。主要在頻繁操作的低壓配電線路或開關柜中作為電源開關使用,并對線路、電器設備等實行保護,當它們發生嚴重過流、過載、短路、斷相、漏電等故障時,能自動切斷線路,起保護作用,應用十分廣泛。智能控制器是斷路器上的保護裝置,也是斷路器的核心控制裝置。 20世紀90年代,隨著電力電子技術、微電子技術、計算機技術和通信技術的飛速發展,斷路器的保護裝置己由傳統的電磁式過流脫扣器發展成采用集成電路的電子式脫扣器,直至目前出現了帶高性能微處理器的智能控制器。新一代的智能控制器采用了模塊化結構設計,集測量、監視、控制、通信、保護等功能于一體,在低壓系統中得到了廣泛的應用。 在本課題中,該智能控制器在硬件上以美國Microchip公司推出的公司生產的PIC148F448為核心處理器,主要進行數據的實時采集處理和斷路器的故障保護,實時顯示線路運行時電流或故障信息等。利用帶有CAN接口的高性能的PIC18F448單片機設計了CAN總線接口,給出了CAN接口的硬件電路、軟件流程。該電路具有硬件設計簡單、可靠性高、實時性強等特點。實現了智能控制器與PC機的雙向通信功能,通過總線系統達到遙調、遙控的目的,使得智能控制器的性能得到增強,符合配電系統的要求,達到了本課題研究要求。
上傳時間: 2013-04-24
上傳用戶:kjgkadjg
傳統污水系統采用繼電器調節控制,容易漂移,且不能智能化,無法保證泵站及時可靠運行。而以單片機為基礎的微型控制機抗干擾能力差,工作期間調整點不穩定,系統容易死機,需要經常到現場服務調節,無法及時準確掌握污水泵站的運行狀態。采用可編程控制器控制,系統運行可靠,基本可以做到免維護調整。 本文針對污水泵站的性能要求和PLC的技術特點,研究了基于DCS測控系統的控制與管理。該系統是以SIEMENS公司的S7-200系列小型PLC作遠程終端,以工業PC機作上位機的主從式一點對多點監控網絡。工業PC機安裝在污水處理廠的中央控制室,既是泵站PLC的上位機,又是處理廠微機局域網的一個工作站,通過自定義無線通訊模塊與各泵站實現數據通信,并通過時間和事件觸發,計算出最佳的平衡水量和各泵站調度水量。下位機PLC安裝在泵站,根據上位機的指令控制泵站的水泵和閥門,組成本地數據采集系統。根據給定的調度水量,調整開啟的水泵臺數和工作時間,達到調度水量的目的。 污水泵站管理系統中泵站地理位置分散,處理廠集中進行數據處理、監視。這一特點與DCS系統功能相吻合。從這一意義上來講,集散控制系統能較好地適應本系統,同時還可以滿足在中心控制室集中顯示、打印、控制各系統的運行狀態和參數的要求。系統統一設計,使其功能合理分配到各子系統中。避免了功能重復及各系統間的不兼容,這樣使得系統維護方便,減少了備品備件。給整個泵站運行管理帶來了方便,提高了運行效率,同時也提高了管理效率,減少了泵站現場管理人員,降低了人力資源成本,也大大降低了因為人工管理造成的疏漏,提高了系統的可靠性。
上傳時間: 2013-08-05
上傳用戶:kgylah