在假設并網光伏電站各交流器件的輸出和輸入變量只含有基波分量的前提下,提出了一種利用相量法和受控源法模擬并網光伏電站電能轉換及傳輸系統特性的方法,并建立了包含光伏陣列,具有最大功率跟蹤功能的逆變器、變壓器及控制系統的并網光伏電站整體仿真模型。通過采用國內某地并網光伏電站的實測數據進行的仿真驗證及誤差分析可知,所提出的光伏電站模擬方法和數學模型是有效的。
上傳時間: 2013-10-30
上傳用戶:維子哥哥
基于槽式聚光熱電聯供系統,深入分析晶硅電池陣列和砷化鎵電池陣列在高倍聚光下的輸出特性及輸出功率的影響因素+ 研究結果表明,聚光光強下砷化鎵電池陣列輸出性能優于晶硅電池陣列,高光強會導致光伏電池禁帶寬度變窄,短路電流成倍增加,增加輸出功率,但同時耗盡層復合率變大,開路電壓降低,制約陣列的輸出功率;高光強還引起電池溫度升高,電池陣列串聯內阻增加+ 分析表明聚光作用下電池陣列串聯內阻對輸出功率影響巨大,串聯內阻從&!增加!!,四種電池陣列輸出功率分別損失$*,*(-,*.,’)-,**,)&-和%(,&!- +
上傳時間: 2013-10-18
上傳用戶:趙一霞a
根據觀測對象的不同,光伏電池的最大功率點跟蹤(MPPT)方法可以分為基于輸入參數和基于輸出參數兩種。為了深入分析兩種控制方法的動、靜態特性,本文以Boost 拓撲為最大功率跟蹤電路,選用簡單有效的擾動觀測方法,利用開關平均法建立系統小信號模型,通過求解占空比擾動至輸入、輸出觀測對象之間的小信號傳遞函數,對比分析了基于輸入參數和輸出參數MPPT 系統的動態特性。分析結果利于合理選擇最大功率控制方法,優化系統參數,指導占空比擾動步長和擾動觀測周期的選取。
上傳時間: 2014-01-02
上傳用戶:VRMMO
提出一種用于光伏發電系統與公用電網并網的逆變器定頻滯環電流控制新方法, 該方法首先基于電網線電壓空間矢量將復平面分為6 個扇區, 在每個扇區內實現兩相開關解耦分別控制相應的線電流; 然后, 在控制相的下一個線電流誤差周期到來時, 計算并調節下一周期的滯環寬度以達到定頻滯環電流跟蹤, 改善輸出電流波形, 提高控制精度。該方法的主要特點是不需要額外的模擬電路便可以實現開關頻率的穩定。利用Matlab 進行建模, 仿真結果證明了該方法對穩定滯環開關頻率是有效的, 同時也表明該方法應用于光伏并網逆變器是可行的。
上傳時間: 2013-10-28
上傳用戶:123312
光伏逆變電源并網運行時本質上為電流源。其輸出電流濾波不但會對電網產生嚴重的諧波污染,同時其輸出電流鎖相不精確會降低系統的轉化效率。針對以上問題,采用電流瞬時值和電流有效值雙閉環控制策略實現對輸出電流波形的控制;研制一種具有尖峰抑制作用的LCL 濾波器,通過對其數學模型的幅頻分析說明了其良好的濾波特性;設計了一種軟件鎖相環,并在此基礎上通過α 角的修正實現了精確可靠地鎖相。實驗結果驗證了設計的合理性和正確性,實現了單位功率因數輸出正弦波電流。
上傳時間: 2013-11-18
上傳用戶:ikemada
為拓展單相光伏并網無功補償功能,實現單相并網系統無功和諧波電流的精確檢測和補償,提出一種改進的新型瞬時無功與諧波電流檢測及補償方法。該方法以瞬時無功理論為基礎,推導出單相并網逆變器瞬時無功控制規律,可以簡便、快速地分離所需電流分量;并結合無差拍理論,給出基于無差拍控制的單相并網逆變器的脈寬調制(PWM) 算法,可以對瞬時諧波及無功電流進行補償。將該控制策略應用于單相光伏并網系統,使光伏并網系統除提供有功功率外,同時兼備無功與諧波補償功能,增強了光伏并網功能。
上傳時間: 2014-04-15
上傳用戶:yanyueshen
從超級電容器儲能系統的運行機理出發,設計了含雙向DC-AC-DC 變換器的超級電容器儲能系統主電路結構,并建立了其統一模型。仿真結果證明了所建統一模型的正確性和有效性, 并表明超級電容器儲能系統提高了分布式發電系統的運行穩定性。
上傳時間: 2013-12-23
上傳用戶:lllliii
報告摘要:公司是國內規模最大的通信用閥控密封蓄電池專業生產企業之一:主營業務為化學電源、新能源儲能產品的研究、開發、制造和銷售。產品主要應用于通信領域,同時在太陽能、風能等儲能系統和車用動力系統等領域也有廣泛應用。公司于2008年12月收購了上海鋰電鋰離子電池經營性資產后,將鋰離子電池業務的相關研發、生產和銷售納入了公司的整體經營體系中。
上傳時間: 2013-11-10
上傳用戶:edisonfather
38V/100A可直接并聯大功率AC/DC變換器 隨著電力電子技術的發展,電源技術被廣泛應用于計算機、工業儀器儀表、軍事、航天等領域,涉及到國民經濟各行各業。特別是近年來,隨著IGBT的廣泛應用,開關電源向更大功率方向發展。研制各種各樣的大功率,高性能的開關電源成為趨勢。某電源系統要求輸入電壓為AC220V,輸出電壓為DC38V,輸出電流為100A,輸出電壓低紋波,功率因數>0.9,必要時多臺電源可以直接并聯使用,并聯時的負載不均衡度<5%。 設計采用了AC/DC/AC/DC變換方案。一次整流后的直流電壓,經過有源功率因數校正環節以提高系統的功率因數,再經半橋變換電路逆變后,由高頻變壓器隔離降壓,最后整流輸出直流電壓。系統的主要環節有DC/DC電路、功率因數校正電路、PWM控制電路、均流電路和保護電路等。 1 有源功率因數校正環節 由于系統的功率因數要求0.9以上,采用二極管整流是不能滿足要求的,所以,加入了有源功率因數校正環節。采用UC3854A/B控制芯片來組成功率因數電路。UC3854A/B是Unitrode公司一種新的高功率因數校正器集成控制電路芯片,是在UC3854基礎上的改進。其特點是:采用平均電流控制,功率因數接近1,高帶寬,限制電網電流失真≤3%[1]。圖1是由UC3854A/B控制的有源功率因數校正電路。 該電路由兩部分組成。UC3854A/B及外圍元器件構成控制部分,實現對網側輸入電流和輸出電壓的控制。功率部分由L2,C5,V等元器件構成Boost升壓電路。開關管V選擇西門康公司的SKM75GB123D模塊,其工作頻率選在35kHz。升壓電感L2為2mH/20A。C5采用四個450V/470μF的電解電容并聯。因為,設計的PFC電路主要是用在大功率DC/DC電路中,所以,在負載輕的時候不進行功率因數校正,當負載較大時功率因數校正電路自動投入使用。此部分控制由圖1中的比較器部分來實現。R10及R11是負載檢測電阻。當負載較輕時,R10及R11上檢測的信號輸入給比較器,使其輸出端為低電平,D2導通,給ENA(使能端)低電平使UC3854A/B封鎖。在負載較大時ENA為高電平才讓UC3854A/B工作。D3接到SS(軟啟動端),在負載輕時D3導通,使SS為低電平;當負載增大要求UC3854A/B工作時,SS端電位從零緩慢升高,控制輸出脈沖占空比慢慢增大實現軟啟動。 2 DC/DC主電路及控制部分分析 2.1 DC/DC主電路拓撲 在大功率高頻開關電源中,常用的主變換電路有推挽電路、半橋電路、全橋電路等[2]。其中推挽電路的開關器件少,輸出功率大,但開關管承受電壓高(為電源電壓的2倍),且變壓器有六個抽頭,結構復雜;全橋電路開關管承受的電壓不高,輸出功率大,但是需要的開關器件多(4個),驅動電路復雜。半橋電路開關管承受的電壓低,開關器件少,驅動簡單。根據對各種拓撲方案的工程化實現難度,電氣性能以及成本等指標的綜合比較,本電源選用半橋式DC/DC變換器作為主電路。圖2為大功率開關電源的主電路拓撲圖。
上傳時間: 2013-11-13
上傳用戶:ukuk
STC15系單片機仿真說明
上傳時間: 2013-10-13
上傳用戶:Thuan