主版上有很多PCI的介面可以利用,他的LAYOUT有一些注意事項(xiàng)及必須處理走線的特性阻抗才可以讓系統(tǒng)穩(wěn)定。
上傳時(shí)間: 2013-06-14
上傳用戶(hù):夢(mèng)雨軒膂
·摘要: 介紹了基于DSP的音頻處理技術(shù),提供采用音頻編解碼芯片TLV320AIC23和DSP理器實(shí)現(xiàn)的音頻處理系統(tǒng)的典型解決方案.音頻編解碼芯片完成模擬音頻信號(hào)與數(shù)字信號(hào)之間的相互轉(zhuǎn)換,包括語(yǔ)音信號(hào)采集和語(yǔ)音信號(hào)發(fā)送兩部分.DSP處理器則完成對(duì)經(jīng)模數(shù)轉(zhuǎn)換后的語(yǔ)音信號(hào)在數(shù)字域處理的過(guò)程.該方案可以充分發(fā)揮DSP所具有的靈活性好、處理速度快的特點(diǎn).
上傳時(shí)間: 2013-07-05
上傳用戶(hù):yzhl1988
·詳細(xì)說(shuō)明:《合成孔徑雷達(dá)》英文版書(shū)籍,98年出版,對(duì)合成孔徑雷達(dá)的發(fā)展、歷史和成像機(jī)理等方面做了詳細(xì)的說(shuō)明。對(duì)學(xué)習(xí)合成孔徑雷達(dá)的研究生很有幫助。
標(biāo)簽: 合成孔徑雷達(dá) 書(shū)籍 英文
上傳時(shí)間: 2013-07-27
上傳用戶(hù):hn891122
做移動(dòng)電源的最佳選擇,這是用1650理電做電源升壓到5V通過(guò)USB接口給手機(jī)充電,充電電流可達(dá)到800MA.
標(biāo)簽: PCB 移動(dòng)電源 電路
上傳時(shí)間: 2013-07-11
上傳用戶(hù):himbly
基于ARM 微控制器配置FPGA 的實(shí)現(xiàn)\r\n摘 要:介紹了基于ARM 內(nèi)核的ATMEL AT91FR4081 微控制器以J TAG 的ISP 方式配置XILINX\r\nXC2S150PQ208 FPGA 的實(shí)現(xiàn)過(guò)程。這是一種靈活和經(jīng)濟(jì)的FPGA 的配置方法。介紹了ISP 和J TAG 的原\r\n理、系統(tǒng)實(shí)現(xiàn)的流程、硬件電路設(shè)計(jì)、J TAG 驅(qū)動(dòng)算法的實(shí)現(xiàn)和配置時(shí)間的測(cè)試結(jié)果。
標(biāo)簽: XILINXFPGA ATMEL 4081 JTAG
上傳時(shí)間: 2013-08-15
上傳用戶(hù):gououo
D-06 ALLEGRO 是通用型的GSM撥號(hào)器和控制器,它既可以用于家庭又可以用于工業(yè)自動(dòng)控制,用于安全防范或遠(yuǎn)程數(shù)據(jù)傳輸工程,觸發(fā)任何一個(gè)輸入端將會(huì)使得該裝置以短信的方式發(fā)送報(bào)告到已編好程的電話(huà)號(hào)碼上或直接打電話(huà),通過(guò)發(fā)送特定的短信到該裝置上,你可以打開(kāi)或關(guān)閉遠(yuǎn)端控制輸出端。基本設(shè)定是,GD-06提供4個(gè)輸入觸發(fā)端和3個(gè)輸出端。 可以通過(guò)對(duì)該裝置發(fā)送短信進(jìn)行編程或通過(guò)互聯(lián)網(wǎng)用捷豹GSMLINK網(wǎng)頁(yè)進(jìn)行編程。 專(zhuān)業(yè)模式允許所有的輸入和輸出端的全面編程,觸發(fā)監(jiān)聽(tīng)模式,GPRS數(shù)據(jù)通訊和模擬數(shù)據(jù)發(fā)送。
上傳時(shí)間: 2013-10-22
上傳用戶(hù):panjialaodi
現(xiàn)在生活好了,很多家庭都用上了太陽(yáng)能熱水器,其應(yīng)用太陽(yáng)能,清潔無(wú)污染,實(shí)用價(jià)廉,深受喜歡。但市場(chǎng)上出售的大多太陽(yáng)能熱水器水滿(mǎn)報(bào)警裝置太簡(jiǎn)陋,只設(shè)了一條回水管,水從回水管流出來(lái)很容易被忽視,易造成水的浪費(fèi),而現(xiàn)在卻出現(xiàn)了水滿(mǎn)報(bào)警裝置采用了水滿(mǎn)自動(dòng)報(bào)警。這種“水滿(mǎn)信號(hào)”容易被發(fā)現(xiàn),如文中圖1報(bào)警電路所示,它代替回水管的使用,當(dāng)太陽(yáng)能水滿(mǎn)時(shí),報(bào)警器發(fā)出柔和的報(bào)警音以提醒水滿(mǎn),關(guān)閉閥門(mén)后,報(bào)警音自動(dòng)停止。它克服了傳統(tǒng)回水管易老化,易斷,易堵,易凍,費(fèi)水和水滿(mǎn)無(wú)聲容易遺忘而漫水的缺點(diǎn)等等。因效果好能發(fā)聲報(bào)警并且在市場(chǎng)上價(jià)格也較低,所以自動(dòng)水滿(mǎn)報(bào)警器廣泛應(yīng)用于太陽(yáng)能熱水器、水箱及儲(chǔ)水池等。 結(jié)合以上所述,太陽(yáng)能熱水器以節(jié)能、無(wú)污染等優(yōu)點(diǎn),逐漸為企事業(yè)單位和家庭廣泛使用,但熱水器水箱水位在使用時(shí)不易觀測(cè),有時(shí)突然出現(xiàn)中途斷水情況,會(huì)給使用者帶來(lái)諸多不便。為此我設(shè)計(jì)了太陽(yáng)能熱水器水位自動(dòng)水滿(mǎn)報(bào)警器,它能在水箱里儲(chǔ)水不多,或加入冷水過(guò)多時(shí),自動(dòng)發(fā)出約30秒鐘的音樂(lè)報(bào)警,同時(shí)配以下燈光指示。
標(biāo)簽: 自動(dòng) 水滿(mǎn)報(bào)警器
上傳時(shí)間: 2014-12-23
上傳用戶(hù):hewenzhi
雪崩光電二極管 (APD) 接收器模塊在光纖通信繫統(tǒng)中被廣泛地使用。APD 模塊包含 APD 和一個(gè)信號(hào)調(diào)理放大器,但並不是完全獨(dú)立。它仍舊需要重要的支持電路,包括一個(gè)高電壓、低噪聲電源和一個(gè)用於指示信號(hào)強(qiáng)度的精準(zhǔn)電流監(jiān)視器
上傳時(shí)間: 2013-11-22
上傳用戶(hù):zhangyigenius
ADE7816是一款多通道電能計(jì)量IC,可以同時(shí)測(cè)量多達(dá)6個(gè)電流通道和1個(gè)電壓通道。ADE7816可提供所有通道的有功和無(wú)功電能以及電流和電壓有效值讀數(shù)。另外提供各種電能質(zhì)量功能,包括無(wú)負(fù)載、反向功率和角度測(cè)量。ADE7816適合各種計(jì)量應(yīng)用,包括智能電表、配電單元和家庭電能監(jiān)控器。
上傳時(shí)間: 2013-10-10
上傳用戶(hù):wys0120
摘要: 介紹了時(shí)鐘分相技術(shù)并討論了時(shí)鐘分相技術(shù)在高速數(shù)字電路設(shè)計(jì)中的作用。 關(guān)鍵詞: 時(shí)鐘分相技術(shù); 應(yīng)用 中圖分類(lèi)號(hào): TN 79 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào): 025820934 (2000) 0620437203 時(shí)鐘是高速數(shù)字電路設(shè)計(jì)的關(guān)鍵技術(shù)之一, 系統(tǒng)時(shí)鐘的性能好壞, 直接影響了整個(gè)電路的 性能。尤其現(xiàn)代電子系統(tǒng)對(duì)性能的越來(lái)越高的要求, 迫使我們集中更多的注意力在更高頻率、 更高精度的時(shí)鐘設(shè)計(jì)上面。但隨著系統(tǒng)時(shí)鐘頻率的升高。我們的系統(tǒng)設(shè)計(jì)將面臨一系列的問(wèn) 題。 1) 時(shí)鐘的快速電平切換將給電路帶來(lái)的串?dāng)_(Crosstalk) 和其他的噪聲。 2) 高速的時(shí)鐘對(duì)電路板的設(shè)計(jì)提出了更高的要求: 我們應(yīng)引入傳輸線(T ransm ission L ine) 模型, 并在信號(hào)的匹配上有更多的考慮。 3) 在系統(tǒng)時(shí)鐘高于100MHz 的情況下, 應(yīng)使用高速芯片來(lái)達(dá)到所需的速度, 如ECL 芯 片, 但這種芯片一般功耗很大, 再加上匹配電阻增加的功耗, 使整個(gè)系統(tǒng)所需要的電流增大, 發(fā) 熱量增多, 對(duì)系統(tǒng)的穩(wěn)定性和集成度有不利的影響。 4) 高頻時(shí)鐘相應(yīng)的電磁輻射(EM I) 比較嚴(yán)重。 所以在高速數(shù)字系統(tǒng)設(shè)計(jì)中對(duì)高頻時(shí)鐘信號(hào)的處理應(yīng)格外慎重, 盡量減少電路中高頻信 號(hào)的成分, 這里介紹一種很好的解決方法, 即利用時(shí)鐘分相技術(shù), 以低頻的時(shí)鐘實(shí)現(xiàn)高頻的處 理。 1 時(shí)鐘分相技術(shù) 我們知道, 時(shí)鐘信號(hào)的一個(gè)周期按相位來(lái)分, 可以分為360°。所謂時(shí)鐘分相技術(shù), 就是把 時(shí)鐘周期的多個(gè)相位都加以利用, 以達(dá)到更高的時(shí)間分辨。在通常的設(shè)計(jì)中, 我們只用到時(shí)鐘 的上升沿(0 相位) , 如果把時(shí)鐘的下降沿(180°相位) 也加以利用, 系統(tǒng)的時(shí)間分辨能力就可以 提高一倍(如圖1a 所示)。同理, 將時(shí)鐘分為4 個(gè)相位(0°、90°、180°和270°) , 系統(tǒng)的時(shí)間分辨就 可以提高為原來(lái)的4 倍(如圖1b 所示)。 以前也有人嘗試過(guò)用專(zhuān)門(mén)的延遲線或邏輯門(mén)延時(shí)來(lái)達(dá)到時(shí)鐘分相的目的。用這種方法產(chǎn)生的相位差不夠準(zhǔn)確, 而且引起的時(shí)間偏移(Skew ) 和抖動(dòng) (J itters) 比較大, 無(wú)法實(shí)現(xiàn)高精度的時(shí)間分辨。 近年來(lái)半導(dǎo)體技術(shù)的發(fā)展, 使高質(zhì)量的分相功能在一 片芯片內(nèi)實(shí)現(xiàn)成為可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能優(yōu)異的時(shí)鐘 芯片。這些芯片的出現(xiàn), 大大促進(jìn)了時(shí)鐘分相技術(shù)在實(shí)際電 路中的應(yīng)用。我們?cè)谶@方面作了一些嘗試性的工作: 要獲得 良好的時(shí)間性能, 必須確保分相時(shí)鐘的Skew 和J itters 都 比較小。因此在我們的設(shè)計(jì)中, 通常用一個(gè)低頻、高精度的 晶體作為時(shí)鐘源, 將這個(gè)低頻時(shí)鐘通過(guò)一個(gè)鎖相環(huán)(PLL ) , 獲得一個(gè)較高頻率的、比較純凈的時(shí)鐘, 對(duì)這個(gè)時(shí)鐘進(jìn)行分相, 就可獲得高穩(wěn)定、低抖動(dòng)的分 相時(shí)鐘。 這部分電路在實(shí)際運(yùn)用中獲得了很好的效果。下面以應(yīng)用的實(shí)例加以說(shuō)明。2 應(yīng)用實(shí)例 2. 1 應(yīng)用在接入網(wǎng)中 在通訊系統(tǒng)中, 由于要減少傳輸 上的硬件開(kāi)銷(xiāo), 一般以串行模式傳輸 圖3 時(shí)鐘分為4 個(gè)相位 數(shù)據(jù), 與其同步的時(shí)鐘信號(hào)并不傳輸。 但本地接收到數(shù)據(jù)時(shí), 為了準(zhǔn)確地獲取 數(shù)據(jù), 必須得到數(shù)據(jù)時(shí)鐘, 即要獲取與數(shù) 據(jù)同步的時(shí)鐘信號(hào)。在接入網(wǎng)中, 數(shù)據(jù)傳 輸?shù)慕Y(jié)構(gòu)如圖2 所示。 數(shù)據(jù)以68MBös 的速率傳輸, 即每 個(gè)bit 占有14. 7ns 的寬度, 在每個(gè)數(shù)據(jù) 幀的開(kāi)頭有一個(gè)用于同步檢測(cè)的頭部信息。我們要找到與它同步性好的時(shí)鐘信號(hào), 一般時(shí)間 分辨應(yīng)該達(dá)到1ö4 的時(shí)鐘周期。即14. 7ö 4≈ 3. 7ns, 這就是說(shuō), 系統(tǒng)時(shí)鐘頻率應(yīng)在300MHz 以 上, 在這種頻率下, 我們必須使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型門(mén)延遲為340p s) , 如前所述, 這樣對(duì)整個(gè)系統(tǒng)設(shè)計(jì)帶來(lái)很多的困擾。 我們?cè)谶@里使用鎖相環(huán)和時(shí)鐘分相技術(shù), 將一個(gè)16MHz 晶振作為時(shí)鐘源, 經(jīng)過(guò)鎖相環(huán) 89429 升頻得到68MHz 的時(shí)鐘, 再經(jīng)過(guò)分相芯片AMCCS4405 分成4 個(gè)相位, 如圖3 所示。 我們只要從4 個(gè)相位的68MHz 時(shí)鐘中選擇出與數(shù)據(jù)同步性最好的一個(gè)。選擇的依據(jù)是: 在每個(gè)數(shù)據(jù)幀的頭部(HEAD) 都有一個(gè)8bit 的KWD (KeyWord) (如圖1 所示) , 我們分別用 這4 個(gè)相位的時(shí)鐘去鎖存數(shù)據(jù), 如果經(jīng)某個(gè)時(shí)鐘鎖存后的數(shù)據(jù)在這個(gè)指定位置最先檢測(cè)出這 個(gè)KWD, 就認(rèn)為下一相位的時(shí)鐘與數(shù)據(jù)的同步性最好(相關(guān))。 根據(jù)這個(gè)判別原理, 我們?cè)O(shè)計(jì)了圖4 所示的時(shí)鐘分相選擇電路。 在板上通過(guò)鎖相環(huán)89429 和分相芯片S4405 獲得我們所要的68MHz 4 相時(shí)鐘: 用這4 個(gè) 時(shí)鐘分別將輸入數(shù)據(jù)進(jìn)行移位, 將移位的數(shù)據(jù)與KWD 作比較, 若至少有7bit 符合, 則認(rèn)為檢 出了KWD。將4 路相關(guān)器的結(jié)果經(jīng)過(guò)優(yōu)先判選控制邏輯, 即可輸出同步性最好的時(shí)鐘。這里, 我們運(yùn)用AMCC 公司生產(chǎn)的 S4405 芯片, 對(duì)68MHz 的時(shí)鐘進(jìn)行了4 分 相, 成功地實(shí)現(xiàn)了同步時(shí)鐘的獲取, 這部分 電路目前已實(shí)際地應(yīng)用在某通訊系統(tǒng)的接 入網(wǎng)中。 2. 2 高速數(shù)據(jù)采集系統(tǒng)中的應(yīng)用 高速、高精度的模擬- 數(shù)字變換 (ADC) 一直是高速數(shù)據(jù)采集系統(tǒng)的關(guān)鍵部 分。高速的ADC 價(jià)格昂貴, 而且系統(tǒng)設(shè)計(jì) 難度很高。以前就有人考慮使用多個(gè)低速 圖5 分相技術(shù)應(yīng)用于采集系統(tǒng) ADC 和時(shí)鐘分相, 用以替代高速的ADC, 但由 于時(shí)鐘分相電路產(chǎn)生的相位不準(zhǔn)確, 時(shí)鐘的 J itters 和Skew 比較大(如前述) , 容易產(chǎn)生較 大的孔徑晃動(dòng)(Aperture J itters) , 無(wú)法達(dá)到很 好的時(shí)間分辨。 現(xiàn)在使用時(shí)鐘分相芯片, 我們可以把分相 技術(shù)應(yīng)用在高速數(shù)據(jù)采集系統(tǒng)中: 以4 分相后 圖6 分相技術(shù)提高系統(tǒng)的數(shù)據(jù)采集率 的80MHz 采樣時(shí)鐘分別作為ADC 的 轉(zhuǎn)換時(shí)鐘, 對(duì)模擬信號(hào)進(jìn)行采樣, 如圖5 所示。 在每一采集通道中, 輸入信號(hào)經(jīng)過(guò) 緩沖、調(diào)理, 送入ADC 進(jìn)行模數(shù)轉(zhuǎn)換, 采集到的數(shù)據(jù)寫(xiě)入存儲(chǔ)器(M EM )。各個(gè) 采集通道采集的是同一信號(hào), 不過(guò)采樣 點(diǎn)依次相差90°相位。通過(guò)存儲(chǔ)器中的數(shù) 據(jù)重組, 可以使系統(tǒng)時(shí)鐘為80MHz 的采 集系統(tǒng)達(dá)到320MHz 數(shù)據(jù)采集率(如圖6 所示)。 3 總結(jié) 靈活地運(yùn)用時(shí)鐘分相技術(shù), 可以有效地用低頻時(shí)鐘實(shí)現(xiàn)相當(dāng)于高頻時(shí)鐘的時(shí)間性能, 并 避免了高速數(shù)字電路設(shè)計(jì)中一些問(wèn)題, 降低了系統(tǒng)設(shè)計(jì)的難度。
標(biāo)簽: 時(shí)鐘 分相 技術(shù)應(yīng)用
上傳時(shí)間: 2013-12-17
上傳用戶(hù):xg262122
蟲(chóng)蟲(chóng)下載站版權(quán)所有 京ICP備2021023401號(hào)-1