亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

工作模式

  • 看門狗定時器的工作原理

    看門狗定時器的工作原理:WDT 工作原理使能時,WDT 將遞增,直到溢出,或稱“超時”。除非處于休眠或空閑模式,WDT 超時會強制器件復位。為避免WDT 超時復位,用戶必須定期用PWRSAV

    標簽: 看門狗定時器 工作原理

    上傳時間: 2013-04-24

    上傳用戶:manlian

  • STM32定時器捕獲與比較模式資料

    改資料詳細說明了STM32定時器的捕獲模式和比較模式的工作原理

    標簽: STM 32 定時器 比較

    上傳時間: 2013-06-28

    上傳用戶:lw4463301

  • 開關電源中功率MOSFET管損壞模式及分析

    結合功率MOSFET管不同的失效形態,論述了功率MOSFET管分別在過電流和過電壓條件下損壞的模式,并說明了產生這樣的損壞形態的原因,也分析了功率MOSFET管在關斷及開通過程中發生失效形態的差別,從而為失效在關斷或在開通過程中發生損壞提供了判斷依據。給出了測試過電流和過電壓的電路圖。同時分析了功率MOSFET管在動態老化測試中慢速開通、在電池保護電路應用中慢速關斷及較長時間工作在線性區時損壞的形態。最后,結合實際應用,論述了功率MOSFET通常會產生過電流和過電壓二種混合損壞方式損壞機理和過程。

    標簽: MOSFET 開關電源 功率

    上傳時間: 2013-11-14

    上傳用戶:dongqiangqiang

  • SM8013C電流模式的PWM離線式控制芯片

    鉦銘科SM8013C是一款電流模式的PWM離線式控制芯片,直接驅動外部高壓MOS管。采用自適應多模式工作方式,根據負載情況,自動切換到Burst模式,PFM模式,或者PWM模式,滿足系統的低待機功耗(<0.3W,265V AC),高轉換效率的要求。內部集成多種保護功能,如過流保護、過載保護、VDD過壓保護和VDD欠壓保護等多種保護。封裝形式:DIP8、SOP8、SOT23-6

    標簽: 8013C 8013 PWM SM

    上傳時間: 2013-12-08

    上傳用戶:dyctj

  • 基于雙模式USB接口的便攜式比色計設計

    本文設計一種以C8051F020 單片機為處理器,雙模式USB 為接口的比色計儀器。該儀器可以工作在USB 設備和主機兩種模式。在設備模式下,能直接與計算機進行數據通信;在主機模式下,能讀寫U盤,通過U 盤進行數據的傳輸。儀器采用雙USB 插座,由單片機判斷確定設備的工作方式。

    標簽: USB 雙模式 便攜式 接口

    上傳時間: 2013-11-01

    上傳用戶:ZZJ886

  • 看門狗定時器的工作原理

    看門狗定時器的工作原理:WDT 工作原理使能時,WDT 將遞增,直到溢出,或稱“超時”。除非處于休眠或空閑模式,WDT 超時會強制器件復位。為避免WDT 超時復位,用戶必須定期用PWRSAV 或CLRWDT 指令將看門狗定時器清零。如果WDT 在休眠或空閑模式下超時,器件將喚醒并從PWRSAV 指令執行處繼續執行代碼。在上述兩種情況下,WDTO 位(RCON<4>)都會置1,表示該器件復位或喚醒事件是由于WDT超時引起的。如果WDT 將CPU 從休眠或空閑模式喚醒,“休眠”狀態位(RCON<3>)或“空閑”狀態位(RCON<2>)也會置1,表示器件之前處于省電模式。9.2.1 使能和禁止WDT通過FWDTEN(CW1<7>)配置位可將WDT 使能或禁止。FWDTEN 配置位置1 時,使能WDT。這是已擦除器件的默認值。關于閃存配置字寄存器的更多詳細信息,請參見器件數據手冊。

    標簽: 看門狗定時器 工作原理

    上傳時間: 2014-01-20

    上傳用戶:mikesering

  • 如何設置使SPMC75F2413A進入節電模式

    SPMC75低功耗操作:本應用例介紹如何設置使SPMC75F2413A進入節電模式。1.2 模式簡介SPMC75F2413A有標準模式和兩種節電模式(等待模式和就緒模式),相應功能如下:􀂾 標準模式(Normal)芯片在標準模式下運行耗電最大,所有的外設都可用。􀂾 等待模式(Wait)等待模式下,只有CPU掉電停止工作以降低功耗。其它外設保持著先前的狀態并且功能可用。一旦喚醒,CPU將繼續工作,執行接下去的指令。􀂾 就緒模式(Standby)就緒模式下所有的模塊都變為無效,此時功耗達到最小。喚醒后,CPU復位并回到標準運行模式。其它外設可以通過軟件分別設置關閉。就緒模式下所有功能都會關閉,只有系統時鐘仍在工作。如果按鍵喚醒功能為有效,這兩種模式都可以通過按鍵喚醒。具體喚醒源的分類及喚醒功能的介紹請參考《SPMC75F2413A編程指南》。【注意】如果MCP定時器3或定時器4已經處于PWM輸出模式時,芯片不會進入等待或就緒模式。同樣在仿真模式下也無法進入等待或就緒模式。

    標簽: 2413A F2413 SPMC 2413

    上傳時間: 2013-11-20

    上傳用戶:ming52900

  • dsPIC30F看門狗定時器和低功耗模式

    本章介紹dsPIC30F器件系列的看門狗定時器(WDT)和低功耗模式。dsPIC DSC 器件有兩種低功耗模式,可以通過執行PWRSAV指令進入:• 休眠模式:CPU、系統時鐘源和任何依靠系統時鐘源工作的外設都被禁止。這是器件的最低功耗模式。• 空閑模式:CPU 被禁止,但是系統時鐘源繼續工作。外設繼續工作,但可以有選擇地禁止。WDT在使能時使用內部LPRC 時鐘源工作,而且如果WDT沒有被軟件清零,它可以通過復位器件來檢測系統軟件的異常情況。可以使用WDT后分頻器選擇不同的WDT超時周期。WDT也可用于將器件從休眠或空閑模式喚醒。

    標簽: dsPIC 30F 30 看門狗定時器

    上傳時間: 2014-02-01

    上傳用戶:金苑科技

  • 匯編+保護模式+教程

    九.輸入/輸出保護為了支持多任務,80386不僅要有效地實現任務隔離,而且還要有效地控制各任務的輸入/輸出,避免輸入/輸出沖突。本文將介紹輸入輸出保護。 這里下載本文源代碼。 <一>輸入/輸出保護80386采用I/O特權級IPOL和I/O許可位圖的方法來控制輸入/輸出,實現輸入/輸出保護。 1.I/O敏感指令輸入輸出特權級(I/O Privilege Level)規定了可以執行所有與I/O相關的指令和訪問I/O空間中所有地址的最外層特權級。IOPL的值在如下圖所示的標志寄存器中。 標  志寄存器 BIT31—BIT18 BIT17 BIT16 BIT15 BIT14 BIT13—BIT12 BIT11 BIT10 BIT9 BIT8 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 00000000000000 VM RF 0 NT IOPL OF DF IF TF SF ZF 0 AF 0 PF 1 CF I/O許可位圖規定了I/O空間中的哪些地址可以由在任何特權級執行的程序所訪問。I/O許可位圖在任務狀態段TSS中。 I/O敏感指令 指令 功能 保護方式下的執行條件 CLI 清除EFLAGS中的IF位 CPL<=IOPL STI 設置EFLAGS中的IF位 CPL<=IOPL IN 從I/O地址讀出數據 CPL<=IOPL或I/O位圖許可 INS 從I/O地址讀出字符串 CPL<=IOPL或I/O位圖許可 OUT 向I/O地址寫數據 CPL<=IOPL或I/O位圖許可 OUTS 向I/O地址寫字符串 CPL<=IOPL或I/O位圖許可 上表所列指令稱為I/O敏感指令,由于這些指令與I/O有關,并且只有在滿足所列條件時才可以執行,所以把它們稱為I/O敏感指令。從表中可見,當前特權級不在I/O特權級外層時,可以正常執行所列的全部I/O敏感指令;當特權級在I/O特權級外層時,執行CLI和STI指令將引起通用保護異常,而其它四條指令是否能夠被執行要根據訪問的I/O地址及I/O許可位圖情況而定(在下面論述),如果條件不滿足而執行,那么將引起出錯碼為0的通用保護異常。 由于每個任務使用各自的EFLAGS值和擁有自己的TSS,所以每個任務可以有不同的IOPL,并且可以定義不同的I/O許可位圖。注意,這些I/O敏感指令在實模式下總是可執行的。 2.I/O許可位圖如果只用IOPL限制I/O指令的執行是很不方便的,不能滿足實際要求需要。因為這樣做會使得在特權級3執行的應用程序要么可訪問所有I/O地址,要么不可訪問所有I/O地址。實際需要與此剛好相反,只允許任務甲的應用程序訪問部分I/O地址,只允許任務乙的應用程序訪問另一部分I/O地址,以避免任務甲和任務乙在訪問I/O地址時發生沖突,從而避免任務甲和任務乙使用使用獨享設備時發生沖突。 因此,在IOPL的基礎上又采用了I/O許可位圖。I/O許可位圖由二進制位串組成。位串中的每一位依次對應一個I/O地址,位串的第0位對應I/O地址0,位串的第n位對應I/O地址n。如果位串中的第位為0,那么對應的I/O地址m可以由在任何特權級執行的程序訪問;否則對應的I/O地址m只能由在IOPL特權級或更內層特權級執行的程序訪問。如果在I/O外層特權級執行的程序訪問位串中位值為1的位所對應的I/O地址,那么將引起通用保護異常。 I/O地址空間按字節進行編址。一條I/O指令最多可涉及四個I/O地址。在需要根據I/O位圖決定是否可訪問I/O地址的情況下,當一條I/O指令涉及多個I/O地址時,只有這多個I/O地址所對應的I/O許可位圖中的位都為0時,該I/O指令才能被正常執行,如果對應位中任一位為1,就會引起通用保護異常。 80386支持的I/O地址空間大小是64K,所以構成I/O許可位圖的二進制位串最大長度是64K個位,即位圖的有效部分最大為8K字節。一個任務實際需要使用的I/O許可位圖大小通常要遠小于這個數目。 當前任務使用的I/O許可位圖存儲在當前任務TSS中低端的64K字節內。I/O許可位圖總以字節為單位存儲,所以位串所含的位數總被認為是8的倍數。從前文中所述的TSS格式可見,TSS內偏移66H的字確定I/O許可位圖的開始偏移。由于I/O許可位圖最長可達8K字節,所以開始偏移應小于56K,但必須大于等于104,因為TSS中前104字節為TSS的固定格式,用于保存任務的狀態。 1.I/O訪問許可檢查細節保護模式下處理器在執行I/O指令時進行許可檢查的細節如下所示。 (1)若CPL<=IOPL,則直接轉步驟(8);(2)取得I/O位圖開始偏移;(3)計算I/O地址對應位所在字節在I/O許可位圖內的偏移;(4)計算位偏移以形成屏蔽碼值,即計算I/O地址對應位在字節中的第幾位;(5)把字節偏移加上位圖開始偏移,再加1,所得值與TSS界限比較,若越界,則產生出錯碼為0的通用保護故障;(6)若不越界,則從位圖中讀對應字節及下一個字節;(7)把讀出的兩個字節與屏蔽碼進行與運算,若結果不為0表示檢查未通過,則產生出錯碼為0的通用保護故障;(8)進行I/O訪問。設某一任務的TSS段如下: TSSSEG                  SEGMENT PARA USE16                        TSS     <>             ;TSS低端固定格式部分                        DB      8 DUP(0)       ;對應I/O端口00H—3FH                        DB      10000000B      ;對應I/O端口40H—47H                        DB      01100000B      ;對用I/O端口48H—4FH                        DB      8182 DUP(0ffH) ;對應I/O端口50H—0FFFFH                        DB      0FFH           ;位圖結束字節TSSLen                  =       $TSSSEG                  ENDS 再假設IOPL=1,CPL=3。那么如下I/O指令有些能正常執行,有些會引起通用保護異常:                         in      al,21h  ;(1)正常執行                        in      al,47h  ;(2)引起異常                        out     20h,al  ;(3)正常實行                        out     4eh,al  ;(4)引起異常                        in      al,20h  ;(5)正常執行                        out     20h,eax ;(6)正常執行                        out     4ch,ax  ;(7)引起異常                        in      ax,46h  ;(8)引起異常                        in      eax,42h ;(9)正常執行 由上述I/O許可檢查的細節可見,不論是否必要,當進行許可位檢查時,80386總是從I/O許可位圖中讀取兩個字節。目的是為了盡快地執行I/O許可檢查。一方面,常常要讀取I/O許可位圖的兩個字節。例如,上面的第(8)條指令要對I/O位圖中的兩個位進行檢查,其低位是某個字節的最高位,高位是下一個字節的最低位。可見即使只要檢查兩個位,也可能需要讀取兩個字節。另一方面,最多檢查四個連續的位,即最多也只需讀取兩個字節。所以每次要讀取兩個字節。這也是在判別是否越界時再加1的原因。為此,為了避免在讀取I/O許可位圖的最高字節時產生越界,必須在I/O許可位圖的最后填加一個全1的字節,即0FFH。此全1的字節應填加在最后一個位圖字節之后,TSS界限范圍之前,即讓填加的全1字節在TSS界限之內。 I/O許可位圖開始偏移加8K所得的值與TSS界限值二者中較小的值決定I/O許可位圖的末端。當TSS的界限大于I/O許可位圖開始偏移加8K時,I/O許可位圖的有效部分就有8K字節,I/O許可檢查全部根據全部根據該位圖進行。當TSS的界限不大于I/O許可位圖開始偏移加8K時,I/O許可位圖有效部分就不到8K字節,于是對較小I/O地址訪問的許可檢查根據位圖進行,而對較大I/O地址訪問的許可檢查總被認為不可訪問而引起通用保護故障。因為這時會發生字節越界而引起通用保護異常,所以在這種情況下,可認為不足的I/O許可位圖的高端部分全為1。利用這個特點,可大大節約TSS中I/O許可位圖占用的存儲單元,也就大大減小了TSS段的長度。 <二>重要標志保護輸入輸出的保護與存儲在標志寄存器EFLAGS中的IOPL密切相關,顯然不能允許隨便地改變IOPL,否則就不能有效地實現輸入輸出保護。類似地,對EFLAGS中的IF位也必須加以保護,否則CLI和STI作為敏感指令對待是無意義的。此外,EFLAGS中的VM位決定著處理器是否按虛擬8086方式工作。 80386對EFLAGS中的這三個字段的處理比較特殊,只有在較高特權級執行的程序才能執行IRET、POPF、CLI和STI等指令改變它們。下表列出了不同特權級下對這三個字段的處理情況。 不同特權級對標志寄存器特殊字段的處理 特權級 VM標志字段 IOPL標志字段 IF標志字段 CPL=0 可變(初POPF指令外) 可變 可變 0  不變 不變 可變 CPL>IOPL 不變 不變 不變 從表中可見,只有在特權級0執行的程序才可以修改IOPL位及VM位;只能由相對于IOPL同級或更內層特權級執行的程序才可以修改IF位。與CLI和STI指令不同,在特權級不滿足上述條件的情況下,當執行POPF指令和IRET指令時,如果試圖修改這些字段中的任何一個字段,并不引起異常,但試圖要修改的字段也未被修改,也不給出任何特別的信息。此外,指令POPF總不能改變VM位,而PUSHF指令所壓入的標志中的VM位總為0。 <三>演示輸入輸出保護的實例(實例九)下面給出一個用于演示輸入輸出保護的實例。演示內容包括:I/O許可位圖的作用、I/O敏感指令引起的異常和特權指令引起的異常;使用段間調用指令CALL通過任務門調用任務,實現任務嵌套。 1.演示步驟實例演示的內容比較豐富,具體演示步驟如下:(1)在實模式下做必要準備后,切換到保護模式;(2)進入保護模式的臨時代碼段后,把演示任務的TSS段描述符裝入TR,并設置演示任務的堆棧;(3)進入演示代碼段,演示代碼段的特權級是0;(4)通過任務門調用測試任務1。測試任務1能夠順利進行;(5)通過任務門調用測試任務2。測試任務2演示由于違反I/O許可位圖規定而導致通用保護異常;(6)通過任務門調用測試任務3。測試任務3演示I/O敏感指令如何引起通用保護異常;(7)通過任務門調用測試任務4。測試任務4演示特權指令如何引起通用保護異常;(8)從演示代碼轉臨時代碼,準備返回實模式;(9)返回實模式,并作結束處理。

    標簽: 匯編 保護模式 教程

    上傳時間: 2013-12-11

    上傳用戶:nunnzhy

  • 本系統的使用可以將工作的部分流程使用計算機的辦公自動化處理

    本系統的使用可以將工作的部分流程使用計算機的辦公自動化處理,能夠極大的提高辦公的效率和準確程度。另外,可以便捷的統計和分析各種所需資料,方便相應政策的調整等。 該系統作為網上信息管理系統,實現網絡處理功能。系統采用先進的應用系統體系結構和開發模式,提高系統的可擴展性、可維護性和交互性。該系統相對獨立,接口實現簡單、安全,可操作性強

    標簽: 流程 辦公自動化

    上傳時間: 2014-07-19

    上傳用戶:ynzfm

主站蜘蛛池模板: 马边| 南宁市| 云梦县| 临湘市| 桃园市| 陕西省| 视频| 鲁甸县| 晋州市| 龙门县| 牡丹江市| 合肥市| 高要市| 来宾市| 阿克陶县| 靖江市| 南平市| 旌德县| 科尔| 安义县| 巴青县| 葫芦岛市| 遂川县| 中阳县| 平果县| 凤山市| 巴马| 河东区| 南通市| 喜德县| 南和县| 湘西| 满城县| 泰州市| 林芝县| 滕州市| 克山县| 阳江市| 武乡县| 老河口市| 来宾市|