ASP.NET構(gòu)建的思威線上CRM客戶關(guān)係管理系統(tǒng)
標(biāo)簽: ASP NET CRM 系統(tǒng)
上傳時(shí)間: 2015-04-16
上傳用戶:sevenbestfei
informix不錯(cuò)的書(shū)籍,適宜本部錯(cuò)的學(xué)系書(shū)籍
上傳時(shí)間: 2014-08-16
上傳用戶:SimonQQ
這是關(guān)于PowerBuilder 應(yīng) 用 開(kāi) 發(fā) 系 列 講 座
標(biāo)簽: PowerBuilder
上傳時(shí)間: 2015-04-17
上傳用戶:小草123
平衡二叉樹(shù)實(shí)現(xiàn)一個(gè)動(dòng)態(tài)查找表,有三種基本功能:查找,插入刪除,還有選項(xiàng)功能:合并兩棵平衡二叉樹(shù),和分裂兩棵平衡二叉樹(shù).
標(biāo)簽: 二叉樹(shù) 動(dòng)態(tài) 刪除 分
上傳時(shí)間: 2014-08-28
上傳用戶:caixiaoxu26
數(shù)據(jù)結(jié)構(gòu)常用算法:平衡二叉排序樹(shù)的綜合操作 全部程序代碼,在C環(huán)境編譯通過(guò)。
標(biāo)簽: 數(shù)據(jù)結(jié)構(gòu) 排序 代碼 操作
上傳時(shí)間: 2015-04-19
上傳用戶:zhaiye
模擬退火算法來(lái)源于固體退火原理,將固體加溫至充分高,再讓其徐徐冷卻,加溫時(shí),固體內(nèi)部粒子隨溫升變?yōu)闊o(wú)序狀,內(nèi)能增大,而徐徐冷卻時(shí)粒子漸趨有序,在每個(gè)溫度都達(dá)到平衡態(tài),最后在常溫時(shí)達(dá)到基態(tài),內(nèi)能減為最小。根據(jù)Metropolis準(zhǔn)則,粒子在溫度T時(shí)趨于平衡的概率為e-ΔE/(kT),其中E為溫度T時(shí)的內(nèi)能,ΔE為其改變量,k為Boltzmann常數(shù)。用固體退火模擬組合優(yōu)化問(wèn)題,將內(nèi)能E模擬為目標(biāo)函數(shù)值f,溫度T演化成控制參數(shù)t,即得到解組合優(yōu)化問(wèn)題的模擬退火算法:由初始解i和控制參數(shù)初值t開(kāi)始,對(duì)當(dāng)前解重復(fù)“產(chǎn)生新解→計(jì)算目標(biāo)函數(shù)差→接受或舍棄”的迭代,并逐步衰減t值,算法終止時(shí)的當(dāng)前解即為所得近似最優(yōu)解,這是基于蒙特卡羅迭代求解法的一種啟發(fā)式隨機(jī)搜索過(guò)程。退火過(guò)程由冷卻進(jìn)度表(Cooling Schedule)控制,包括控制參數(shù)的初值t及其衰減因子Δt、每個(gè)t值時(shí)的迭代次數(shù)L和停止條件S。
標(biāo)簽: 模擬退火算法
上傳時(shí)間: 2015-04-24
上傳用戶:R50974
模擬退火算法來(lái)源于固體退火原理,將固體加溫至充分高,再讓其徐徐冷卻,加溫時(shí),固體內(nèi)部粒子隨溫升變?yōu)闊o(wú)序狀,內(nèi)能增大,而徐徐冷卻時(shí)粒子漸趨有序,在每個(gè)溫度都達(dá)到平衡態(tài),最后在常溫時(shí)達(dá)到基態(tài),內(nèi)能減為最小。根據(jù)Metropolis準(zhǔn)則,粒子在溫度T時(shí)趨于平衡的概率為e-ΔE/(kT),其中E為溫度T時(shí)的內(nèi)能,ΔE為其改變量,k為Boltzmann常數(shù)。用固體退火模擬組合優(yōu)化問(wèn)題,將內(nèi)能E模擬為目標(biāo)函數(shù)值f,溫度T演化成控制參數(shù)t,即得到解組合優(yōu)化問(wèn)題的模擬退火算法:由初始解i和控制參數(shù)初值t開(kāi)始,對(duì)當(dāng)前解重復(fù)“產(chǎn)生新解→計(jì)算目標(biāo)函數(shù)差→接受或舍棄”的迭代,并逐步衰減t值,算法終止時(shí)的當(dāng)前解即為所得近似最優(yōu)解,這是基于蒙特卡羅迭代求解法的一種啟發(fā)式隨機(jī)搜索過(guò)程。退火過(guò)程由冷卻進(jìn)度表(Cooling Schedule)控制,包括控制參數(shù)的初值t及其衰減因子Δt、每個(gè)t值時(shí)的迭代次數(shù)L和停止條件S。
標(biāo)簽: 模擬退火算法
上傳時(shí)間: 2015-04-24
上傳用戶:ryb
模擬退火算法來(lái)源于固體退火原理,將固體加溫至充分高,再讓其徐徐冷卻,加溫時(shí),固體內(nèi)部粒子隨溫升變?yōu)闊o(wú)序狀,內(nèi)能增大,而徐徐冷卻時(shí)粒子漸趨有序,在每個(gè)溫度都達(dá)到平衡態(tài),最后在常溫時(shí)達(dá)到基態(tài),內(nèi)能減為最小。根據(jù)Metropolis準(zhǔn)則,粒子在溫度T時(shí)趨于平衡的概率為e-ΔE/(kT),其中E為溫度T時(shí)的內(nèi)能,ΔE為其改變量,k為Boltzmann常數(shù)。用固體退火模擬組合優(yōu)化問(wèn)題,將內(nèi)能E模擬為目標(biāo)函數(shù)值f,溫度T演化成控制參數(shù)t,即得到解組合優(yōu)化問(wèn)題的模擬退火算法:由初始解i和控制參數(shù)初值t開(kāi)始,對(duì)當(dāng)前解重復(fù)“產(chǎn)生新解→計(jì)算目標(biāo)函數(shù)差→接受或舍棄”的迭代,并逐步衰減t值,算法終止時(shí)的當(dāng)前解即為所得近似最優(yōu)解,這是基于蒙特卡羅迭代求解法的一種啟發(fā)式隨機(jī)搜索過(guò)程。退火過(guò)程由冷卻進(jìn)度表(Cooling Schedule)控制,包括控制參數(shù)的初值t及其衰減因子Δt、每個(gè)t值時(shí)的迭代次數(shù)L和停止條件S。
標(biāo)簽: 模擬退火算法
上傳時(shí)間: 2014-12-19
上傳用戶:TRIFCT
In case you haven t realized it, building computer systems is hard. As the complexity of the system gets greater, the task of building the software gets exponentially harder. As in any profession, we can progress only by learning, both from our mistakes and from our successes. This book represents some of this learning written in a form that I hope will help you to learn these lessons quicker than I did, or to communicate to others more effectively than I did before I boiled these patterns down.
標(biāo)簽: complexity the building computer
上傳時(shí)間: 2015-04-25
上傳用戶:tyler
介紹ISO7816-4及中國(guó)金融集成電路(IC)卡規(guī)范所規(guī)定的T=0協(xié)議的CPU卡與終端之間的接口特性和傳輸協(xié)議,及以C51語(yǔ)言設(shè)計(jì)的CPU卡復(fù)位、下電及讀寫程序。
上傳時(shí)間: 2013-12-16
上傳用戶:xinzhch
蟲(chóng)蟲(chóng)下載站版權(quán)所有 京ICP備2021023401號(hào)-1