介紹了基于89S51 單片機的微型熱敏打印機的組成,分析了打印原理,詳細給出了整體流程以及各個功能模塊的軟件設計。熱敏打印頭采用I/O 口模擬串行數據傳輸實現數據加載。設計的微型熱敏打印機運用于實際,取得了良好的效果。關鍵詞:熱敏打印機 過熱保護 步進電機 數據加載由于常用的微型針式打印機的速度慢,噪聲大,無法滿足某些場合的需要。微型熱敏打印機具有打印速度快、噪音低、可靠性高、字跡清晰、機頭小而輕等優點,可滿足各種場合的打印要求,因此得到廣泛應用。筆者在汽車行駛記錄儀的開發過程中,根據廠家要求,選用較為先進的熱敏打印機作為打印設備。但微型熱敏打印頭對打印時序和溫度要求較高,一旦控制不當極易造成打印頭燒毀。因此,在有合理的硬件設計的基礎上,軟件設計也十分重要。本文使用某些軟件設計替代了部分硬件電路,使打印機的控制電路得到了簡化。
上傳時間: 2013-11-14
上傳用戶:digacha
掌握先進微處理器芯片結構、微型計算機實現技術、計算機主板構成、各種接口技術原理及其應用編程方法;掌握匯編語言程序的編寫方法,尤其掌握接口訪問的方法。了解微機技術新的發展趨勢,系統科學地獲得分析問題和解決問題的訓練;提高分析和設計接口的能力。不僅要學習微機各種接口電路的原理與作用,熟悉PC系列機接口電路,而且還要掌握常用接口的設計與分析方法,學會使用匯編語言和C語言對接口進行編程,并具有一定的動手實驗能力和接口應用程序的編寫能力,為微機的深入應用和嵌入式系統SOC設計等的學習與實踐打下良好基礎。同時有興趣的同學自學Windows 2000/XP驅動程序的編寫方法。一定要下載和打印或復印電子講義,課堂上注意聽講并及時記錄教師課堂上補充的內容,認真獨立完成作業,做好課程實驗和自修實驗、做好課前預習和課后復習。1)抓住IBM PC/XT機基本結構這條主線,分析其基本結構,掌握各接口電路及可編程接口芯片的應用。2)進一步擴展和延伸CPU—從8086~Core 2 Duo,從實模式~保護模式;匯編語言-CPU及接口直接控制,16位~32位匯編;總線—PCI,USB等; 中斷—從實模式下的中斷向量~保護模式下的中斷描述符;從傳統中斷~PCI中斷~串行中斷 芯片組—從中大規模集成電路(8237、8254、8255、8259等)~ 超大規模集成電路(82815EP、82801BA)。第1章—CPU與整機:CPU的信號與工作模式、PC結構第11章--軟件如何控制CPU和接口:指令系統和匯編編程(在教師講授重點的基礎上,通過預習、實驗與練習自學) 第2章--CPU如何與MEM或I/O設備通信:I/O接口與譯碼 第3章--總線如何工作:總線標準(PCI、USB) 第4章--I/O接口直接和MEM通信:DMA(8237,全自學) 第5章--I/O接口如何主動與CPU通信:中斷技術(8259) 第6章--I/O接口的定時與計數功能:(8254) 第7章--I/O接口的并行通信:8255與打印機接口標準 第8章--I/O接口的串行通信:串行通信協議與8250 第10章--I/O軟接口技術:保護模式存儲,WDM驅動程序編寫(全自學)
上傳時間: 2014-01-21
上傳用戶:徐孺
C51控制并口打印機實例:/* 沈陽新榮達電子 *//* 2004-12-7 */#include <reg52.h>#define uchar unsigned char#define uint unsigned int#define data_8 P0sbit BUSY = P1^2; //打印機 BUSY 接P1.2sbit STB = P1^0; //打印機 STB 接P1.0void print(uchar j) //打印子程序{ uchar i;while(BUSY){}; //BUSY=1,打印機忙,等待BUSY 為0 再發數data_8=j;STB=0;i++;i--;STB=1; //給出數據鎖存時鐘BUSY=1;}void main(void){BUSY = 1; //忙信號置高STB = 1; //選通信號置高print(0x1b); //打印機初始化命令print(0x38);print(0x04);for(;;){print(0xd0); //發送漢字內碼“新榮達”print(0xc2);print(0xc8);print(0xd9);print(0xb4);print(0xef);print(0x0d); //換行}}
上傳時間: 2013-11-13
上傳用戶:lwq11
微機原理及接口技術課件:微機:IBM PC系列機原理:8088匯編語言程序設計接口:半導體存儲器及其接口, I/O接口電路及其與外設連接技術:硬件--接口電路原理 軟件--接口編程方法第1章 基礎知識 4第2章 微型計算機系統結構 6第3章 程序加載并執行 4第4章 微處理器一般指令 6第5章 匯編語言程序設計基礎 4第6章 算術運算與邏輯運算 8第7章 基本輸入與輸出 4第8章 程序流程控制 10第9章 字符串處理 6第10章 宏 4第11章 過程 4第12章 文件處理 4第13章 模塊化程序設計 4
上傳時間: 2013-10-18
上傳用戶:blacklee
微機原理與匯編語言程序設計課件為PPT文件,內容有:第1章 基礎知識 4第2章 微型計算機系統結構 6第3章 程序加載并執行 4第4章 微處理器一般指令 6第5章 匯編語言程序設計基礎 4第6章 算術運算與邏輯運算 8第7章 基本輸入與輸出 4第8章 程序流程控制 10第9章 字符串處理 6第10章 宏 4第11章 過程 4第12章 文件處理 4第13章 模塊化程序設計 4
上傳時間: 2013-10-28
上傳用戶:yanming8525826
微機原理與接口技術精品課程(課件):微機:IBM PC系列機原理:8088匯編語言程序設計接口:半導體存儲器及其接口 I/O接口電路及其與外設連接技術:硬件--接口電路原理軟件--接口編程方法第1章 基礎知識 4第2章 微型計算機系統結構 6第3章 程序加載并執行 4第4章 微處理器一般指令 6第5章 匯編語言程序設計基礎 4第6章 算術運算與邏輯運算 8第7章 基本輸入與輸出 4第8章 程序流程控制 10第9章 字符串處理 6第10章 宏 4第11章 過程 4第12章 文件處理 4第13章 模塊化程序設計 4
上傳時間: 2014-03-17
上傳用戶:894448095
單片機原理及系統設計8×C552是Philips公司的8位高性能增強型單片機,是在MCS-51單片機基礎上增加了A/D、D/A、捕捉輸入/定時輸出、I2C總線接口和監視定時器(Watchdog Timer)等功能,是目前世界上最新型的8位單片機之一。8×C552和MCS-51有相同的指令系統,并在其他功能上與MCS-51完全兼容。本書仍以MCS-51為主線組織教學內容,在MCS-51的組成原理、指令系統、匯編語言程序設計、系統擴張、中斷系統和接口等方面保留了第1版的特點,同時也對8×C552的新增功能做了詳細敘述和分析,并伴以應用實例。全書共分11章,每章末尾都附有一定數量習題與思考題。本書內容自成體系、結構緊湊、前后呼應、語言通俗,因而具有一定的先進性、系統性和實用性。第1章 微型計算機基礎 1.1 微型計算機數制及其轉換 1.1.1 微型計算機的數制 1.1.2 微型計算機數制間數的轉換 1.2 微型計算機的二進制數運算 1.2.1 算術運算 1.2.2 邏輯運算 1.3 微型計算機碼制和編碼 1.3.1 微型計算機中數的表示方法 1.3.2 微型計算機的原碼、反碼和補碼 1.3.3 微型計算機的二進制編碼 1.4 微型計算機組成原理 1.4.1 微型計算機的基本結構 1.4.2 微型計算機的基本原理 1.4.3 微型計算機系統的組成 1.5 單片微型計算機概述 1.5.1 單片機的分類和發展 1.5.2 單片機的內部結構
上傳時間: 2014-01-26
上傳用戶:xy@1314
單片機原理與應用《課程簡介》:單片機已成為電子系統中進行數據采集、信息處理、通信聯絡和實施控制的重要器件。通常利用單片機技術在各種系統、儀器設備或裝置中,形成嵌入式智能系統或子系統。因此,單片機技術是電類專業特別是電子信息類學生必須具備的基本功。本課程以51系列單片機為模型,主要向學生介紹單片機的基本結構、工作原理、指令系統與程序設計、系統擴展與工程應用。作為微機原理與接口技術的后續課程,本課程強調實踐環節,側重系統構成與應用設計。力求通過實踐環節,軟、硬結合,培養初步的單片機開發能力,并使其前導課程講授的基本概念得到綜合與深化。由于課時的限制,綜合性的應用設計安排在后續課程《微機應用系統設計》中進行。 課 程 內 容:第一章 單片微型計算機概述單片機的發展與應用 MCS-51系列單片機簡介第二章 MCS-51系列單片機結構MCS-51單片機基本結構 CPU 時序簡介 存儲器空間結構 片內RAM與SFR時鐘電路與復位電路 并行I/O口與總線擴展第三章 MCS-51單片機指令系統指令系統簡介數據傳送指令 數據處理指令 位處理指令 程序控制指令匯編語言程序設計方法 程序調試的常用方法第四章 SCB-I 單片單板機SCB-I 單片單板機結構簡介 監控系統簡介SCB-I 單片單板機的基本操作 第五章 單片機常用接口電路的軟、硬件設計LED顯示接口電路與應用編程鍵盤接口電路與應用編程計數器/定時器工作原理及其應用編程MCS-51中斷系統及其應用編程8255擴展并行接口及其應用編程串行通信接口及其應用編程A/D與D/A轉換接口及其應用編程*第六章 單片機應用系統設計舉例第七章 單片機開發工具簡介* 加“*”為選講內容教學要求:1、 了解單片機的一般性概念及單片機技術的發展。2、 掌握51系列單片機的基本結構與工作原理。3、 掌握51系列單片機的指令系統與程序設計的基本方法。4、 以單片單板機為樣板,掌握51系列單片機的系統擴展設計。5、 通過實驗,掌握單片機常用接口電路的軟硬件設計及其應用。6、 以上為本課程的基本要求。作為提高要求,對有能力、有興趣的學生,若能較快地完成基本實驗,可在規定課時內安排有一定難度的綜合性實驗,以提高其應用設計的能力。 課時安排和考核方式:1、 講課40學時,實驗20學時,課內外學時比 1:2 ;(實驗從第七周開始,7個基本實驗,選做1個綜合實驗)2、 考核方式平時考查 20實驗考核 40(含實驗過程、實驗驗收與實驗報告)期末筆試 40參考書:《MCS-51單片機應用設計》 張毅剛 等編 哈爾濱工業大學出版社《MCS-51系列單片機原理及應用》 孫涵芳 徐愛卿 編著 北京航空航天大學出版社《單片微機與測控技術》 趙秀菊 等編 東南大學出版社《單片微型機原理、應用與實驗》 張友德 等編 復旦大學出版社 《單片機實驗》 肖璋 雷兆宜 編 暨南大學講義
上傳時間: 2014-01-08
上傳用戶:417313137
注:1.這篇文章斷斷續續寫了很久,畫圖技術也不精,難免錯漏,大家湊合看.有問題可以留言. 2.論壇排版把我的代碼縮進全弄沒了,大家將代碼粘貼到arduino編譯器,然后按ctrl+T重新格式化代碼格式即可看的舒服. 一、什么是PWM PWM 即Pulse Wavelength Modulation 脈寬調制波,通過調整輸出信號占空比,從而達到改 變輸出平均電壓的目的。相信Arduino 的PWM 大家都不陌生,在Arduino Duemilanove 2009 中,有6 個8 位精度PWM 引腳,分別是3, 5, 6, 9, 10, 11 腳。我們可以使用analogWrite()控 制PWM 腳輸出頻率大概在500Hz 的左右的PWM 調制波。分辨率8 位即2 的8 次方等于 256 級精度。但是有時候我們會覺得6 個PWM 引腳不夠用。比如我們做一個10 路燈調光, 就需要有10 個PWM 腳。Arduino Duemilanove 2009 有13 個數字輸出腳,如果它們都可以 PWM 的話,就能滿足條件了。于是本文介紹用軟件模擬PWM。 二、Arduino 軟件模擬PWM Arduino PWM 調壓原理:PWM 有好幾種方法。而Arduino 因為電源和實現難度限制,一般 使用周期恒定,占空比變化的單極性PWM。 通過調整一個周期里面輸出腳高/低電平的時間比(即是占空比)去獲得給一個用電器不同 的平均功率。 如圖所示,假設PWM 波形周期1ms(即1kHz),分辨率1000 級。那么需要一個信號時間 精度1ms/1000=1us 的信號源,即1MHz。所以說,PWM 的實現難點在于需要使用很高頻的 信號源,才能獲得快速與高精度。下面先由一個簡單的PWM 程序開始: const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { if((bright++) == 255) bright = 0; for(int i = 0; i < 255; i++) { if(i < bright) { digitalWrite(PWMPin, HIGH); delayMicroseconds(30); } else { digitalWrite(PWMPin, LOW); delayMicroseconds(30); } } } 這是一個軟件PWM 控制Arduino D13 引腳的例子。只需要一塊Arduino 即可測試此代碼。 程序解析:由for 循環可以看出,完成一個PWM 周期,共循環255 次。 假設bright=100 時候,在第0~100 次循環中,i 等于1 到99 均小于bright,于是輸出PWMPin 高電平; 然后第100 到255 次循環里面,i 等于100~255 大于bright,于是輸出PWMPin 低電平。無 論輸出高低電平都保持30us。 那么說,如果bright=100 的話,就有100 次循環是高電平,155 次循環是低電平。 如果忽略指令執行時間的話,這次的PWM 波形占空比為100/255,如果調整bright 的值, 就能改變接在D13 的LED 的亮度。 這里設置了每次for 循環之后,將bright 加一,并且當bright 加到255 時歸0。所以,我們 看到的最終效果就是LED 慢慢變亮,到頂之后然后突然暗回去重新變亮。 這是最基本的PWM 方法,也應該是大家想的比較多的想法。 然后介紹一個簡單一點的。思維風格完全不同。不過對于驅動一個LED 來說,效果與上面 的程序一樣。 const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { digitalWrite(PWMPin, HIGH); delayMicroseconds(bright*30); digitalWrite(PWMPin, LOW); delayMicroseconds((255 - bright)*30); if((bright++) == 255) bright = 0; } 可以看出,這段代碼少了一個For 循環。它先輸出一個高電平,然后維持(bright*30)us。然 后輸出一個低電平,維持時間((255-bright)*30)us。這樣兩次高低就能完成一個PWM 周期。 分辨率也是255。 三、多引腳PWM Arduino 本身已有PWM 引腳并且運行起來不占CPU 時間,所以軟件模擬一個引腳的PWM 完全沒有實用意義。我們軟件模擬的價值在于:他能將任意的數字IO 口變成PWM 引腳。 當一片Arduino 要同時控制多個PWM,并且沒有其他重任務的時候,就要用軟件PWM 了。 多引腳PWM 有一種下面的方式: int brights[14] = {0}; //定義14個引腳的初始亮度,可以隨意設置 int StartPWMPin = 0, EndPWMPin = 13; //設置D0~D13為PWM 引腳 int PWMResolution = 255; //設置PWM 占空比分辨率 void setup() { //定義所有IO 端輸出 for(int i = StartPWMPin; i <= EndPWMPin; i++) { pinMode(i, OUTPUT); //隨便定義個初始亮度,便于觀察 brights[ i ] = random(0, 255); } } void loop() { //這for 循環是為14盞燈做漸亮的。每次Arduino loop()循環, //brights 自增一次。直到brights=255時候,將brights 置零重新計數。 for(int i = StartPWMPin; i <= EndPWMPin; i++) { if((brights[i]++) == PWMResolution) brights[i] = 0; } for(int i = 0; i <= PWMResolution; i++) //i 是計數一個PWM 周期 { for(int j = StartPWMPin; j <= EndPWMPin; j++) //每個PWM 周期均遍歷所有引腳 { if(i < brights[j])\ 所以我們要更改PWM 周期的話,我們將精度(代碼里面的變量:PWMResolution)降低就行,比如一般調整LED 亮度的話,我們用64 級精度就行。這樣速度就是2x32x64=4ms。就不會閃了。
上傳時間: 2013-10-08
上傳用戶:dingdingcandy
注:1.這篇文章斷斷續續寫了很久,畫圖技術也不精,難免錯漏,大家湊合看.有問題可以留言. 2.論壇排版把我的代碼縮進全弄沒了,大家將代碼粘貼到arduino編譯器,然后按ctrl+T重新格式化代碼格式即可看的舒服. 一、什么是PWM PWM 即Pulse Wavelength Modulation 脈寬調制波,通過調整輸出信號占空比,從而達到改 變輸出平均電壓的目的。相信Arduino 的PWM 大家都不陌生,在Arduino Duemilanove 2009 中,有6 個8 位精度PWM 引腳,分別是3, 5, 6, 9, 10, 11 腳。我們可以使用analogWrite()控 制PWM 腳輸出頻率大概在500Hz 的左右的PWM 調制波。分辨率8 位即2 的8 次方等于 256 級精度。但是有時候我們會覺得6 個PWM 引腳不夠用。比如我們做一個10 路燈調光, 就需要有10 個PWM 腳。Arduino Duemilanove 2009 有13 個數字輸出腳,如果它們都可以 PWM 的話,就能滿足條件了。于是本文介紹用軟件模擬PWM。 二、Arduino 軟件模擬PWM Arduino PWM 調壓原理:PWM 有好幾種方法。而Arduino 因為電源和實現難度限制,一般 使用周期恒定,占空比變化的單極性PWM。 通過調整一個周期里面輸出腳高/低電平的時間比(即是占空比)去獲得給一個用電器不同 的平均功率。 如圖所示,假設PWM 波形周期1ms(即1kHz),分辨率1000 級。那么需要一個信號時間 精度1ms/1000=1us 的信號源,即1MHz。所以說,PWM 的實現難點在于需要使用很高頻的 信號源,才能獲得快速與高精度。下面先由一個簡單的PWM 程序開始: const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { if((bright++) == 255) bright = 0; for(int i = 0; i < 255; i++) { if(i < bright) { digitalWrite(PWMPin, HIGH); delayMicroseconds(30); } else { digitalWrite(PWMPin, LOW); delayMicroseconds(30); } } } 這是一個軟件PWM 控制Arduino D13 引腳的例子。只需要一塊Arduino 即可測試此代碼。 程序解析:由for 循環可以看出,完成一個PWM 周期,共循環255 次。 假設bright=100 時候,在第0~100 次循環中,i 等于1 到99 均小于bright,于是輸出PWMPin 高電平; 然后第100 到255 次循環里面,i 等于100~255 大于bright,于是輸出PWMPin 低電平。無 論輸出高低電平都保持30us。 那么說,如果bright=100 的話,就有100 次循環是高電平,155 次循環是低電平。 如果忽略指令執行時間的話,這次的PWM 波形占空比為100/255,如果調整bright 的值, 就能改變接在D13 的LED 的亮度。 這里設置了每次for 循環之后,將bright 加一,并且當bright 加到255 時歸0。所以,我們 看到的最終效果就是LED 慢慢變亮,到頂之后然后突然暗回去重新變亮。 這是最基本的PWM 方法,也應該是大家想的比較多的想法。 然后介紹一個簡單一點的。思維風格完全不同。不過對于驅動一個LED 來說,效果與上面 的程序一樣。 const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { digitalWrite(PWMPin, HIGH); delayMicroseconds(bright*30); digitalWrite(PWMPin, LOW); delayMicroseconds((255 - bright)*30); if((bright++) == 255) bright = 0; } 可以看出,這段代碼少了一個For 循環。它先輸出一個高電平,然后維持(bright*30)us。然 后輸出一個低電平,維持時間((255-bright)*30)us。這樣兩次高低就能完成一個PWM 周期。 分辨率也是255。 三、多引腳PWM Arduino 本身已有PWM 引腳并且運行起來不占CPU 時間,所以軟件模擬一個引腳的PWM 完全沒有實用意義。我們軟件模擬的價值在于:他能將任意的數字IO 口變成PWM 引腳。 當一片Arduino 要同時控制多個PWM,并且沒有其他重任務的時候,就要用軟件PWM 了。 多引腳PWM 有一種下面的方式: int brights[14] = {0}; //定義14個引腳的初始亮度,可以隨意設置 int StartPWMPin = 0, EndPWMPin = 13; //設置D0~D13為PWM 引腳 int PWMResolution = 255; //設置PWM 占空比分辨率 void setup() { //定義所有IO 端輸出 for(int i = StartPWMPin; i <= EndPWMPin; i++) { pinMode(i, OUTPUT); //隨便定義個初始亮度,便于觀察 brights[ i ] = random(0, 255); } } void loop() { //這for 循環是為14盞燈做漸亮的。每次Arduino loop()循環, //brights 自增一次。直到brights=255時候,將brights 置零重新計數。 for(int i = StartPWMPin; i <= EndPWMPin; i++) { if((brights[i]++) == PWMResolution) brights[i] = 0; } for(int i = 0; i <= PWMResolution; i++) //i 是計數一個PWM 周期 { for(int j = StartPWMPin; j <= EndPWMPin; j++) //每個PWM 周期均遍歷所有引腳 { if(i < brights[j])\ 所以我們要更改PWM 周期的話,我們將精度(代碼里面的變量:PWMResolution)降低就行,比如一般調整LED 亮度的話,我們用64 級精度就行。這樣速度就是2x32x64=4ms。就不會閃了。
上傳時間: 2013-10-23
上傳用戶:mqien