微處理器及微型計算機的發展概況 第一代微處理器是以Intel公司1971年推出的4004,4040為代表的四位微處理機。 第二代微處理機(1973年~1977年),典型代表有:Intel 公司的8080、8085;Motorola公司的M6800以及Zlog公司的Z80。 第三代微處理機 第三代微機是以16位機為代表,基本上是在第二代微機的基礎上發展起來的。其中Intel公司的8088。8086是在8085的基礎發展起來的;M68000是Motorola公司在M6800 的基礎發展起來的; 第四代微處理機 以Intel公司1984年10月推出的80386CPU和1989年4月推出的80486CPU為代表, 第五代微處理機的發展更加迅猛,1993年3月被命名為PENTIUM的微處理機面世,98年PENTIUM 2又被推向市場。 INTEL CPU 發展歷史Intel第一塊CPU 4004,4位主理器,主頻108kHz,運算速度0.06MIPs(Million Instructions Per Second, 每秒百萬條指令),集成晶體管2,300個,10微米制造工藝,最大尋址內存640 bytes,生產曰期1971年11月. 8085,8位主理器,主頻5M,運算速度0.37MIPs,集成晶體管6,500個,3微米制造工藝,最大尋址內存64KB,生產曰期1976年 8086,16位主理器,主頻4.77/8/10MHZ,運算速度0.75MIPs,集成晶體管29,000個,3微米制造工藝,最大尋址內存1MB,生產曰期1978年6月. 80486DX,DX2,DX4,32位主理器,主頻25/33/50/66/75/100MHZ,總線頻率33/50/66MHZ,運算速度20~60MIPs,集成晶體管1.2M個,1微米制造工藝,168針PGA,最大尋址內存4GB,緩存8/16/32/64KB,生產曰期1989年4月 Celeron一代, 主頻266/300MHZ(266/300MHz w/o L2 cache, Covington芯心 (Klamath based),300A/333/366/400/433/466/500/533MHz w/128kB L2 cache, Mendocino核心 (Deschutes-based), 總線頻率66MHz,0.25微米制造工藝,生產曰期1998年4月) Pentium 4 (478針),至今分為三種核心:Willamette核心(主頻1.5G起,FSB400MHZ,0.18微米制造工藝),Northwood核心(主頻1.6G~3.0G,FSB533MHZ,0.13微米制造工藝, 二級緩存512K),Prescott核心(主頻2.8G起,FSB800MHZ,0.09微米制造工藝,1M二級緩存,13條全新指令集SSE3),生產曰期2001年7月. 更大的緩存、更高的頻率、 超級流水線、分支預測、亂序執行超線程技術 微型計算機組成結構單片機簡介單片機即單片機微型計算機,是將計算機主機(CPU、 內存和I/O接口)集成在一小塊硅片上的微型機。 三、計算機編程語言的發展概況 機器語言 機器語言就是0,1碼語言,是計算機唯一能理解并直接執行的語言。匯編語言 用一些助記符號代替用0,1碼描述的某種機器的指令系統,匯編語言就是在此基礎上完善起來的。高級語言 BASIC,PASCAL,C語言等等。用高級語言編寫的程序稱源程序,它們必須通過編譯或解釋,連接等步驟才能被計算機處理。 面向對象語言 C++,Java等編程語言是面向對象的語言。 1.3 微型計算機中信息的表示及運算基礎(一) 十進制ND有十個數碼:0~9,逢十進一。 例 1234.5=1×103 +2×102 +3×101 +4×100 +5×10-1加權展開式以10稱為基數,各位系數為0~9,10i為權。 一般表達式:ND= dn-1×10n-1+dn-2×10n-2 +…+d0×100 +d-1×10-1+… (二) 二進制NB兩個數碼:0、1, 逢二進一。 例 1101.101=1×23+1×22+0×21+1×20+1×2-1+1×2-3 加權展開式以2為基數,各位系數為0、1, 2i為權。 一般表達式: NB = bn-1×2n-1 + bn-2×2n-2 +…+b0×20 +b-1×2-1+… (三)十六進制NH十六個數碼0~9、A~F,逢十六進一。 例:DFC.8=13×162 +15×161 +12×160 +8×16-1 展開式以十六為基數,各位系數為0~9,A~F,16i為權。 一般表達式: NH= hn-1×16n-1+ hn-2×16n-2+…+ h0×160+ h-1×16-1+… 二、不同進位計數制之間的轉換 (二)二進制與十六進制數之間的轉換 24=16 ,四位二進制數對應一位十六進制數。舉例:(三)十進制數轉換成二、十六進制數整數、小數分別轉換 1.整數轉換法“除基取余”:十進制整數不斷除以轉換進制基數,直至商為0。每除一次取一個余數,從低位排向高位。舉例: 2. 小數轉換法“乘基取整”:用轉換進制的基數乘以小數部分,直至小數為0或達到轉換精度要求的位數。每乘一次取一次整數,從最高位排到最低位。舉例: 三、帶符號數的表示方法 機器數:機器中數的表示形式。真值: 機器數所代表的實際數值。舉例:一個8位機器數與它的真值對應關系如下: 真值: X1=+84=+1010100B X2=-84= -1010100B 機器數:[X1]機= 01010100 [X2]機= 11010100(二)原碼、反碼、補碼最高位為符號位,0表示 “+”,1表示“-”。 數值位與真值數值位相同。 例 8位原碼機器數: 真值: x1 = +1010100B x2 =- 1010100B 機器數: [x1]原 = 01010100 [x2]原 = 11010100原碼表示簡單直觀,但0的表示不唯一,加減運算復雜。 正數的反碼與原碼表示相同。 負數反碼符號位為 1,數值位為原碼數值各位取反。 例 8位反碼機器數: x= +4: [x]原= 00000100 [x]反= 00000100 x= -4: [x]原= 10000100 [x]反= 111110113、補碼(Two’s Complement)正數的補碼表示與原碼相同。 負數補碼等于2n-abs(x)8位機器數表示的真值四、 二進制編碼例:求十進制數876的BCD碼 876= 1000 0111 0110 BCD 876= 36CH = 1101101100B 2、字符編碼 美國標準信息交換碼ASCII碼,用于計算 機與計算機、計算機與外設之間傳遞信息。 3、漢字編碼 “國家標準信息交換用漢字編碼”(GB2312-80標準),簡稱國標碼。 用兩個七位二進制數編碼表示一個漢字 例如“巧”字的代碼是39H、41H漢字內碼例如“巧”字的代碼是0B9H、0C1H1·4 運算基礎 一、二進制數的運算加法規則:“逢2進1” 減法規則:“借1當2” 乘法規則:“逢0出0,全1出1”二、二—十進制數的加、減運算 BCD數的運算規則 循十進制數的運算規則“逢10進1”。但計算機在進行這種運算時會出現潛在的錯誤。為了解決BCD數的運算問題,采取調整運算結果的措施:即“加六修正”和“減六修正”例:10001000(BCD)+01101001(BCD) =000101010111(BCD) 1 0 0 0 1 0 0 0 + 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 + 0 1 1 0 0 1 1 0 ……調整 1 0 1 0 1 0 1 1 1 進位 例: 10001000(BCD)- 01101001(BCD)= 00011001(BCD) 1 0 0 0 1 0 0 0 - 0 1 1 0 1 0 0 1 0 0 0 1 1 1 1 1 - 0 1 1 0 ……調整 0 0 0 1 1 0 0 1 三、 帶符號二進制數的運算 1.5 幾個重要的數字邏輯電路編碼器譯碼器計數器微機自動工作的條件程序指令順序存放自動跟蹤指令執行1.6 微機基本結構微機結構各部分組成連接方式1、以CPU為中心的雙總線結構;2、以內存為中心的雙總線結構;3、單總線結構CPU結構管腳特點 1、多功能;2、分時復用內部結構 1、控制; 2、運算; 3、寄存器; 4、地址程序計數器堆棧定義 1、定義;2、管理;3、堆棧形式
上傳時間: 2013-10-17
上傳用戶:erkuizhang
C8051F040/1/2/3/4/5/6/7混合信號ISP FLASH 微控制器數 據 手 冊 C8051F04x 系列器件是完全集成的混合信號片上系統型MCU,具有64 個數字I/O 引腳(C8051F040/2/4/6)或32 個數字I/O 引腳(C8051F041/3/5/7),片內集成了一個CAN2.0B 控制器。下面列出了一些主要特性;有關某一產品的具體特性參見表1.1。 高速、流水線結構的8051 兼容的CIP-51 內核(可達25MIPS) 控制器局域網(CAN2.0B)控制器,具有32 個消息對象,每個消息對象有其自己的標識 全速、非侵入式的在系統調試接口(片內) 真正12 位(C8051F040/1)或10 位(C8051F042/3/4/5/6/7)、100 ksps 的ADC,帶PGA 和8 通道模擬多路開關 允許高電壓差分放大器輸入到12/10 位ADC(60V 峰-峰值),增益可編程 真正8 位500 ksps 的ADC,帶PGA 和8 通道模擬多路開關(C8051F040/1/2/3) 兩個12 位DAC,具有可編程數據更新方式(C8051F040/1/2/3) 64KB(C8051F040/1/2/3/4/5)或32KB(C8051F046/7)可在系統編程的FLASH 存儲器 4352(4K+256)字節的片內RAM 可尋址64KB 地址空間的外部數據存儲器接口 硬件實現的SPI、SMBus/ I2C 和兩個UART 串行接口 5 個通用的16 位定時器 具有6 個捕捉/比較模塊的可編程計數器/定時器陣列 片內看門狗定時器、VDD 監視器和溫度傳感器具有片內VDD 監視器、看門狗定時器和時鐘振蕩器的C8051F04x 系列器件是真正能獨立工作的片上系統。所有模擬和數字外設均可由用戶固件使能/禁止和配置。FLASH 存儲器還具有在系統重新編程能力,可用于非易失性數據存儲,并允許現場更新8051 固件。片內JTAG 調試電路允許使用安裝在最終應用系統上的產品MCU 進行非侵入式(不占用片內資源)、全速、在系統調試。該調試系統支持觀察和修改存儲器和寄存器,支持斷點、觀察點、單步及運行和停機命令。在使用JTAG 調試時,所有的模擬和數字外設都可全功能運行。每個MCU 都可在工業溫度范圍(-45℃到+85℃)工作,工作電壓為2.7 ~ 3.6V。端口I/O、/RST和JTAG 引腳都容許5V 的輸入信號電壓。C8051F040/2/4/6 為100 腳TQFP 封裝(見圖1.1 和圖1.3的框圖)。C8051F041/3/5/7 為64 腳TQFP 封裝(見圖1.2 和圖1.4 的框圖)。
上傳時間: 2013-10-24
上傳用戶:hwl453472107
在C8051F系列單片機中集成有多通道8位、10位、12位或16位的SAR型ADC,能夠滿足大多數數據采集的應用需求;集成跟蹤和保持電路;集成模擬多路復用器(AMUX)。 采樣頻率從100ksps到1Msps。 片內溫度傳感器可直接配置到ADC的輸入端。 C8051F04x系列集成可編程增益放大器(PGA)和高電壓差分放大器(HVDA),可接受60V的差動模擬電壓輸入。 集成越限檢測器,可監視模擬量的變化范圍,越限能產生中斷。 C8051F06x系列集成DMA接口,提高對轉換結果的讀取效率。 ADC轉換啟動方式:軟件設置寄存器位啟動;定時器溢出啟動;外部管腳信號啟動。
上傳時間: 2013-10-13
上傳用戶:jx_wwq
摘要: 本文介紹了L ED 顯示屏常規型驅動電路的設計方式及其存在的缺陷, 提出了簡單的L ED 顯示屏恒流驅動方式及電路的實現。關鍵詞:L ED 顯示屏 動態掃描 驅動電路中圖分類號: TN 873+ . 93 文獻標識碼:A 文章編號: 1005- 9490(2001) 03- 0252- 051 引 言 L ED 顯示屏是80 年代后期在全球迅速發展起來的新型信息顯示媒體, 它利用發光二極管構成的點陣模塊或像素單元, 組成大面積顯示屏幕, 以其可靠性高、使用壽命、環境適應能力強、性能價格比高、使用成本低等特點, 在信息顯示領域已經得到了非常廣泛的應用[ 1 ]。L ED 顯示屏主要包括發光二極管構成的陣列、驅動電路、控制系統及傳輸接口和相應的應用軟件等, 其中驅動電路設計的好壞, 對L ED 顯示屏的顯示效果、制作成本及系統的運行性能起著很重要的作用。所以, 設計一種既能滿足控制驅動的要求, 同時使用器件少、成本低的控制驅動電路是很有必要的。本文就常規型驅動電路的設計作些分析并提出恒流驅動電路的設計方式。2 L ED 顯示屏常規驅動電路的設計 L ED 顯示屏驅動電路的設計, 與所用控制系統相配合, 通常分為動態掃描型驅動及靜態鎖存型驅動二大類。以下就動態掃描型驅動電路的設計為例為進行分析:動態掃描型驅動方式是指顯示屏上的4 行、8 行、16 行等n 行發光二極管共用一組列驅動寄存器, 通過行驅動管的分時工作, 使得每行L ED 的點亮時間占總時間的1ön , 只要每行的刷新速率大于50 Hz, 利用人眼的視覺暫留效應, 人們就可以看到一幅完整的文字或畫面[ 2 ]。常規型驅動電路的設計一般是用串入并出的通用集成電路芯片如74HC595 或MC14094 等作為列數據鎖存, 以8050 等小功率N PN 三極管為列驅動, 而以達林頓三極管如T IP127 等作為行掃描管, 其電路如圖1 所示。
上傳時間: 2014-02-19
上傳用戶:lingzhichao
本章主要介紹51系列單片機系統擴展問題,在本章中要研究較多的硬件方面及硬軟結合方面的問題,本章與第一章關系密切,在學習本章內容之前,要先明確51系列單片機本身的系統資源,可先復習一下前面幾章的有關單片機硬件組成方面的內容。 本章將介紹以下具體內容: 系統擴展的含義、單片機的地址總線和數據總線、常見系統擴展電路舉例?!?.0 前言 1.系統擴展的含義 單片機中雖然已經集成了CPU、I/O口、定時器、中斷系統、存儲器等計算機的基本部件(即系統資源),但是對一些較復雜應用系統來說有時感到以上資源中的一種或幾種不夠用,這就需要在單片機芯片外加相應的芯片、電路,使得有關功能得以擴充,我們稱為系統擴展(即系統資源的擴充)。 2.系統擴展分類----單一功能的擴展 綜合功能的擴展3.系統擴展需要解決的問題---- 單片機與相應芯片的接口電路連接(即地址總線、數據總線、控制總線的連接)與編程。4.單片機的地址總線和數據總線 51系列單片機沒有專用的對外地址總線和數據總線,其P0口和P2口既是通用I/O口,同時P0口還是分時復用的雙向數據總線和低8位地址總線(一般需要加一級鎖存器),而P2口則是高8位地址總線5.常見系統擴展電路(1)單一功能的系統擴展 存儲器的擴展(程序存儲器、數據存儲器、E2PROM ) 外部中斷源的擴展(簡單門電路) 并行口的擴展(8155)(2)綜合功能的擴展 外部RAM、定時器、并行口擴展(8155) 存儲器、并行口、定時器擴展(多芯片)7.1.1 程序存儲器的擴展.程序存儲器的作用----存放程序代碼或常數表格 .擴展時所用芯片----一般用只讀型存儲器芯片(可以是EPROM、E2PROM、 FLASH芯片等)。 .擴展電路連接 ---- 用EPROM 2764擴展程序存儲器。 .存儲器地址分析----究竟單片機輸出什么地址值時,可以指向存儲器中的某一單元。
上傳時間: 2013-10-19
上傳用戶:zhaoq123
單片機ISP接口電路 ISP下載電路
上傳時間: 2013-11-04
上傳用戶:robter
10pin jtag接口定義 表1 Rainbow Blaster 的10PIN 母頭接口定義引AS 模式 PS 模式 JTAG 模式腳 信號名 描述 信號名 描述 信號名 描述1 DCLK 時鐘信號 DCLK 時鐘信號 TCK 時鐘信號2 GND 信號地 GND 信號地 GND 信號地3 CONF_DONE 配置完畢 CONF_DONE 配置完畢 TDO 數據來自于器件4 VCC(TRGT) 目標電源 VCC(TRGT) 目標電源 VCC(TRGT) 目標電源5 nCONFIG 配置控制 nCONFIG 配置控制 TMS JTAG 狀態機控制6 nCE Cyclone 芯片使能/ /7 DATAOUT AS 數據輸出 nSTATUS 配置狀態 /8 nCS 串行配置器件芯片使能/ /9 ASDI AS 數據輸入 DATA0 數據到器件 TDI 數據到器件10 GND 信號地 GND 信號地 GND 信號地
上傳時間: 2014-04-02
上傳用戶:lina2343
什么是JTAG 到底什么是JTAG呢? JTAG(Joint Test Action Group)聯合測試行動小組)是一種國際標準測試協議(IEEE 1149.1兼容),主要用于芯片內部測試。現在多數的高級器件都支持JTAG協議,如DSP、FPGA器件等。標準的JTAG接口是4線:TMS、 TCK、TDI、TDO,分別為模式選擇、時鐘、數據輸入和數據輸出線。 JTAG最初是用來對芯片進行測試的,基本原理是在器件內部定義一個TAP(Test Access Port�測試訪問口)通過專用的JTAG測試工具對進行內部節點進行測試。JTAG測試允許多個器件通過JTAG接口串聯在一起,形成一個JTAG鏈,能實現對各個器件分別測試?,F在,JTAG接口還常用于實現ISP(In-System rogrammable�在線編程),對FLASH等器件進行編程。 JTAG編程方式是在線編程,傳統生產流程中先對芯片進行預編程現再裝到板上因此而改變,簡化的流程為先固定器件到電路板上,再用JTAG編程,從而大大加快工程進度。JTAG接口可對PSD芯片內部的所有部件進行編程 JTAG的一些說明 通常所說的JTAG大致分兩類,一類用于測試芯片的電氣特性,檢測芯片是否有問題;一類用于Debug;一般支持JTAG的CPU內都包含了這兩個模塊。 一個含有JTAG Debug接口模塊的CPU,只要時鐘正常,就可以通過JTAG接口訪問CPU的內部寄存器和掛在CPU總線上的設備,如FLASH,RAM,SOC(比如4510B,44Box,AT91M系列)內置模塊的寄存器,象UART,Timers,GPIO等等的寄存器。 上面說的只是JTAG接口所具備的能力,要使用這些功能,還需要軟件的配合,具體實現的功能則由具體的軟件決定。 例如下載程序到RAM功能。了解SOC的都知道,要使用外接的RAM,需要參照SOC DataSheet的寄存器說明,設置RAM的基地址,總線寬度,訪問速度等等。有的SOC則還需要Remap,才能正常工作。運行Firmware時,這些設置由Firmware的初始化程序完成。但如果使用JTAG接口,相關的寄存器可能還處在上電值,甚至時錯誤值,RAM不能正常工作,所以下載必然要失敗。要正常使用,先要想辦法設置RAM。在ADW中,可以在Console窗口通過Let 命令設置,在AXD中可以在Console窗口通過Set命令設置。
上傳時間: 2013-10-23
上傳用戶:aeiouetla
自制89C51單片機實驗電路板 學習單片機離不開實驗,以往單片機的實驗往往依賴于仿真機和單片機學習系統,價格昂貴,初學者很難配備。近年來,隨著FLASH型單片機的廣泛應用,采用軟件模擬加寫片驗證成為一種經濟實用的實驗方法,以AT89C51單片機為例,其價格不足¥10RMB,而擦、寫次數可以有1000次,一塊芯片即可做上千次的實驗。目前,流行的單片機開發軟件Keil可以免費獲得用于學習的EVAL版;編程器價格并不昂貴,專門用于寫89C51類芯片的編程器價格更低廉(不足百元),而且編程器也是以后開發單片機所必備的工具;相比之下,用于實驗的電路板制作比較麻煩,用萬用板搭接,只能做些很簡單的電路,稍復雜的電路一般要用到雙面板,而業余條件下是很難自制雙面板的,而且實驗電路板主要是用于學習,學完了,也就沒有什么使用價值了,所以很多人希望能夠廉價地獲得。作者在多年單片機教學(包括從事網絡教學)的基礎上,開發了一塊有較多功能但使用單面板的單片機實驗板,適于業余愛好者自制。這塊實驗板采用89C51為主芯片,板上安裝了5位數碼管,8個發光二極管,四個按鈕開關,一個簡單的音響電路,一個用于計數實驗的振蕩器,At24CXXX類芯片插座,X5045芯片插座,RS232串行接口等。使用這塊實驗板可以進行流水燈、人機界面程序設計、音響、中斷、計數器等基本編程練習,還可以學習I2C接口芯片使用、SPI接口芯片使用、與PC機進行串行通訊等目前較為流行的技術。圖1是該實驗板的電路原理圖,從圖中可以看出,該實驗板由若干塊集成電路和一些阻容元件等組成,下面我們就分別介紹。1、發光二極管接口主芯片(U1)的P1端口接了8個發光二極管,這些發光二極管的負極接到P1端口各引腳,而正極則通過一個排電阻(標號為JP4,阻值為470毆)接到正電源端,這樣,這些發光二極管亮的條件就U1的P1口相引的引腳為低電平,即如果P1口某引腳輸出為0,相應的燈亮,如果輸出為1,相應的燈滅。例:MOV P1,#0FH該行程序將使發光二極管L1-L4熄滅,而L5-L8點亮。2、數碼管接口U1的P0口和P2口的部份引腳構成了5位LED數碼管驅動電路,這里LED數碼管采用了共陽型,共陽型數碼管的筆段(即對應abcdefgh)引腳是二極管的負極,所有二極管的正極連在一起,構成公共端,即片選端,對于這種數碼管的驅動,要求在片選端提供電流,為此,使用了PNP型三極管作為片選端的驅動,共使用5只三極管,所有三極管的發射極連在一起,接到正電源端,它們的基極則分別連到P2.0⋯P2.4,這樣,當P2.0⋯P2.4中某引腳輸出是高電平時,三極管不導通,不能給相應位的數碼管供電,該位數碼管的所有筆段都不亮,反之,如果某引腳是低電平時,三極管導通,可以給相應的數碼管供電,該位數碼管是否點亮,點亮哪些筆段,取決于這些筆段引腳是高或低電平。從圖圖1 共陽型數LED顯示器.....
上傳時間: 2013-11-14
上傳用戶:dingdingcandy
輸入輸出總線接口技術
上傳時間: 2013-10-21
上傳用戶:lhuqi