線性卷積和線性相關的FFT算法:一 實驗目的 1:掌握FFT基2時間(或基2頻率)抽選法,理解其提高減少乘法運算次數提高運算速度的原理。 2:掌握FFT圓周卷積實現線性卷積的原理 二 實驗內容及要求 1.對N=2048或4096點的離散時間信號x(n),試用Matlab語言編程分別以DFT和FFT計算N個頻率樣值X(k), 比較兩者所用時間的大小。 2.對N/2點長的x(n)和N/2點長的h(n),試用Matlab語言編程實現以圓周卷積代替線性卷積,并比較圓周卷積法和直接計算線性卷積兩者的運算速度。 三預做實驗 1.FFT與DFT計算時間的比較 (1)FFT提高運算速度的原理 (2)實驗數據與結論 2.圓周卷積代替線性卷積的有效性實驗 (1)圓周卷積代替線性卷積的原理 (2)實驗數據和結論 FFT提高運算速度的原理 FFT算法將長序列的DFT分解為短序列的DFT。N點的DFT先分解為2個N/2點的DFT,每個N/2點的DFT又分解為N/4點的DFT,等等。最小變換的點數即所謂的“基數”。因此,基數為2的FFT算法的最小變換(或稱蝶型)是2點的DFT。一般地,對N點FFT,對應于N個輸入樣值,有N個頻域樣值與之對應。
上傳時間: 2013-10-26
上傳用戶:erkuizhang
找一塊電源仔細看一下,在電源部分中,跨接L-N之間的小方塊(單位是μF)電容就是X電容,通常在是電源入口的第一個;同樣,在電源部分的跨接L-PE和N-PE之間的藍色的安規電容(單位pF)就是Y電容,通常是成對出現的。 或者你可以形象的看,X電容具有2個輸入端,2個輸出端,很象X;Y電容具有一個輸入端,一個輸出端以及一個公共的大地,很象一個Y 沒有什么概念的,一個在差模回路上,一個在共模回路上,X、Y的名稱純粹是一個稱呼,就象是X和Y軸一樣 X電容主要用于流電源線路中,此時當電容失時不致產生線間放電。X電容器的測試條件是:在交流電壓的有效值*1.5的電壓下工作100Hour;再加上1KV的高壓測試。Y電容器在一旦失效會導致放電危險(尤其是對外殼)時是強制使用的。Y類型電容器的測試條件是:在交流電壓的有效值*1.7的電壓下工作100Hour,加上2KV高壓測試。如果電容器用于不接地的II類產品中,則要增加至4KV。
上傳時間: 2013-10-24
上傳用戶:1583264429
采用射頻等離子體增強化學氣相沉積(RF2PECVD)技術制備非晶硅(a2Si)NIP 太陽能電池,其中電池的窗口層采用P 型晶化硅薄膜,電池結構為Al/ glass/ SnO2 / N(a2Si :H) / I(a2Si :H) / P(cryst2Si : H) / ITO/ Al。為了使P 型晶化硅薄膜能夠在a2Si 表面成功生長,電池制備過程中采用了H 等離子體處理a2Si 表面的方法。通過調節電池P 層和N 層厚度和H 等離子體處理a2Si 表面的時間,優化了太陽能電池的制備工藝。結果表明,使用H 等離子體處理a2Si 表面5 min ,可以在a2Si 表面獲得高電導率的P 型晶化硅薄膜,并且這種結構可以應用到電池上;當P 型晶化硅層沉積時間12. 5 min ,N 層沉積12 min ,此種結構電池特性最好,效率達6. 40 %。通過調整P 型晶化硅薄膜的結構特征,將能進一步改善電池的性能。
上傳時間: 2013-11-21
上傳用戶:wanqunsheng
1.1為了加強交流高壓隔離開關和接地開關全過程管理、及時掌握設備各個階段的狀況,特制訂本評價標準。 1.2 本標準是依據國家、行業、國家電網公司現行有關標準、規程、規范,并結合近年來國家電網公司交流高壓隔離開關和接地開關生產運行情況分析以及設備運行經驗而制定的。 1.3本標準規定了交流高壓隔離開關和接地開關在設備投運前(包括設計選型、監造、現場安裝、現場驗收)、運行維護、檢修、技術監督、技術改造等全過程的評價項目及內容、評價依據、評價標準及方法。 1.4 本標準適用于110(66)kV及以上電壓等級交流高壓隔離開關和接地開關的評價工作。
上傳時間: 2014-01-15
上傳用戶:思琦琦
n保護電器在低壓配電系統中占有重要地位 n配電線路發生故障保護主要器件——低壓熔斷器和低壓斷路器 n正確選擇和整定電器參數 * 國家標準—《低壓配電設計規范》(GB 50054-95); * 按照配電系統的狀況和計算的故障電流值 (短路電流和接地故障電流等) * 正確整定保護電器的參數 * 有選擇地切斷故障,即只切斷發生故障的一段電路,而不切斷上級配電線路。
上傳時間: 2013-10-26
上傳用戶:lbbyxmoran
小電流接地選線裝置的應用在我國10~35kV電網中,普遍采用中性點不接地或經消弧線圈接地的方式,這兩種方式統稱為小電流接地系統。小電流接地系統單相接地故障是電網最常見的故障之一,當發生單相接地故障時,雖然在高壓側發生了故障相電壓降低和非故障相電壓升高,引起中性點位移,但線電壓仍然是對稱的且故障電流小,對供電設備不致造成危害,用戶仍可繼續工作。但單相接地故障有可能發展成為兩相接地短路故障或其他形式的故障,為保證設備及人員安全,應及時找出接地故障線路以便迅速處理。對于單相接地故障的檢測,傳統的方法是采用副二次繞組接成開口三角形的三相電壓互感進行檢測。為了尋找故障線路,值班員通常采取輪流拉閘的辦法來確定具體的故障線路。這種方法,會給安全運行及用戶的生產造成一定的影響,降低了用戶的供電可靠性。隨著微機技術的發展,出現了微機型的小電流接地選線裝置,這種裝置可以在不對線路拉閘停電的情況下找到故障線路,因此與傳統檢測方案相比有很大的優越性。
上傳時間: 2013-12-18
上傳用戶:dddddd55
隨著我國通信、電力事業的發展,通信、電力網絡的規模越來越大,系統越來越復雜。與之相應的對交流供電的可靠性、靈活性、智能化、免維護越來越重要。在中國通信、電力網絡中,傳統的交流供電方案是以UPS或單機式逆變器提供純凈不間斷的交流電源。由于控制技術的進步、完善,(N+X)熱插拔模塊并聯逆變電源已經非常成熟、可靠;在歐美的通信、電力發達的國家,各大通信運營商、電力供應商、軍隊均大量應用了這種更合理的供電方案。與其它方案相比較,(N+X)熱插拔模塊并聯逆變電源具有以下明顯的優點。
上傳時間: 2014-03-24
上傳用戶:alan-ee
當今電子系統如高端處理器及記憶體,對電源的需求是趨向更低電壓、更高電流的應用。同時、對負載的反應速度也要提高。因此功率系統工程師要面對的挑戰,是要設計出符合系統要求的細小、價廉但高效率的電源系統。而這些要求都不是傳統功率架構能夠完全滿足的。Vicor提出的分比功率架構(Factorized Power Architecture FPA)以及一系列的整合功率元件,可提供革命性的功率轉換方案,應付以上提及的各項挑戰。這些功率元件稱為V•I晶片。
上傳時間: 2013-11-15
上傳用戶:yan2267246
TLC2543是TI公司的12位串行模數轉換器,使用開關電容逐次逼近技術完成A/D轉換過程。由于是串行輸入結構,能夠節省51系列單片機I/O資源;且價格適中,分辨率較高,因此在儀器儀表中有較為廣泛的應用。 TLC2543的特點 (1)12位分辯率A/D轉換器; (2)在工作溫度范圍內10μs轉換時間; (3)11個模擬輸入通道; (4)3路內置自測試方式; (5)采樣率為66kbps; (6)線性誤差±1LSBmax; (7)有轉換結束輸出EOC; (8)具有單、雙極性輸出; (9)可編程的MSB或LSB前導; (10)可編程輸出數據長度。 TLC2543的引腳排列及說明 TLC2543有兩種封裝形式:DB、DW或N封裝以及FN封裝,這兩種封裝的引腳排列如圖1,引腳說明見表1 TLC2543電路圖和程序欣賞 #include<reg52.h> #include<intrins.h> #define uchar unsigned char #define uint unsigned int sbit clock=P1^0; sbit d_in=P1^1; sbit d_out=P1^2; sbit _cs=P1^3; uchar a1,b1,c1,d1; float sum,sum1; double sum_final1; double sum_final; uchar duan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; uchar wei[]={0xf7,0xfb,0xfd,0xfe}; void delay(unsigned char b) //50us { unsigned char a; for(;b>0;b--) for(a=22;a>0;a--); } void display(uchar a,uchar b,uchar c,uchar d) { P0=duan[a]|0x80; P2=wei[0]; delay(5); P2=0xff; P0=duan[b]; P2=wei[1]; delay(5); P2=0xff; P0=duan[c]; P2=wei[2]; delay(5); P2=0xff; P0=duan[d]; P2=wei[3]; delay(5); P2=0xff; } uint read(uchar port) { uchar i,al=0,ah=0; unsigned long ad; clock=0; _cs=0; port<<=4; for(i=0;i<4;i++) { d_in=port&0x80; clock=1; clock=0; port<<=1; } d_in=0; for(i=0;i<8;i++) { clock=1; clock=0; } _cs=1; delay(5); _cs=0; for(i=0;i<4;i++) { clock=1; ah<<=1; if(d_out)ah|=0x01; clock=0; } for(i=0;i<8;i++) { clock=1; al<<=1; if(d_out) al|=0x01; clock=0; } _cs=1; ad=(uint)ah; ad<<=8; ad|=al; return(ad); } void main() { uchar j; sum=0;sum1=0; sum_final=0; sum_final1=0; while(1) { for(j=0;j<128;j++) { sum1+=read(1); display(a1,b1,c1,d1); } sum=sum1/128; sum1=0; sum_final1=(sum/4095)*5; sum_final=sum_final1*1000; a1=(int)sum_final/1000; b1=(int)sum_final%1000/100; c1=(int)sum_final%1000%100/10; d1=(int)sum_final%10; display(a1,b1,c1,d1); } }
上傳時間: 2013-11-19
上傳用戶:shen1230
HT45F23 MCU 為用戶提供兩組獨立的比較器,並都由軟體控制,輸入輸出口安排靈活,均 與I/O 共用引腳。本文著重介紹HT45F23 比較器的功能使用的相關設定與應用方式。
標簽: Comparator 45F F23 HT
上傳時間: 2013-10-16
上傳用戶:songkun