基于多姿態一維距離像(HRRP)的二維散射中心重構matlab仿真算法
上傳時間: 2017-09-17
上傳用戶:TF2015
國標類相關專輯 313冊 701MGB-T4677.8-1984 印制板鍍涂覆蓋厚度測試方法 β反向散射法.pdf
標簽:
上傳時間: 2014-05-05
上傳用戶:時代將軍
基于積分方程的地下管線電磁散射計算,格式采用畢業論文格式方便借鑒
上傳時間: 2017-11-08
上傳用戶:天琊無悔
上傳的為關于散射中心提取的文獻資料,對散射中心提取方面的研究具有幫助
標簽: 散射
上傳時間: 2019-03-05
上傳用戶:zsy0321
利用mie散射理論求消光效率因子,反射因子等等
上傳時間: 2019-03-08
上傳用戶:qiqi99999
基于維納濾波的對流層散射通信系統仿真和基于LMS自適應算法的對流層散射通信系統仿真
上傳時間: 2019-05-20
上傳用戶:dxldxl
產生高斯型隨機粗糙表面,參考文獻 國防科技大學博士論文 《太赫茲目標散射特性關鍵技術研究 》
標簽: 高斯 隨機 表面 源碼 大學 關鍵技術 太赫茲 散射 論文
上傳時間: 2020-02-28
上傳用戶:liugang_ctgu
function [R,k,b] = msc(A) % 多元散射校正 % 輸入待處理矩陣,通過多元散射校正,求得校正后的矩陣 %% 獲得矩陣行列數 [m,n] = size(A); %% 求平均光譜 M = mean(A,2); %% 利用最小二乘法求每一列的斜率k和截距b for i = 1:n a = polyfit(M,A(:,i),1); if i == 1 k = a(1); b = a(2); else k = [k,a(1)]; b = [b,a(2)]; end end %% 求得結果 for i = 1:n Ai = (A(:,i)-b(i))/k(i); if i == 1 R = Ai; else R = [R,Ai]; end end
上傳時間: 2020-03-12
上傳用戶:15275387185
本書主要闡述設計射頻與微波功率放大器所需的理論、方法、設計技巧,以及將分析計算與計算機輔助設計相結合的優化設計方法。這些方法提高了設計效率,縮短了設計周期。本書內容覆蓋非線性電路設計方法、非線性主動設備建模、阻抗匹配、功率合成器、阻抗變換器、定向耦合器、高效率的功率放大器設計、寬帶功率放大器及通信系統中的功率放大器設計。 本書適合從事射頻與微波動功率放大器設計的工程師、研究人員及高校相關專業的師生閱讀。 作者簡介 Andrei Grebennikov是M/A—COM TYCO電子部門首席理論設計工程師,他曾經任教于澳大利亞Linz大學、新加坡微電子學院、莫斯科通信和信息技術大學。他目前正在講授研究班課程,在該班上,本書作為國際微波年會論文集。 目錄 第1章 雙口網絡參數 1.1 傳統的網絡參數 1.2 散射參數 1.3 雙口網絡參數間轉換 1.4 雙口網絡的互相連接 1.5 實際的雙口電路 1.5.1 單元件網絡 1.5.2 π形和T形網絡 1.6 具有公共端口的三口網絡 1.7 傳輸線 參考文獻 第2章 非線性電路設計方法 2.1 頻域分析 2.1.1 三角恒等式法 2.1.2 分段線性近似法 2.1.3 貝塞爾函數法 2.2 時域分析 2.3 NewtOn.Raphscm算法 2.4 準線性法 2.5 諧波平衡法 參考文獻 第3章 非線性有源器件模型 3.1 功率MOSFET管 3.1.1 小信號等效電路 3.1.2 等效電路元件的確定 3.1.3 非線性I—V模型 3.1.4 非線性C.V模型 3.1.5 電荷守恒 3.1.6 柵一源電阻 3.1.7 溫度依賴性 3.2 GaAs MESFET和HEMT管 3.2.1 小信號等效電路 3.2.2 等效電路元件的確定 3.2.3 CIJrtice平方非線性模型 3.2.4 Curtice.Ettenberg立方非線性模型 3.2.5 Materka—Kacprzak非線性模型 3.2.6 Raytheon(Statz等)非線性模型 3.2.7 rrriQuint非線性模型 3.2.8 Chalmers(Angek)v)非線性模型 3.2.9 IAF(Bemth)非線性模型 3.2.10 模型選擇 3.3 BJT和HBT汀管 3.3.1 小信號等效電路 3.3.2 等效電路中元件的確定 3.3.3 本征z形電路與T形電路拓撲之間的等效互換 3.3.4 非線性雙極器件模型 參考文獻 第4章 阻抗匹配 4.1 主要原理 4.2 Smith圓圖 4.3 集中參數的匹配 4.3.1 雙極UHF功率放大器 4.3.2 M0SFET VHF高功率放大器 4.4 使用傳輸線匹配 4.4.1 窄帶功率放大器設計 4.4.2 寬帶高功率放大器設計 4.5 傳輸線類型 4.5.1 同軸線 4.5.2 帶狀線 4.5.3 微帶線 4.5.4 槽線 4.5.5 共面波導 參考文獻 第5章 功率合成器、阻抗變換器和定向耦合器 5.1 基本特性 5.2 三口網絡 5.3 四口網絡 5.4 同軸電纜變換器和合成器 5.5 wilkinson功率分配器 5.6 微波混合橋 5.7 耦合線定向耦合器 參考文獻 第6章 功率放大器設計基礎 6.1 主要特性 6.2 增益和穩定性 6.3 穩定電路技術 6.3.1 BJT潛在不穩定的頻域 6.3.2 MOSFET潛在不穩定的頻域 6.3.3 一些穩定電路的例子 6.4 線性度 6.5 基本的工作類別:A、AB、B和C類 6.6 直流偏置 6.7 推挽放大器 6.8 RF和微波功率放大器的實際外形 參考文獻 第7章 高效率功率放大器設計 7.1 B類過激勵 7.2 F類電路設計 7.3 逆F類 7.4 具有并聯電容的E類 7.5 具有并聯電路的E類 7.6 具有傳輸線的E類 7.7 寬帶E類電路設計 7.8 實際的高效率RF和微波功率放大器 參考文獻 第8章 寬帶功率放大器 8.1 Bode—Fan0準則 8.2 具有集中元件的匹配網絡 8.3 使用混合集中和分布元件的匹配網絡 8.4 具有傳輸線的匹配網絡 8.5 有耗匹配網絡 8.6 實際設計一瞥 參考文獻 第9章 通信系統中的功率放大器設計 9.1 Kahn包絡分離和恢復技術 9.2 包絡跟蹤 9.3 異相功率放大器 9.4 Doherty功率放大器方案 9.5 開關模式和雙途徑功率放大器 9.6 前饋線性化技術 9.7 預失真線性化技術 9.8 手持機應用的單片cMOS和HBT功率放大器 參考文獻
上傳時間: 2013-04-24
上傳用戶:W51631
大氣能見度(Visibility)是反映大氣透明度的一個指標,是氣象觀測的常規項目,它對航海、航空、陸上交通以及軍事活動等都有重要影響。目前國內能見度儀,特別是適用于海洋惡劣環境中的便攜式、高精度的能見度儀較少,需要研制適合海上測量的能見度儀。 在系統闡述大氣能見度檢測理論依據的基礎上,研究了能見度檢測系統的關鍵技術,主要包括光源的穩定性、微弱信號的相敏檢測技術及信號的抗干擾技術等。本系統由發射模塊、接收模塊、信號處理模塊及電源模塊等組成。設計了發射模塊和接收模塊的光學系統,并進行了發射光源的調制設計、接收模塊中的光電轉換電路、放大電路、帶通濾波電路的設計及信號的鎖相放大電路的設計等。大氣能見度測量屬于微弱信號檢測技術,在海上更容易受到外界自然光及其它環境因素的干擾,因此濾除各種干擾,提取有用的微弱信號是本設計的核心。本文重點研究了光敏檢測技術和適合于微弱信號檢測的鎖相放大技術,設計了以OPT101為核心的光敏檢測電路,有效提高了電路的靈敏度和抗干擾,簡化了設計;設計了以平衡調制解調芯片AD630為核心的鎖相放大電路和由雙D觸發器SN74HCT74及單穩態觸發器M74HC4538B1R組成的移相電路,實驗證明,在較大的噪聲背景下,該電路可以有效地提取出反映能見度變化的有用信號。鎖相放大后的直流信號,經AD處理后輸入到微處理器ARM中,經過理論運算最后得到能見度值。為了保證系統工作的穩定性,特別是海上惡劣環境,對系統進行了防鹽、霧、水的設計,如對鏡頭進行鍍膜、對PCB板進行了三防處理等。 最后進行了能見度儀樣機的研制。
上傳時間: 2013-04-24
上傳用戶:胡佳明胡佳明