亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

數(shù)(shù)據(jù)(jù)存儲(chǔ)器

  • asp_erp 源碼 附詳盡使用說明及數(shù)據(jù)庫

    asp_erp 源碼 附詳盡使用說明及數(shù)據(jù)庫

    標簽: asp_erp

    上傳時間: 2013-12-13

    上傳用戶:xaijhqx

  • 一個基于51單片機的鎖存器代碼.附帶電路圖

    一個基于51單片機的鎖存器代碼.附帶電路圖

    標簽: 51單片機 鎖存器 代碼 電路圖

    上傳時間: 2014-01-14

    上傳用戶:壞壞的華仔

  • 計數(shù)器,分頻器,鎖存器,驅(qū)動器分冊 338頁 5.7M.pdf

    器件數(shù)據(jù)手冊專輯 120冊 2.15G計數(shù)器,分頻器,鎖存器,驅(qū)動器分冊 338頁 5.7M.pdf

    標簽:

    上傳時間: 2014-05-05

    上傳用戶:時代將軍

  • 一種16位音頻SigmaDelta模數(shù)轉(zhuǎn)換器的研究與設(shè)計.rar

    Sigma-Delta A/D轉(zhuǎn)換器利用過采樣,噪聲整形和數(shù)字濾波技術(shù),有效衰減了輸出信號帶內(nèi)的量化噪聲,提高了信噪比。與傳統(tǒng)的Nyquist轉(zhuǎn)換器相比,它降低了對模擬電路性能指標和元件精度的要求,簡化了模擬電路的設(shè)計,降低了生產(chǎn)成本。 本論文在對Sigma-Delta A/D轉(zhuǎn)換器原理研究的基礎(chǔ)上,基于TSMC0.18um工藝,采用1.8V工作電源,128倍的過采樣率,6.4MHz的采樣頻率,設(shè)計了一個主要應用于音頻信號處理的Sigma-Delta A/D轉(zhuǎn)換器,分辨率達到16位。在調(diào)制器的設(shè)計中,本文采用了多級噪聲整形MASH(2-1)級聯(lián)調(diào)制器結(jié)構(gòu),同時,考慮了各種非理想因素對系統(tǒng)性能的影響,在SDtoolbox工具的幫助下使用Simulink進行調(diào)制器系統(tǒng)設(shè)計。并使用Cadence Spectre對模塊電路進行設(shè)計仿真,包括運放,比較器,帶隙基準電壓源,CMOS開關(guān),非交疊時鐘產(chǎn)生電路等。在數(shù)字抽取濾波器的設(shè)計中,采用了分級抽取技術(shù),使用MATLAB軟件中的SPTool和FDATool工具對各級抽取濾波器進行優(yōu)化設(shè)計。并在原有的濾波器算法的基礎(chǔ)上,采用了CIC濾波器和半帶濾波器,設(shè)計出了運算量和存儲量都相對少的三級抽取濾波器系統(tǒng),大大降低了功耗和面積。 論文的仿真結(jié)果表明,所設(shè)計的Sigma-Delta A/D轉(zhuǎn)換器信噪比達到102.3dB,滿足系統(tǒng)需要的16位精度要求。 關(guān)鍵詞:Sigma-Ddta; 信噪比; 多級噪聲整形; 數(shù)字抽取濾波器

    標簽: SigmaDelta 音頻 模數(shù)轉(zhuǎn)換器

    上傳時間: 2013-06-27

    上傳用戶:songyuncen

  • MP3音頻解碼器的FPGA原型芯片設(shè)計與實現(xiàn).rar

    MP3音樂是目前最為流行的音樂格式,因其音質(zhì)、復雜度與壓縮比的完美折中,占據(jù)著廣闊的市場,不僅在互聯(lián)網(wǎng)上廣為流傳,而且在便攜式設(shè)備領(lǐng)域深受人們喜愛。本文以MPEG-1的MP3音頻解碼器為研究對象,在實時性、面積等約束條件下,研究MP3解碼電路的設(shè)計方法,實現(xiàn)FPGA原型芯片,研究MP3原型芯片的驗證方法。 論文的主要貢獻如下: (1)使用算法融合方法合并MP3解碼過程的相關(guān)步驟,以減少緩沖區(qū)存儲單元的容量和訪存次數(shù)。如把重排序步驟融合到反量化模塊,可以減少一半的讀寫RAM操作;把IMDCT模塊內(nèi)部的三個算法步驟融合在一起進行設(shè)計,可以省去存儲中間計算結(jié)果的緩存區(qū)單元。 (2)反量化、立體聲處理等模塊中,采用流水線設(shè)計技術(shù),設(shè)置寄存器把較長的組合邏輯路徑隔開,提高了電路的性能和可靠性;使用連續(xù)訪問公共緩存技術(shù),合理規(guī)劃各計算子模塊的工作時序,將數(shù)據(jù)計算的時間隱藏在訪存過程中;充分利用頻率線的零值區(qū)特性,有效地減少數(shù)據(jù)計算量,加快了數(shù)據(jù)處理的速度。 (3)設(shè)計了MP3硬件解碼器的FPGA原型芯片。采用Verilog HDL硬件描述語言設(shè)計RTL級電路,完成功能仿真,以Altera公司Stratix II系列的EP2S180 FPGA開發(fā)板為平臺,實現(xiàn)MP3解碼器的FPGA原型芯片。MP3硬件解碼器在Stratix II EP2S180器件內(nèi)的資源利用率約為5%,其中組合邏輯查找表ALUT為7189個,寄存器共有4024個,系統(tǒng)頻率可達69.6MHz,充分滿足了MP3解碼過程的實時性要求。實驗結(jié)果表明,MP3音頻解碼FPGA原型芯片可正常播放聲音,解碼音質(zhì)良好。

    標簽: FPGA MP3 音頻解碼器

    上傳時間: 2013-07-01

    上傳用戶:xymbian

  • 基于FPGA的靜止圖像編碼器

    遙感圖像在人類生活和軍事領(lǐng)域的應用日益廣泛,適合各種要求的遙感圖像編碼技術(shù)具有重要的現(xiàn)實意義。基于小波變換的內(nèi)嵌編碼技術(shù)已成為當前靜止圖像編碼領(lǐng)域的主流,其中就包括基于分層樹集合分割排序(Set Partitioning inHierarchical Trees,SPIHT)的內(nèi)嵌編碼算法。這種算法具有碼流可隨機獲取以及良好的恢復圖像質(zhì)量等特性,因此成為實際應用中首選算法。隨著對圖像編碼技術(shù)需求的不斷增長,尤其是在軍事應用領(lǐng)域如衛(wèi)星偵察等方面,這種編碼算法亟待轉(zhuǎn)換為可應用的硬件編碼器。 在靜止圖像編碼領(lǐng)域,高性能的圖像編碼器設(shè)計一直是相關(guān)研究人員不懈追求的目標。本文針對靜止圖像編碼器的設(shè)計作了深入研究,并致力于高性能的圖像編碼算法實現(xiàn)結(jié)構(gòu)的研究,提出了具有創(chuàng)新性的降低計算量、存儲量,提高壓縮性能的算法實現(xiàn)結(jié)構(gòu),并成功應用于圖像編碼硬件系統(tǒng)中。這個方案還支持壓縮比在線可調(diào),即在不改變硬件框架的條件下可按用戶要求實現(xiàn)16倍到2倍的壓縮,以適應不同的應用需求。本文所做的工作包括了兩個部分。 1.一種基于行的實時提升小波變換實現(xiàn)結(jié)構(gòu):該結(jié)構(gòu)同時處理行變換和列變換,并且在圖像邊界采用對稱擴展輸出邊界數(shù)據(jù),使得圖像小波變換時間與傳統(tǒng)的小波變換相比提高了將近2.6倍,提高了硬件系統(tǒng)的實時性。該結(jié)構(gòu)還合理地利用和調(diào)度內(nèi)部緩沖器,不需要外部緩沖器,大大降低了硬件系統(tǒng)對存儲器的要求。 2.一種采用左遍歷的比特平面并行SPIHT編碼結(jié)構(gòu):在該編碼結(jié)構(gòu)中,空間定位生成樹采用深度優(yōu)先遍歷方式,比特平面同時處理極大地提高了編碼速度。

    標簽: FPGA 圖像 編碼器

    上傳時間: 2013-06-17

    上傳用戶:abc123456.

  • 電位計訊號轉(zhuǎn)換器

    電位計訊號轉(zhuǎn)換器 AT-PM1-P1-DN-ADL 1.產(chǎn)品說明 AT系列轉(zhuǎn)換器/分配器主要設(shè)計使用于一般訊號迴路中之轉(zhuǎn)換與隔離;如 4~20mA、0~10V、熱電偶(Type K, J, E, T)、熱電阻(Rtd-Pt100Ω)、荷重元、電位計(三線式)、電阻(二線式)及交流電壓/電流等訊號,機種齊全。 此款薄型設(shè)計的轉(zhuǎn)換器/分配器,除了能提供兩組訊號輸出(輸出間隔離)或24V激發(fā)電源供傳送器使用外,切換式電源亦提供了安裝的便利性。上方并設(shè)計了電源、輸入及輸出指示燈及可插拔式接線端子方便現(xiàn)場施工及工作狀態(tài)檢視。 2.產(chǎn)品特點 可選擇帶指撥開關(guān)切換,六種常規(guī)輸出信號0-5V/0~10V/1~5V/2~10V/4~20mA/ 0~20mA 可自行切換。 雙回路輸出完全隔離,可選擇不同信號。 設(shè)計了電源、輸入及輸出LED指示燈,方便現(xiàn)場工作狀態(tài)檢視。 規(guī)格選擇表中可指定選購0.1%精度 17.55mm薄型35mm導軌安裝。 依據(jù)CE國際標準規(guī)范設(shè)計。 3.技術(shù)規(guī)格 用途:信號轉(zhuǎn)換及隔離 過載輸入能力:電流:10×額定10秒 第二組輸出:可選擇 輸入范圍:P1:0 Ω ~ 50.0 Ω / ~ 2.0 KΩ P2:0 Ω ~ 2.0 KΩ / ~ 100.0 KΩ 精確度: ≦±0.2% of F.S. ≦±0.1% of F.S. 偵測電壓:1.6V 輸入耗損: 交流電流:≤ 0.1VA; 交流電壓:≤ 0.15VA 反應時間: ≤ 250msec (10%~90% of FS) 輸出波紋: ≤ ±0.1% of F.S. 滿量程校正范圍:≤ ±10% of F.S.,2組輸出可個別調(diào)整 零點校正范圍:≤ ±10% of F.S.,2組輸出可個別調(diào)整 隔離:AC 2.0 KV 輸出1與輸出2之間 隔離抗阻:DC 500V 100MΩ 工作電源: AC 85~265V/DC 100~300V, 50/60Hz 或 AC/DC 20~56V (選購規(guī)格) 消耗功率: DC 4W, AC 6.0VA 工作溫度: 0~60 ºC 工作濕度: 20~95% RH, 無結(jié)露 溫度系數(shù): ≤ 100PPM/ ºC (0~50 ºC) 儲存溫度: -10~70 ºC 保護等級: IP 42 振動測試: 1~800 Hz, 3.175 g2/Hz 外觀尺寸: 94.0mm x 94.0mm x 17.5mm 外殼材質(zhì): ABS防火材料,UL94V0 安裝軌道: 35mm DIN導軌 (EN50022) 重量: 250g 安全規(guī)范(LVD): IEC 61010 (Installation category 3) EMC: EN 55011:2002; EN 61326:2003 EMI: EN 55011:2002; EN 61326:2003 常用規(guī)格:AT-PM1-P1-DN-ADL 電位計訊號轉(zhuǎn)換器,一組輸出,輸入范圍:0 Ω ~ 50.0 Ω / ~ 2.0 KΩ,輸出一組輸出4-20mA,工作電源AC/DC20-56V

    標簽: 電位計 訊號 轉(zhuǎn)換器

    上傳時間: 2013-11-05

    上傳用戶:feitian920

  • 時鐘分相技術(shù)應用

    摘要: 介紹了時鐘分相技術(shù)并討論了時鐘分相技術(shù)在高速數(shù)字電路設(shè)計中的作用。 關(guān)鍵詞: 時鐘分相技術(shù); 應用 中圖分類號: TN 79  文獻標識碼:A   文章編號: 025820934 (2000) 0620437203 時鐘是高速數(shù)字電路設(shè)計的關(guān)鍵技術(shù)之一, 系統(tǒng)時鐘的性能好壞, 直接影響了整個電路的 性能。尤其現(xiàn)代電子系統(tǒng)對性能的越來越高的要求, 迫使我們集中更多的注意力在更高頻率、 更高精度的時鐘設(shè)計上面。但隨著系統(tǒng)時鐘頻率的升高。我們的系統(tǒng)設(shè)計將面臨一系列的問 題。 1) 時鐘的快速電平切換將給電路帶來的串擾(Crosstalk) 和其他的噪聲。 2) 高速的時鐘對電路板的設(shè)計提出了更高的要求: 我們應引入傳輸線(T ransm ission L ine) 模型, 并在信號的匹配上有更多的考慮。 3) 在系統(tǒng)時鐘高于100MHz 的情況下, 應使用高速芯片來達到所需的速度, 如ECL 芯 片, 但這種芯片一般功耗很大, 再加上匹配電阻增加的功耗, 使整個系統(tǒng)所需要的電流增大, 發(fā) 熱量增多, 對系統(tǒng)的穩(wěn)定性和集成度有不利的影響。 4) 高頻時鐘相應的電磁輻射(EM I) 比較嚴重。 所以在高速數(shù)字系統(tǒng)設(shè)計中對高頻時鐘信號的處理應格外慎重, 盡量減少電路中高頻信 號的成分, 這里介紹一種很好的解決方法, 即利用時鐘分相技術(shù), 以低頻的時鐘實現(xiàn)高頻的處 理。 1 時鐘分相技術(shù) 我們知道, 時鐘信號的一個周期按相位來分, 可以分為360°。所謂時鐘分相技術(shù), 就是把 時鐘周期的多個相位都加以利用, 以達到更高的時間分辨。在通常的設(shè)計中, 我們只用到時鐘 的上升沿(0 相位) , 如果把時鐘的下降沿(180°相位) 也加以利用, 系統(tǒng)的時間分辨能力就可以 提高一倍(如圖1a 所示)。同理, 將時鐘分為4 個相位(0°、90°、180°和270°) , 系統(tǒng)的時間分辨就 可以提高為原來的4 倍(如圖1b 所示)。 以前也有人嘗試過用專門的延遲線或邏輯門延時來達到時鐘分相的目的。用這種方法產(chǎn)生的相位差不夠準確, 而且引起的時間偏移(Skew ) 和抖動 (J itters) 比較大, 無法實現(xiàn)高精度的時間分辨。 近年來半導體技術(shù)的發(fā)展, 使高質(zhì)量的分相功能在一 片芯片內(nèi)實現(xiàn)成為可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能優(yōu)異的時鐘 芯片。這些芯片的出現(xiàn), 大大促進了時鐘分相技術(shù)在實際電 路中的應用。我們在這方面作了一些嘗試性的工作: 要獲得 良好的時間性能, 必須確保分相時鐘的Skew 和J itters 都 比較小。因此在我們的設(shè)計中, 通常用一個低頻、高精度的 晶體作為時鐘源, 將這個低頻時鐘通過一個鎖相環(huán)(PLL ) , 獲得一個較高頻率的、比較純凈的時鐘, 對這個時鐘進行分相, 就可獲得高穩(wěn)定、低抖動的分 相時鐘。 這部分電路在實際運用中獲得了很好的效果。下面以應用的實例加以說明。2 應用實例 2. 1 應用在接入網(wǎng)中 在通訊系統(tǒng)中, 由于要減少傳輸 上的硬件開銷, 一般以串行模式傳輸 圖3 時鐘分為4 個相位 數(shù)據(jù), 與其同步的時鐘信號并不傳輸。 但本地接收到數(shù)據(jù)時, 為了準確地獲取 數(shù)據(jù), 必須得到數(shù)據(jù)時鐘, 即要獲取與數(shù) 據(jù)同步的時鐘信號。在接入網(wǎng)中, 數(shù)據(jù)傳 輸?shù)慕Y(jié)構(gòu)如圖2 所示。 數(shù)據(jù)以68MBös 的速率傳輸, 即每 個bit 占有14. 7ns 的寬度, 在每個數(shù)據(jù) 幀的開頭有一個用于同步檢測的頭部信息。我們要找到與它同步性好的時鐘信號, 一般時間 分辨應該達到1ö4 的時鐘周期。即14. 7ö 4≈ 3. 7ns, 這就是說, 系統(tǒng)時鐘頻率應在300MHz 以 上, 在這種頻率下, 我們必須使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型門延遲為340p s) , 如前所述, 這樣對整個系統(tǒng)設(shè)計帶來很多的困擾。 我們在這里使用鎖相環(huán)和時鐘分相技術(shù), 將一個16MHz 晶振作為時鐘源, 經(jīng)過鎖相環(huán) 89429 升頻得到68MHz 的時鐘, 再經(jīng)過分相芯片AMCCS4405 分成4 個相位, 如圖3 所示。 我們只要從4 個相位的68MHz 時鐘中選擇出與數(shù)據(jù)同步性最好的一個。選擇的依據(jù)是: 在每個數(shù)據(jù)幀的頭部(HEAD) 都有一個8bit 的KWD (KeyWord) (如圖1 所示) , 我們分別用 這4 個相位的時鐘去鎖存數(shù)據(jù), 如果經(jīng)某個時鐘鎖存后的數(shù)據(jù)在這個指定位置最先檢測出這 個KWD, 就認為下一相位的時鐘與數(shù)據(jù)的同步性最好(相關(guān))。 根據(jù)這個判別原理, 我們設(shè)計了圖4 所示的時鐘分相選擇電路。 在板上通過鎖相環(huán)89429 和分相芯片S4405 獲得我們所要的68MHz 4 相時鐘: 用這4 個 時鐘分別將輸入數(shù)據(jù)進行移位, 將移位的數(shù)據(jù)與KWD 作比較, 若至少有7bit 符合, 則認為檢 出了KWD。將4 路相關(guān)器的結(jié)果經(jīng)過優(yōu)先判選控制邏輯, 即可輸出同步性最好的時鐘。這里, 我們運用AMCC 公司生產(chǎn)的 S4405 芯片, 對68MHz 的時鐘進行了4 分 相, 成功地實現(xiàn)了同步時鐘的獲取, 這部分 電路目前已實際地應用在某通訊系統(tǒng)的接 入網(wǎng)中。 2. 2 高速數(shù)據(jù)采集系統(tǒng)中的應用 高速、高精度的模擬- 數(shù)字變換 (ADC) 一直是高速數(shù)據(jù)采集系統(tǒng)的關(guān)鍵部 分。高速的ADC 價格昂貴, 而且系統(tǒng)設(shè)計 難度很高。以前就有人考慮使用多個低速 圖5 分相技術(shù)應用于采集系統(tǒng) ADC 和時鐘分相, 用以替代高速的ADC, 但由 于時鐘分相電路產(chǎn)生的相位不準確, 時鐘的 J itters 和Skew 比較大(如前述) , 容易產(chǎn)生較 大的孔徑晃動(Aperture J itters) , 無法達到很 好的時間分辨。 現(xiàn)在使用時鐘分相芯片, 我們可以把分相 技術(shù)應用在高速數(shù)據(jù)采集系統(tǒng)中: 以4 分相后 圖6 分相技術(shù)提高系統(tǒng)的數(shù)據(jù)采集率 的80MHz 采樣時鐘分別作為ADC 的 轉(zhuǎn)換時鐘, 對模擬信號進行采樣, 如圖5 所示。 在每一采集通道中, 輸入信號經(jīng)過 緩沖、調(diào)理, 送入ADC 進行模數(shù)轉(zhuǎn)換, 采集到的數(shù)據(jù)寫入存儲器(M EM )。各個 采集通道采集的是同一信號, 不過采樣 點依次相差90°相位。通過存儲器中的數(shù) 據(jù)重組, 可以使系統(tǒng)時鐘為80MHz 的采 集系統(tǒng)達到320MHz 數(shù)據(jù)采集率(如圖6 所示)。 3 總結(jié) 靈活地運用時鐘分相技術(shù), 可以有效地用低頻時鐘實現(xiàn)相當于高頻時鐘的時間性能, 并 避免了高速數(shù)字電路設(shè)計中一些問題, 降低了系統(tǒng)設(shè)計的難度。

    標簽: 時鐘 分相 技術(shù)應用

    上傳時間: 2013-12-17

    上傳用戶:xg262122

  • PCB被動組件的隱藏特性解析

    PCB 被動組件的隱藏特性解析 傳統(tǒng)上,EMC一直被視為「黑色魔術(shù)(black magic)」。其實,EMC是可以藉由數(shù)學公式來理解的。不過,縱使有數(shù)學分析方法可以利用,但那些數(shù)學方程式對實際的EMC電路設(shè)計而言,仍然太過復雜了。幸運的是,在大多數(shù)的實務工作中,工程師并不需要完全理解那些復雜的數(shù)學公式和存在于EMC規(guī)范中的學理依據(jù),只要藉由簡單的數(shù)學模型,就能夠明白要如何達到EMC的要求。本文藉由簡單的數(shù)學公式和電磁理論,來說明在印刷電路板(PCB)上被動組件(passivecomponent)的隱藏行為和特性,這些都是工程師想讓所設(shè)計的電子產(chǎn)品通過EMC標準時,事先所必須具備的基本知識。導線和PCB走線導線(wire)、走線(trace)、固定架……等看似不起眼的組件,卻經(jīng)常成為射頻能量的最佳發(fā)射器(亦即,EMI的來源)。每一種組件都具有電感,這包含硅芯片的焊線(bond wire)、以及電阻、電容、電感的接腳。每根導線或走線都包含有隱藏的寄生電容和電感。這些寄生性組件會影響導線的阻抗大小,而且對頻率很敏感。依據(jù)LC 的值(決定自共振頻率)和PCB走線的長度,在某組件和PCB走線之間,可以產(chǎn)生自共振(self-resonance),因此,形成一根有效率的輻射天線。在低頻時,導線大致上只具有電阻的特性。但在高頻時,導線就具有電感的特性。因為變成高頻后,會造成阻抗大小的變化,進而改變導線或PCB 走線與接地之間的EMC 設(shè)計,這時必需使用接地面(ground plane)和接地網(wǎng)格(ground grid)。導線和PCB 走線的最主要差別只在于,導線是圓形的,走線是長方形的。導線或走線的阻抗包含電阻R和感抗XL = 2πfL,在高頻時,此阻抗定義為Z = R + j XL j2πfL,沒有容抗Xc = 1/2πfC存在。頻率高于100 kHz以上時,感抗大于電阻,此時導線或走線不再是低電阻的連接線,而是電感。一般而言,在音頻以上工作的導線或走線應該視為電感,不能再看成電阻,而且可以是射頻天線。

    標簽: PCB 被動組件

    上傳時間: 2013-10-09

    上傳用戶:時代將軍

  • 交直流轉(zhuǎn)換器

    交直流轉(zhuǎn)換器 AT-VA2-D-A3-DD-ADL 1.產(chǎn)品說明 AT系列轉(zhuǎn)換器/分配器主要設(shè)計使用于一般訊號迴路中之轉(zhuǎn)換與隔離;如 4~20mA、0~10V、熱電偶(Type K, J, E, T)、熱電阻(Rtd-Pt100Ω)、荷重元、電位計(三線式)、電阻(二線式)及交流電壓/電流等訊號,機種齊全。 此款薄型設(shè)計的轉(zhuǎn)換器/分配器,除了能提供兩組訊號輸出(輸出間隔離)或24V激發(fā)電源供傳送器使用外,切換式電源亦提供了安裝的便利性。上方并設(shè)計了電源、輸入及輸出指示燈及可插拔式接線端子方便現(xiàn)場施工及工作狀態(tài)檢視。 2.產(chǎn)品特點 可選擇帶指撥開關(guān)切換,六種常規(guī)輸出信號0-5V/0~10V/1~5V/2~10V/4~20mA/ 0~20mA 可自行切換。 雙回路輸出完全隔離,可選擇不同信號。 設(shè)計了電源、輸入及輸出LED指示燈,方便現(xiàn)場工作狀態(tài)檢視。 規(guī)格選擇表中可指定選購0.1%精度 17.55mm薄型35mm導軌安裝。 依據(jù)CE國際標準規(guī)范設(shè)計。 3.技術(shù)規(guī)格 用途:信號轉(zhuǎn)換及隔離 過載輸入能力:電流:10×額定10秒 第二組輸出:可選擇 精確度: 交流: ≦±0.5% of F.S. 直流: ≦±0.2% of F.S. 輸入耗損: 交流電流:≤ 0.1VA; 交流電壓:≤ 0.15VA 反應時間: ≤ 250msec (10%~90% of FS) 輸出波紋: ≤ ±0.1% of F.S. 滿量程校正范圍:≤ ±10% of F.S.,2組輸出可個別調(diào)整 零點校正范圍:≤ ±10% of F.S.,2組輸出可個別調(diào)整 隔離:AC 2.0 KV 輸出1與輸出2之間 隔離抗阻:DC 500V 100MΩ 工作電源: AC 85~265V/DC 100~300V, 50/60Hz 或 AC/DC 20~56V (選購規(guī)格) 消耗功率: DC 4W, AC 6.0VA 工作溫度: 0~60 ºC 工作濕度: 20~95% RH, 無結(jié)露 溫度系數(shù): ≤ 100PPM/ ºC (0~50 ºC) 儲存溫度: -10~70 ºC 保護等級: IP 42 振動測試: 1~800 Hz, 3.175 g2/Hz 外觀尺寸: 94.0mm x 94.0mm x 17.5mm 外殼材質(zhì): ABS防火材料,UL94V0 安裝軌道: 35mm DIN導軌 (EN50022) 重量: 250g 安全規(guī)范(LVD): IEC 61010 (Installation category 3) EMC: EN 55011:2002; EN 61326:2003 EMI: EN 55011:2002; EN 61326:2003 常用規(guī)格:AT-VA2-D-A3-DD-ADL 交直流轉(zhuǎn)換器,2組輸出,輸入交流輸入0-19.99mA,輸出1:4-20mA,輸出2:4-20mA,工作電源AC/DC20-56V

    標簽: 交直流 轉(zhuǎn)換器

    上傳時間: 2013-11-22

    上傳用戶:nem567397

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美精品免费看| 国产精品裸体一区二区三区| 日韩一级视频免费观看在线| 91久久久亚洲精品| 国语精品中文字幕| 日韩小视频在线观看| 久久精品国产久精国产爱| 欧美理论大片| 樱桃成人精品视频在线播放| 亚洲图片在线| 免费看成人av| 激情小说另类小说亚洲欧美 | 欧美综合第一页| 欧美日本一道本| 精品白丝av| 欧美一区午夜精品| 欧美日韩伦理在线| 亚洲国产影院| 欧美精品在线观看播放| 国产亚洲精品久| 亚洲欧美日韩综合aⅴ视频| 欧美激情网友自拍| 亚洲国产精品一区制服丝袜| 欧美在线视频一区二区三区| 国产精品久久婷婷六月丁香| 亚洲一二三区视频在线观看| 欧美日韩视频不卡| 一区二区三区波多野结衣在线观看| 免费欧美网站| 亚洲福利国产| 你懂的网址国产 欧美| 伊人久久成人| 免费成人av在线| 91久久久久久国产精品| 美女视频黄免费的久久| 亚洲第一偷拍| 欧美日韩国产小视频在线观看| 亚洲精品小视频在线观看| 欧美日韩不卡视频| 亚洲视频欧美视频| 国产精品一区二区男女羞羞无遮挡 | 亚洲自拍偷拍视频| 欧美日韩一区二区精品| 一本色道久久综合狠狠躁篇的优点 | 亚洲欧美日韩精品在线| 国产精品久久999| 欧美伊久线香蕉线新在线| 国产欧美日韩在线播放| 久久久夜精品| 亚洲高清一区二区三区| 欧美激情一区二区三区在线视频观看| 国产区二精品视| 久久久一区二区| 日韩一本二本av| 国产农村妇女精品一区二区| 欧美一区二区三区男人的天堂 | 欧美日韩一区二区在线观看 | 欧美久久电影| 亚洲精品欧美日韩专区| 国产日韩一区| 久久激情五月婷婷| 亚洲电影免费观看高清| 麻豆精品传媒视频| 亚洲国产欧美日韩精品| 国产精品成人观看视频国产奇米| 亚洲一区二区三区中文字幕在线| 国产精品99一区二区| 欧美在线观看视频一区二区三区| 激情偷拍久久| 欧美日韩精品免费看| 久久久久久久久久久久久女国产乱 | 欧美精品乱人伦久久久久久| 亚洲最黄网站| 国模叶桐国产精品一区| 欧美黄网免费在线观看| 亚洲欧美一区二区三区久久| 国产精品日韩高清| 欧美精品偷拍| 欧美一区二区在线视频| 亚洲国产精品精华液网站| 欧美视频亚洲视频| 欧美成人亚洲| 欧美专区在线播放| 久久精品国产一区二区电影| 91久久精品美女高潮| 国产日韩亚洲欧美| 国产欧美精品va在线观看| 欧美激情综合网| 久久久水蜜桃| 久久久久国产精品一区| 欧美在线视频日韩| 亚洲欧美日韩精品在线| 亚洲综合不卡| 一区二区三区四区五区视频 | 美女日韩在线中文字幕| 亚洲免费视频中文字幕| 亚洲伦理在线观看| 在线观看成人av| 一区二区亚洲精品| 欧美日韩视频第一区| 欧美电影专区| 美腿丝袜亚洲色图| 久久精品人人做人人爽电影蜜月| 亚洲专区在线视频| 亚洲直播在线一区| 亚洲午夜精品久久久久久浪潮 | 国产私拍一区| 国产精品日本精品| 国产欧美精品va在线观看| 国产精品中文在线| 国产亚洲一区二区三区在线观看| 国产亚洲精品福利| 在线观看亚洲| 亚洲欧洲日韩女同| 夜夜嗨av一区二区三区免费区| 最新日韩在线视频| 99精品黄色片免费大全| 亚洲午夜精品福利| 欧美在线一级va免费观看| 久久夜色精品国产欧美乱| 免费91麻豆精品国产自产在线观看| 麻豆91精品91久久久的内涵| 欧美激情久久久久久| 国产精品v亚洲精品v日韩精品 | 国内外成人在线| 红桃视频国产精品| 亚洲日本久久| 亚洲在线视频观看| 美女视频网站黄色亚洲| 欧美午夜精品久久久| 国产一区二区三区奇米久涩| 亚洲国产高清在线| 亚洲自拍偷拍一区| 免费在线观看一区二区| 国产精品毛片va一区二区三区| 国内久久视频| 亚洲视频高清| 免费不卡在线视频| 国产一区二区三区四区在线观看 | 国产精品看片你懂得| 一区二区三区我不卡| 在线视频日韩精品| 麻豆成人综合网| 国产精品激情电影| 亚洲国产高清视频| 欧美中文字幕| 欧美日韩精品免费观看视一区二区| 国产视频精品xxxx| 一区二区三区四区五区精品| 老司机午夜精品视频| 国产日韩一区二区三区| 亚洲桃花岛网站| 欧美国产日韩二区| 激情小说另类小说亚洲欧美 | 国产精品一区二区在线观看网站| 亚洲第一毛片| 欧美日韩在线第一页| 国产一区二区黄| 亚洲网站在线| 欧美国产精品v| 狠色狠色综合久久| 欧美一区二区久久久| 欧美性淫爽ww久久久久无| 亚洲黑丝在线| 蜜臀av一级做a爰片久久 | 欧美一级电影久久| 欧美日韩国产不卡| 日韩一级欧洲| 欧美精品尤物在线| 亚洲乱码国产乱码精品精| 开心色5月久久精品| 韩国三级在线一区| 欧美在线视频观看| 国产精品一区二区在线观看不卡 | 欧美亚洲日本网站| 欧美视频在线免费| 一本色道久久综合亚洲精品高清| 欧美大片免费久久精品三p| 在线国产日韩| 欧美第十八页| 亚洲美女免费视频| 欧美日韩国产高清| 9久re热视频在线精品| 欧美日韩系列| 亚洲午夜久久久久久尤物| 国产精品一区久久久| 久久精视频免费在线久久完整在线看| 国语自产偷拍精品视频偷| 久久亚洲影院| 亚洲日韩中文字幕在线播放| 欧美日韩精品一本二本三本| 亚洲一卡二卡三卡四卡五卡| 国产精品毛片| 欧美一级大片在线观看| 在线观看视频一区| 欧美日韩亚洲高清一区二区| 国产一本一道久久香蕉| 欧美岛国激情| aa级大片欧美三级| 国产在线观看一区|