本書是作者多年來從事計算機控制技術,特別是單片機應用系統的教學、科研工作經驗的總結,同時也是近年來在模糊控制應用技術開發中所取得的部分成果。全書本著理論和實踐相結合的原則,在保證其理論的完整性基礎上,更加強調基實用性。按照先易后難、由淺入深、具體應用實例三個層次,首先簡要介紹了模糊控制技術的理論基礎,然后重點介紹了當前流行的Motorola系列單片機和Toshiba系列單片機及其在工程和家用電器模糊控制中的應用實例,詳細敘述了模糊控制應用系統的硬件設計和軟件設計方法。 本書的最大特點是資料新穎、技術先進且具有較強的實用性、可移植性。特別適合從事單片機應用技術和模糊控制技術的工程技術人員使用,也可做為電子技術、計算機控制技術、自動化有儀表類的老師和學生的參考書,對家用電器領域的維修人員也大有裨益。
標簽: 單片機 模糊控制 應用實例 系統設計
上傳時間: 2013-12-20
上傳用戶:baby25825
在冶金、化工,機械等各類工業控制中,電加熱爐都得到了廣泛的應用。目前國內的電加熱爐溫度控制器大多還停留在國際60年代水平,仍在使用繼電一接觸器控制或常規PID控制,自動化程度低,動態控制精度差,滿足不了日益發展的工藝技術要求。電加熱爐的溫度是生產工藝的一項重要指標,溫度控制的好壞將直接影響產品的質量。電加熱爐由電阻絲加熱,溫度控制具有非線性、大滯后、大慣性、時變性、升溫尊向性等特點。而且,在實際應用和研究中,電加熱爐溫度控制遇到了很多困難:第一,很難建立精確的數學模型:第二,不能很好地解決非線性、大滯后等問題。以精確數學模型為基礎地經典控制理論和現代控制論在解決這些問題時遇到了極大地困難,而以語言規則模型(IF—THEN)為基礎的模糊控制理論卻是解決上述問題的有效途徑和方法。國內現有的一些模糊設計方法大多存在不同缺點,而且真正把理論研究應用到實際系統的也較少。所以,深入研究在電加熱爐系統控制中具體模糊控制設計理論是十分必要的。本文針對電加熱爐這一控制對象,以Ts.94—1型號的箱形電加熱爐為參考對象,分別采用工業控制中普遍使用的PID控制、經常見到的模糊控制策略,如基本模糊控制,對其進行仿真實驗,比較,并進行了理論分析。針對上述電加熱爐控制中存在的問題,本文設計了雙模糊控制器。雙模糊控制器在參數自整定模糊控制理論的基礎上,對比例因子進行調整,克服原算法復雜麗不實用的特點,根據電加熱爐不同的工作狀態采用不同的模糊控制器,提高了控制精度,改善了控制效果。本文把模糊控制與神經網絡技術相結合,利用神經網絡很強的學習能力和自適應能力,建立了自適應神經模糊推理系統。把不依賴精確數學模型的模糊控制系統與有價值的經驗數據或參考模型相結合,彌補了模糊控制的不足,使模糊控制系統更能發揮其強大優勢,控制效果理想。在實踐應用方面,以電加熱爐為控制對象,開發了89C51單片機模糊控制器,主要進行了硬件和軟件的設計。
標簽: 單片機 中的應用 模糊控制 電加熱爐
上傳時間: 2013-10-28
上傳用戶:yuanwenjiao
摘要:在基于單片機8051的心電監護模塊中,用模糊邏輯檢測室性早搏,使心電監護模塊功能得到擴展。關鍵詞:心電監護 模糊邏輯 數字單片機
標簽: 單片機 模糊邏輯 檢測
上傳時間: 2013-10-09
上傳用戶:sclyutian
LM3S系列單片機主要有3種工作模式:運行模式(Run-Mode)、睡眠模式(Sleep-Mode)、深度睡眠模式(Deep-Sleep-Mode)。某些型號還具有單獨的極為省電的冬眠模塊(Hibernation Module)。而對各個模式下的外設時鐘選通以及系統時鐘源的控制主要由表 2.1中的寄存器來完成。 運行模式是正常的工作模式,處理器內核將積極地執行代碼。在睡眠模式下,系統時鐘不變,但處理器內核不再執行代碼(內核因不需要時鐘而省電)。在深度睡眠模式下,系統時鐘可變,處理器內核同樣也不再執行代碼。深度睡眠模式比睡眠模式更為省電。有關這3種工作模式的具體區別請參見表 2.2的描述。調用函數SysCtlSleep( )可使處理器立即進入睡眠模式,而調用函數SysCtlDeepSleep( )可使處理器立即進入深度睡眠模式。任一中斷都可以將處理器從睡眠或深度睡眠模式喚醒,并使處理器恢復到睡眠前的運行狀態。因此在進入睡眠或深度睡眠之前,必須配置某個片內外設的中斷并允許其在睡眠或深度睡眠模式下繼續工作,如果不這樣,則只有復位或重新上電才能結束睡眠或深度睡眠狀態。
標簽: 深度睡眠 模式 操作
上傳時間: 2013-11-08
上傳用戶:ArmKing88
LPC900 FLASH單片機,是PHILIPS公司推出的一款高性能、微功耗51內核單片機,主要集成了字節方式的I2C總線、SPI總線、增強型UART接口、實時時鐘、E2PROM、A/D轉換器、ISP/IAP在線編程和遠程編程方式等一系列有特色的功能部件。LPC900系列單片機提供從8腳DIP到28腳的PLCC等豐富的封裝形式,可以滿足各種對成本、線路板空間有限制而又要求高性能、高可靠性的應用。且其具有高速率(6倍于普通51單片機),低功耗(完全掉電模式功耗僅為1uA),高穩定性,小封裝,多功能(內嵌眾多流行的功能模塊),多選擇等特點(該系列有多款不同封裝,不同價位,不同功能的型號供用戶選擇)。
標簽: LPC 900 SPI 單片機
上傳時間: 2013-10-19
上傳用戶:hanbeidang
電加熱爐是典型工業過程控制對象,其溫度控制具有升溫單向性,大慣性,純滯后,時變性等特點,很難用數學方法建立精確的模型和確定參數。而PID控制因其成熟,容易實現,并具有可消除穩態誤差的優點,在大多數情況下可以滿足系統性能要求,但其性能取決于參數的整定情況。且快速性和超調量之間存在矛盾,使其不一定滿足快速升溫、超調小的技術要求。模糊控制在快速性和保持較小的超調量方面有著自身的優勢,但其理論并不完善,算法復雜,控制過程會存在穩態誤差。 將模糊控制算法引入傳統的加熱爐控制系統構成智能模糊控制系統,利用模糊控制規則自適應在線修改PID參數,構成模糊自整定:PID控制系統,借此提高其控制效果。 基于PID控制算法,以ADuC845單片機為主體,構成一個能處理較復雜數據和控制功能的智能控制器,使其既可作為獨立的單片機控制系統,又可與微機配合構成兩級控制系統。該控制器控制精度高,具有較高的靈活性和可靠性。 2 溫度控制系統硬件設計 該系統設計的硬件設計主要由單片機主控、前向通道、后向通道、人機接口和接口擴展等模塊組成,如圖l所示。由圖1可見,以內含C52兼容單片機的ADuC845為控制核心.配有640 KB的非易失RAM數據存儲器、外擴鍵盤輸人、320x240點陣的圖形液晶顯示器進行漢字、圖形、曲線和數據顯示,超溫報警裝置等外圍電路;預留微型打印機接口,可以現場打印輸出結果;預留RS232接口,能和PC機聯機,將現場檢測的數據傳輸至PC機來進一步處理、顯示、打印和存檔。
標簽: PID 模糊 算法 電阻爐
上傳時間: 2013-10-11
上傳用戶:vodssv
ARM處理器的工作模式 ARM處理器狀態 ARM微處理器的工作狀態一般有兩種,并可在兩種狀態之間切換:第一種為ARM狀態,此時處理器執行32位的字對齊的ARM指令;第二種為Thumb狀態,此時處理器執行16位的、半字對齊的Thumb指令。在程序的執行過程中,微處理器可以隨時在兩種工作狀態之間切換,并且,處理器工作狀態的轉變并不影響處理器的工作模式和相應寄存器中的內容。但ARM微處理器在開始執行代碼時,應該處于ARM狀態。 ARM處理器狀態 進入Thumb狀態:當操作數寄存器的狀態位(位0)為1時,可以采用執行BX指令的方法,使微處理器從ARM狀態切換到Thumb狀態。此外,當處理器處于Thumb狀態時發生異常(如IRQ、FIQ、Undef、Abort、SWI等),則異常處理返回時,自動切換到Thumb狀態。 進入ARM狀態:當操作數寄存器的狀態位為0時,執行BX指令時可以使微處理器從Thumb狀態切換到ARM狀態。此外,在處理器進行異常處理時,把PC指針放入異常模式鏈接寄存器中,并從異常向量地址開始執行程序,也可以使處理器切換到ARM狀態。ARM處理器模式 ARM微處理器支持7種運行模式,分別為:用戶模式(usr):ARM處理器正常的程序執行狀態。快速中斷模式(fiq):用于高速數據傳輸或通道處理。外部中斷模式(irq):用于通用的中斷處理。管理模式(svc):操作系統使用的保護模式。數據訪問終止模式(abt):當數據或指令預取終止時進入該模式,可用于虛擬存儲及存儲保護。系統模式(sys):運行具有特權的操作系統任務。定義指令中止模式(und):當未定義的指令執行時進入該模式,可用于支持硬件協處理器的軟件仿真。ARM處理器模式 ARM微處理器的運行模式可以通過軟件改變,也可以通過外部中斷或異常處理改變。大多數的應用程序運行在用戶模式下,當處理器運行在用戶模式下時,某些被保護的系統資源是不能被訪問的。 除用戶模式以外,其余的所有6種模式稱之為非用戶模式,或特權模式;其中除去用戶模式和系統模式以外的5種又稱為異常模式,常用于處理中斷或異常,以及需要訪問受保護的系統資源等情況。ARM寄存器 ARM處理器共有37個寄存器。其中包括:31個通用寄存器,包括程序計數器(PC)在內。這些寄存器都是32位寄存器。以及6個32位狀態寄存器。 關于寄存器這里就不詳細介紹了,有興趣的人可以上網找找,很多這方面的資料。異常處理 當正常的程序執行流程發生暫時的停止時,稱之為異常,例如處理一個外部的中斷請求。在處理異常之前,當前處理器的狀態必須保留,這樣當異常處理完成之后,當前程序可以繼續執行。處理器允許多個異常同時發生,它們將會按固定的優先級進行處理。當一個異常出現以后,ARM微處理器會執行以下幾步操作:進入異常處理的基本步驟:將下一條指令的地址存入相應連接寄存器LR,以便程序在處理異常返回時能從正確的位置重新開始執行。將CPSR復制到相應的SPSR中。根據異常類型,強制設置CPSR的運行模式位。強制PC從相關的異常向量地址取下一條指令執行,從而跳轉到相應的異常處理程序處。如果異常發生時,處理器處于Thumb狀態,則當異常向量地址加載入PC時,處理器自動切換到ARM狀態。 ARM微處理器對異常的響應過程用偽碼可以描述為: R14_ = Return LinkSPSR_= CPSRCPSR[4:0] = Exception Mode NumberCPSR[5] = 0 ;當運行于 ARM 工作狀態時If == Reset or FIQ then;當響應 FIQ 異常時,禁止新的 FIQ 異常CPSR[6] = 1PSR[7] = 1PC = Exception Vector Address異常處理完畢之后,ARM微處理器會執行以下幾步操作從異常返回:將連接寄存器LR的值減去相應的偏移量后送到PC中。將SPSR復制回CPSR中。若在進入異常處理時設置了中斷禁止位,要在此清除。
標簽: ARM 處理器 工作模式
上傳時間: 2013-11-15
本文介紹了基于USB單片機的彈載測量系統地面測試臺的固件程序設計方法。地面測試臺用來對彈載數據記錄裝置進行自檢,在本測試臺上采用EZ-USB FX2系列單片機CY7C68013來實現上位機與地面測試臺間的通信,固件程序的功能包括產生測試臺狀態信號、下載各種信號源數據及進行實時監測數據回讀。文中通過測試臺的工程實例,詳細介紹了端口模式下固件程序的編寫流程,并給出了部分程序代碼。
標簽: C68013 68013 CY7 CY
上傳時間: 2013-10-30
上傳用戶:thesk123
本文設計一種以C8051F020 單片機為處理器,雙模式USB 為接口的比色計儀器。該儀器可以工作在USB 設備和主機兩種模式。在設備模式下,能直接與計算機進行數據通信;在主機模式下,能讀寫U盤,通過U 盤進行數據的傳輸。儀器采用雙USB 插座,由單片機判斷確定設備的工作方式。
標簽: USB 雙模式 便攜式 接口
上傳時間: 2013-11-01
上傳用戶:ZZJ886
SPMC75低功耗操作:本應用例介紹如何設置使SPMC75F2413A進入節電模式。1.2 模式簡介SPMC75F2413A有標準模式和兩種節電模式(等待模式和就緒模式),相應功能如下: 標準模式(Normal)芯片在標準模式下運行耗電最大,所有的外設都可用。 等待模式(Wait)等待模式下,只有CPU掉電停止工作以降低功耗。其它外設保持著先前的狀態并且功能可用。一旦喚醒,CPU將繼續工作,執行接下去的指令。 就緒模式(Standby)就緒模式下所有的模塊都變為無效,此時功耗達到最小。喚醒后,CPU復位并回到標準運行模式。其它外設可以通過軟件分別設置關閉。就緒模式下所有功能都會關閉,只有系統時鐘仍在工作。如果按鍵喚醒功能為有效,這兩種模式都可以通過按鍵喚醒。具體喚醒源的分類及喚醒功能的介紹請參考《SPMC75F2413A編程指南》。【注意】如果MCP定時器3或定時器4已經處于PWM輸出模式時,芯片不會進入等待或就緒模式。同樣在仿真模式下也無法進入等待或就緒模式。
標簽: 2413A F2413 SPMC 2413
上傳時間: 2013-11-20
上傳用戶:ming52900
蟲蟲下載站版權所有 京ICP備2021023401號-1