同步技術在許多通訊系統中都是至關重要的,而WCDMA作為第三代移動通信的標準之一,對其同步算法進行研究是非常必要的。FPGA在許多硬件實現中充當了很重要的角色,所以研究如何在FPGA上實現同步算法是非常具有實際意義的。 本文討論了三步小區搜索的算法,仿真了其性能,并且對如何進行算法的FPGA移植展開了深入的討論。 本文對三步小區搜索的算法按照算法計算量和運算速度的標準分別進行了比較和討論,并以節省資源和運行穩定為前提進行了FPGA移植。最終在主同步中提出了改進型的PSC匹配濾波器算法,在FPGA上提出了采用指針型雙口RAM的實現方式;在輔同步中提出了改進型PFHT算法并采用查表遍歷算法判決,在FPGA上提出了用綜合型邏輯方式來實現;在導頻同步中采用了移位寄存器式擾碼生成算法,并引入了計分制判決算法。 與以往的WCDMA同步的FPGA實現相比,本文提出的實現方案巧妙地利用了FPGA的并行運算結構,在XILINX的V4芯片上只用了500個slice就完成了整個小區搜索,最大限度地節省了資源,為小區搜索在FPGA中的模塊小型化提供了途徑。
上傳時間: 2013-08-05
上傳用戶:leileiq
目前對數字化音頻處理的具體實現主要集中在以DSP或專用ASIC芯片為核心的處理平臺的開發方面,存在著并行處理性能差,系統升級和在線配置不靈活等缺點。另一方面現有解決方案的設計主要集中于處理器芯片,而對于音頻編解碼芯片的關注度較低,而且沒有提出過從芯片層到PCB板層的完整設計思路。本文針對上述問題對數字化音頻處理平臺進行了研究,主要內容包括: 1、提出了基于FPGA的通用音頻處理平臺,該方案有別于現有的基于MCU、DSP和其它專用ASIC芯片的方案,論證了基于FPGA的音頻處理系統的結構及設計工作流程,并對嵌入式音頻處理系統專門進行了研究。 2、提出了從芯片層到PCB板層的完整設計思路,并將設計思路得以實現。完成了FPGA的設計及實現過程,包括:系統整體分析,設計流程分析,配置模塊和數據通信模塊的RTL實現等;解決了FPGA與音頻編解碼芯片TLV320AIC23B之間接口不匹配問題;給出配置和數據通信模塊的功能方框圖;從多個角度完善PCB板設計,給出了各個系統組成部分的詳細設計方案和硬件電路原理圖,并附有PCB圖。 3、建立了實驗和分析環境,完成了各項實驗和分析工作,主要包括:PCB板信號完整性分析和優化,FPGA系統中各個功能模塊的實驗與分析等。實驗和分析結果論證了系統設計的合理性和實用性。 本文的研究與實現工作通過實驗和分析得到了驗證。結果表明,本文提出的由FPGA和音頻編解碼芯片TLV320AIC23B組成的數字化音頻處理系統完全可以實現音頻信號的數字化處理,從而可以將FPGA在數字信號處理領域的優點充分發揮于音頻信號處理領域。
上傳時間: 2013-04-24
上傳用戶:lanwei
隨著科學技術的發展,指紋識別技術被廣泛應用到各種不同的領域。對于一般的指紋識別系統,其設計要求具有很高的實時性和易用性,因此識別算法應該具有較低的復雜度,較快的運算速度,從而滿足實時性的要求。所以有必要根據不同的識別算法采用不同的實現平臺,使得指紋識別系統具有較高的可靠性、實時性、有效性等性能要求。 SOPC片上可編程系統和嵌入式系統是當前電子設計領域中最熱門的概念。NiosⅡ是Altera.公司開發的一種采用流水線技術、單指令流的RISC嵌入式處理器軟核,可以將它嵌入到FPGA內部,與用戶自定義邏輯組建成一個基于FPGA的片上專用系統。 本文在綜合考慮各種應用情況的基礎上,以網絡技術、數據庫技術、指紋識別技術和嵌入式系統技術為理論基礎,提出了一種有效可行的系統架構方案。對指紋識別技術中各個環節的算法和原理進行了深入研究,合理的改進了部分指紋識別算法;同時為了提高系統的實時性,采用NiosⅡ嵌入式處理器和FPGA硬件模塊實現指紋圖像處理主要算法。論文主要包括以下幾個方面: 1、對指紋圖像預處理、特征提取和特征匹配算法原理進行闡述,同時改進了指紋圖像的細化算法,提高了算法的性能,并設計了一套實用的指紋特征數據結構; 2、針對指紋圖像預處理模塊,包括圖像的歸一化、頻率提取、方向提取以及方向濾波,采用基于FPGA的硬件電路的方式實現。實驗結果表明,在保證系統誤識率較低、可靠性高的基礎上,大大提高了系統的執行速度; 3、改變了傳統的單枚指紋識別方法,提出采用多枚指紋唯一標識身份,大大降低了識別系統的誤識率; 4、改進了傳統的基于三角形匹配中獲取基準點的方法,同時結合可變界限盒思想進行指紋特征匹配。 5、結合COM+技術、數據庫技術和網絡技術,開發了后臺指紋特征匹配服務系統,實現了嵌入式指紋識別系統同數據庫的實時信息交換。 實驗結果表明,本文所提出的系統構架方案有效可行,基于FPGA的自動指紋識別系統在速度、功耗、擴展性等方面具有獨特的優勢,擁有廣闊的發展前景。
上傳時間: 2013-08-04
上傳用戶:laozhanshi111
在當今的廣播系統中,絕大部分的視頻信號是隔行采樣的。采用這種掃描格式,能夠大幅度地減少視頻的帶寬,但也會引起彩色爬行、畫面閃爍、邊緣模糊及鋸齒等現象。這種缺陷經人尺寸屏幕放大后就更加明顯。為改善畫面的視覺效果,去隔行技術應運而生。同時,視頻信號本身的低幀頻也會導致行抖動、線爬行以及大面積閃爍等視覺效果上的缺陷。增加掃描頻率會把這些視覺缺陷搬移到人眼不敏感的高頻區域上去從而產生較好的主觀圖象質量。而為了適應不同顯示終端以及對圖像大小變化的要求就必須對原始信號分辨率即每幀行數和每行像素數進行變換。因此去隔行、幀頻轉換、分辨率變換成為視頻格式轉換的基本內容。 FPGA 的出現是VLSI技術和EDA技術發展的結果。FPGA器件集成度高、體積小,具有通過用戶編程實現專門應用的功能。它允許電路設計者利用基于計算機的開發平臺,經過設計輸入、仿真、測試和校驗,直到達到預期的結果。使用FPGA器件可以大大縮短系統的研制周期,減少資金投入。另外采用FPGA器件可以將原來的電路板級產品集成芯片級產品,從而降低了功耗,提高了可靠性,同時還可以很方便的對設計進行在線修改。 該文在介紹了視頻格式轉換中的主要算法后,重點對去隔行、幀頻轉換、分辨率變換的FPGA綜合實現方案進行了由簡單到復雜的深入研究,分別給出了最簡解決方案、基于非線性算法的解決方案和基于運動補償的解決方案。最簡解決方案利用線性算法將去隔行,幀頻轉換,分辨率變換三項處理同時實現,達到FPGA內部資源和外部RAM耗用量都為最小的要求,是后續復雜方案的基礎。其中去隔行采用場合并方式,幀頻轉換采用幀重復方式,分辨率變換采用均勻插值方式。基于非線性算法的解決方案中加入了對靜止區域的判斷,靜止區域的輸出像素值直接選用相應位置的已存輸入數據,非靜止區域的輸出像素值通過對已存輸入數據進行非線性運算得出。基于運動補償的解決方案在對靜止區域進行判斷和處理的基礎上,對欲生成的變頻后的場間插值幀進行運動估計,根據運動矢量得出非靜止區域的輸出像素值。其中為求得輸入場間相應時間位置上的插值幀輸出數據,該方案采用了自定義的前后向塊匹配運動估計方式,通過對三步搜索算法的高效實現,將SAD 值進行比較得出運動矢量。
上傳時間: 2013-07-19
上傳用戶:米卡
近年來,圖像處理與識別技術得到了迅速的發展。人們已經充分認識到圖像處理和識別技術是認識世界、改造世界的重要手段。目前,圖像識別技術已應用到很多領域,滲入到各行各業,在醫學、公安、交通、工業等領域具有廣闊的應用前景。 這篇論文介紹了一種基于DSP+FPGA構架的實時圖像識別系統。DSP作為圖像識別模塊的核心,負責圖像識別算法的實現;FPGA作為圖像采集模塊的核心,負責圖像的采集,并且完成預處理工作。圖像識別算法的運算量大,并且控制復雜,對系統的性能要求很高。DSP的特殊結構和優良性能很好地滿足了系統的需要,而FPGA的高速性和靈活性也保證了系統實時性,并且簡化了外圍電路,減少了系統設計難度。 系統使用模板匹配和神經網絡算法對數字0~9進行識別。模板匹配一般適用于識別規范化的數字、字符等小型字符集(特別是同一字體的字符集)。由于結構比較簡單,系統處理能力強,模板匹配的識別速度快并且識別率高,取得很好的效果。神經網絡所具有的分布式存儲、高容錯性、自組織和自學習功能,使其對圖像識別問題顯示出極大的優越性。 研究表明,在DSP+FPGA的構架上實現的圖像識別系統,具有結構靈活、通用性強的特點,適用于模塊化設計,有利于提高算法的效率。系統可以充分發揮和結合DSP和FPGA的優勢,準確快速地實現圖像識別。通過軟、硬件的靈活組合,系統可以實現圖像處理大部分的相關功能,使之能夠運用到工業視覺檢測、汽車牌照識別等系統中。
上傳時間: 2013-06-18
上傳用戶:com1com2
隨著存儲技術的迅速發展,存儲業務需求的不斷增長,獨立的磁盤冗余陣列可利用多個磁盤并行存取提高存儲系統的性能。磁盤陣列技術采用硬件和軟件兩種方式實現,軟件RAID(Redundant Array of Independent Disks)主要利用操作系統提供的軟件實現磁盤冗余陣列功能,對系統資源利用率高,節省成本。硬件RAID將大部分RAID功能集成到一塊硬件控制器中,系統資源占用率低,可移植性好。 分析了軟件RAID的性能瓶頸,使用硬件直接完成部分計算提高軟件RAID性能。針對RAID5采用FPGA(Field Programmable Gate Array)技術實現RAID控制器硬件設計,完成磁盤陣列啟動、數據緩存(Cache)以及數據XOR校驗等功能。基于硬件RAID的理論,提出一種基于Virtex-4的硬件RAID控制器的系統設計方案:獨立微處理器和較大容量的內存;實現RAID級別遷移,在線容量擴展,在線數據熱備份等高效、用戶可定制的高級RAID功能;利用Virtex-4內置硬PowerPC完成RAID服務器部分配置和管理工作,運行Linux操作系統、RAID管理軟件等。控制器既可以作為RAID控制卡在服務器上使用,也可作為一個獨立的系統,成為磁盤陣列的調試平臺。 隨著集成電路的發展,芯片的體積越來越小,電路的布局布線密度越來越大,信號的工作頻率也越來越高,高速電路的傳輸線效應和信號完整性問題越來越明顯。RAID控制器屬于高速電路的范疇,在印刷電路板(Printed Circuit Block, PCB)實現時分別從疊層設計、布局、電源完整性、阻抗匹配和串擾等方面考慮了信號完整性問題,并基于IBIS(I/O Buffer Information Specification)模型進行了信號完整性分析及仿真。
上傳時間: 2013-04-24
上傳用戶:jeffery
在團簇與激光相互作用的研究中和在團簇與加速器離子束的碰撞研究中,需要對加速器束流或者激光束進行脈沖化與時序同步,同時用于測量作用產物的探測系統如飛行時間譜儀(TOF)等要求各加速電場的控制具有一定的時序匹配。在整個實驗中,需要用到符合要求的多路脈沖時序信號控制器,而且要求各脈沖序列的周期、占空比、重復頻率等方便可調。為此,本論文基于FPGA設計完成了一款多路脈沖時序控制電路。 本文基于Altera公司的Cyclone系列FPGA芯片EPlC3T100C8,設計出了一款可以同時輸出8路脈沖序列、各脈沖序列之間具有可調高精度延遲、可調脈沖寬度及占空比等。論文討論了FPGA芯片結構及開發流程,著重討論了較高頻率脈沖電路的可編程實現方法,以及如何利用VHDL語言實現硬件電路軟件化設計的技巧與方法,給出了整個系統設計的原理與實現。討論了高精密電源的PWM技術原理及實現,并由此設計了FPGA所需電源系統。給出了配置電路設計、數據通信及接口電路的實現。開發了上層控制軟件來控制各路脈沖時序及屬性。 該電路工作頻率200MHz,輸出脈沖最小寬度可達到10ns,最大寬度可達到us甚至ms量級。可以同時提供l路同步脈沖和7路脈沖,并且7路脈沖相對于同步脈沖的延遲時間可調,調節步長為5ns。
上傳時間: 2013-06-15
上傳用戶:ZJX5201314
建立在數據率轉換技術之上的寬帶數字偵察接收機要求能夠實現高截獲概率、高靈敏度、近乎實時的信號處理能力。雙信號數據率轉換技術是寬帶數字偵察接收機關鍵技術之一,是解決寬帶數字接收機中前端高速ADC采樣的高速數據流與后端DSP處理速度之間瓶頸問題的可行方案。測頻技術以及帶通濾波,即寬帶數字下變頻技術,是實現數據率轉換系統的關鍵技術。本文首先介紹了寬帶數字偵察接收關鍵技術之一的數據率轉換技術,著重研究了快速、高精度雙信號測頻算法以及實驗系統硬件實現。論文主要工作如下: (1)分析了現代電子偵察環境下的信號特征,指出寬帶數字接收機必須滿足寬監視帶寬、流水作業以及近實時的響應時間。給出了一種頻率引導式的數字接收機方案,簡要介紹這種接收機的關鍵技術——快速、高精度頻率估計以及高效的數據率轉換。 (2)介紹了FFT技術在測頻算法中的應用,比較了FFT專用芯片及其優點和缺點,指出為了滿足實時處理要求,必須選用FPGA設計FFT模塊。 (3)在分析常規的插值算法基礎上,提出了一種單信號的快速插值頻率估計方法,只需三個FFT變換系數的實部構造頻率修正項,計算量低。該方法具有精度高、測頻速率快的特點。 (4)基于DFT理論和自相關理論,提出了結合FFT和自相關的雙信號頻率估計算法。該方法先用DFT估計其中一個信號的頻率和幅度,以此頻率對信號解調并對消該頻率成分,最后利用自相關理論估計出另一個信號的頻率。 (5)基于DFT理論和FFT技術,研究了信號平方與FFT結合的雙信號頻率估計算法。根據信號中兩頻率分量的幅度比,只需一次一維平方信號譜峰搜索,就可以得到雙信號的和頻與差頻分量的估計值,并利用插值技術提高測頻精度。該算法能夠精確地估計頻率間隔小的雙信號頻率,且容易地擴展到復信號,FPGA硬件實現容易。 (6)基于現代譜分析理論,研究了基于AR(2)模型的雙信號頻率估計算法。方法在利用AR(2)模型系數估計雙正弦信號頻率之和的同時,利用FFT快速測頻算法估計其中強信號分量的頻率值。算法仿真驗證和性能分析表明了提出的算法能快速高精度地估計雙信號頻率。 (7)給出了基于頻譜重心算法的雷達雙信號頻率估計的FPGA硬件實現架構,并進行了時序仿真。 (8)討論了雙信號帶寬匹配接收系統的硬件設計方案,給出了快速測頻及帶寬估計模塊設計。
上傳時間: 2013-06-02
上傳用戶:youke111
現代雷達系統廣泛采用脈沖壓縮技術,用以解決作用距離與分辨能力之間的矛盾。脈沖壓縮是指雷達通過發射寬脈沖,保證足夠的最大作用距離,而接收時,采用相應的脈沖壓縮法獲得窄脈沖以提高距離分辨率的過程。同時,數字信號處理技術的迅猛發展和廣泛應用,為雷達脈沖壓縮處理的數字化實現提供了可能。 本文主要研究雷達多波形頻域數字脈沖壓縮系統的硬件系統實現。在匹配濾波理論的指導下,成功研制了基于FPGAEP1K100QC208-1和4片高性能ADSP21160M的多波形頻域數字脈沖壓縮系統。該系統可處理時寬在42μs以內、帶寬在5MHz以下的線性調頻信號(LFM),非線性調頻信號(NLFM)和Taylor四相碼信號,且技術指標完全滿足實用系統的設計要求。 本文完成的主要工作和創新之處有:(1)基于雙通道模數轉換器AD10242設計高精度數據采集電路,為整個脈壓系統的工作提供必要的條件。完成了前端模擬信號輸入電路的優化和差分輸入時鐘的產生,以實現高精度采樣。 (2)根據協議和脈壓系統的工作要求,以基于FPGAEP1K100QC208完成系統控制,使整個脈壓系統正確穩定地工作。同時以該FPGA生成雙口RAM,實現數據暫存,以匹配采樣速率和脈壓系統頻率。 (3)設計基于4片高性能ADSP21160M的緊耦合并行處理系統,以完成多波形頻域數字脈沖壓縮的全部運算工作。4片DSP共享外部總線,且各DSP以鏈路口互連,進行數據通信。各DSP還使用一個鏈路口連接到接口板DSP,將脈壓結果送出。 (4)以一片ADSP21160M和一片EP1K100QC208為核心,設計輸出板電路,完成數據對齊、求模和數據向下一級的輸出,并產生模擬輸出。 (5)調試并改進處理板和輸出板。
上傳時間: 2013-06-11
上傳用戶:qq277541717
自適應濾波器的硬件實現一直是自適應信號處理領域研究的熱點。隨著電子技術的發展,數字系統功能越來越強大,對器件的響應速度也提出更高的要求。 本文針對用通用DSP 芯片實現的自適應濾波器處理速度低和用HDL語言編寫底層代碼用FPGA實現的自適應濾波器開發效率低的缺點,提出了一種基于DSP Builder系統建模的設計方法。以隨機2FSK信號作為研究對象,首先在matlab上編寫了LMS去噪自適應濾波器的點M文件,改變自適應參數,進行了一系列的仿真,對算法迭代步長、濾波器的階數與收斂速度和濾波精度進行了研究,得出了最佳自適應參數,即迭代步長μ=0.0057,濾波器階數m=8,為硬件實現提供了參考。 然后,利用最新DSP Builder工具建立了基于LMS算法的8階2FSK信號去噪自適應濾波器的模型,結合多種EDA工具,在EPFlOKl00EQC208-1器件上設計出了最高數據處理速度為36.63MHz的8階LMS自適應濾波器,其速度是文獻[3]通過編寫底層VHDL代碼設計的8階自適應濾波器數據處理速度7倍多,是文獻[50]采用DSP通用處理器TMS320C54X設計的8階自適應濾波器處理速度25倍多,開發效率和器件性能都得到了大大地提高,這種全新的設計理念與設計方法是EDA技術的前沿與發展方向。 最后,采用異步FIFO技術,設計了高速采樣自適應濾波系統,完成了對雙通道AD器件AD9238與自適應濾波器的高速匹配控制,在QuartusⅡ上進行了仿真,給出了系統硬件實現的原理框圖,并將采樣濾波控制器與異步FIF0集成到同一芯片上,既能有效降低高頻可能引起的干擾又降低了系統的成本。
上傳時間: 2013-06-01
上傳用戶:ynwbosss