該三相逆變器采用內(nèi)部pwm產(chǎn)生脈沖信號,控制逆變器的開斷。 由于脈寬調(diào)制和輸出阻抗的存在,會導(dǎo)致輸出電壓存在諧波。 需要對逆變器輸出的方波信號進(jìn)行濾波后,得到正弦基波。 從模型運行結(jié)果電壓電流波形前后對比,LC濾波器濾波效果明顯。
標(biāo)簽: LuBoLC 三相逆變器 LC濾波器 參數(shù)
上傳時間: 2020-05-13
上傳用戶:CCTV
該三相逆變器采用內(nèi)部pwm產(chǎn)生脈沖信號,控制逆變器的開斷。 由于脈寬調(diào)制和輸出阻抗的存在,會導(dǎo)致輸出電壓存在諧波。 需要對逆變器輸出的方波信號進(jìn)行濾波后,得到正弦基波。 從模型運行結(jié)果電壓電流波形前后對比,LC濾波器濾波效果明顯。
標(biāo)簽: LuBoLC3 三相逆變器 LC濾波器 參數(shù)3
上傳時間: 2020-05-13
上傳用戶:CCTV
單項正弦逆變發(fā)生器,用c語言編寫,stm32編程產(chǎn)生SPWM波,控制逆變器產(chǎn)生電壓
上傳時間: 2020-06-28
上傳用戶:lzp962485607
本文介紹了一種基于MSP430單片機的SPWM控制逆變器的設(shè)計及實現(xiàn),MSP430單片機作為核心控制器,控制產(chǎn)生SPWM波,SPWM波控制驅(qū)動器從而控制全橋逆變電路,通過全橋濾波電路的直流電壓信號轉(zhuǎn)變?yōu)檎也ㄐ盘?并通過PID反饋控制算法使得輸出電壓信號穩(wěn)定。
上傳時間: 2022-03-27
上傳用戶:kent
針對當(dāng)前電網(wǎng)需要能輸出高質(zhì)量的交流電,且需具備較好的負(fù)載適應(yīng)性及調(diào)壓、調(diào)頻等問題。設(shè)計了基于STM32F103C8T6單片機控制的DC-AC三相正弦波逆變器。文章詳細(xì)分析了三相逆變器硬件電路各個模塊的工作原理及相關(guān)參數(shù)的設(shè)計,分析了用于控制三相逆變器的SPWM調(diào)制技術(shù)、基于數(shù)字PI控制的功率變換技術(shù),同時進(jìn)行了硬件電路設(shè)計、軟件設(shè)計,制作了三相逆變器實物。通過對逆變器調(diào)壓、調(diào)頻測試,結(jié)果表明所制作的三相逆變器調(diào)壓、調(diào)頻控制方案的可行性與有效性。
上傳時間: 2022-03-28
上傳用戶:aben
1-1前言一般人所能夠感受到聲音的頻率約介於5H2-20KHz,超音波(Ultrasonic wave)即爲(wèi)頻率超過20KHz以上的音波或機械振動,因此超音波馬達(dá)就是利用超音波的彈性振動頻率所構(gòu)成的制動力。超音波馬達(dá)的內(nèi)部主要是以壓電陶瓷材料作爲(wèi)激發(fā)源,其成份是由鉛(Pb)、結(jié)(Zr)及鈦(Ti)的氧化物皓鈦酸鉛(Lead zirconate titanate,PZT)製成的。將歷電材料上下方各黏接彈性體,如銅或不銹鋼,並施以交流電壓於壓電陶瓷材料作爲(wèi)驅(qū)動源,以激振彈性體,稱此結(jié)構(gòu)爲(wèi)定子(Stator),將其用彈簧與轉(zhuǎn)子Rotor)接觸,將所産生摩擦力來驅(qū)使轉(zhuǎn)子轉(zhuǎn)動,由於壓電材料的驅(qū)動能量很大,並足以抗衡轉(zhuǎn)子與定子間的正向力,雖然伸縮振幅大小僅有數(shù)徵米(um)的程度,但因每秒之伸縮達(dá)數(shù)十萬次,所以相較於同型的電磁式馬達(dá)的驅(qū)動能量要大的許多。超音波馬達(dá)的優(yōu)點爲(wèi):1,轉(zhuǎn)子慣性小、響應(yīng)時間短、速度範(fàn)圍大。2,低轉(zhuǎn)速可產(chǎn)生高轉(zhuǎn)矩及高轉(zhuǎn)換效率。3,不受磁場作用的影響。4,構(gòu)造簡單,體積大小可控制。5,不須經(jīng)過齒輸作減速機構(gòu),故較爲(wèi)安靜。實際應(yīng)用上,超音波馬達(dá)具有不同於傳統(tǒng)電磁式馬達(dá)的特性,因此在不適合應(yīng)用傳統(tǒng)馬達(dá)的場合,例如:間歇性運動的裝置、空間或形狀受到限制的場所;另外包括一些高磁場的場合,如核磁共振裝置、斷層掃描儀器等。所以未來在自動化設(shè)備、視聽音響、照相機及光學(xué)儀器等皆可應(yīng)用超音波馬達(dá)來取代。
標(biāo)簽: 超聲波電機
上傳時間: 2022-06-17
上傳用戶:
摘要:隨薦電力電子設(shè)備、交直流電弧爐和電氣化鐵道等非線性、沖擊性負(fù)荷的大量接入電網(wǎng),引起了電網(wǎng)無功功率不足、電壓波動與閃變、三相供電不平衡以及電壓電流波形畸變等其它一系列電能質(zhì)景問題,并嚴(yán)重威脅著電力系繞的安全穩(wěn)定運行。首先,本文介紹了無功功率的基本概念,介紹了無功功率對電力系統(tǒng)的影響以及無功補償?shù)淖饔茫⒃敱M的閘述了國內(nèi)外無功補償裝置的歷史以及現(xiàn)狀。其次,本文詳細(xì)分析了靜止無功補償器(SVC)和靜止無功發(fā)生器(SVC)的基本結(jié)構(gòu),控制方法和工作原理,以及各自優(yōu)特點。并且闡述了它們的工作特性。再次,本文著重進(jìn)行了對SVG型靜止無功補償器提高系統(tǒng)電壓的理論研究。利用MATLAB/SIMLINK仿真軟件對SVG工作方式及利用SVG動態(tài)提高系統(tǒng)電壓的原理進(jìn)行仿真研究。并對仿真結(jié)果進(jìn)行了全面外析VRe,本完成了(利t功補t控制器的設(shè)計,該控a器a系統(tǒng)硬件上采用了由STC生產(chǎn)的STCIOFO8X單片機作為主控制器。采用ATT7022作為電能檢測芯片,實現(xiàn)電網(wǎng)參數(shù)的精確深樣與計算,在系統(tǒng)軟件上采用品剛管控制投切電容器,實現(xiàn)了電容器的快速,無弧的投切。采用全中文液品顯示界面實時顯示系統(tǒng)運行狀況.關(guān);無,SVG,svc,STC10FO8X隨著現(xiàn)代電力電子技術(shù)的飛速發(fā)展,大量大功率、非線性負(fù)荷的接入電網(wǎng)中,使得電網(wǎng)供電質(zhì)量受到了嚴(yán)重的威脅。特別是一些像電弧爐、軋機、整流橋等非線性和沖擊性負(fù)荷的大量使用是導(dǎo)致電能質(zhì)量惡化的最主要來源,造成了一系列嚴(yán)重的影響理想狀態(tài)的電力供應(yīng)要求頻率為50Hz,電壓幅值穩(wěn)定在額定值的標(biāo)準(zhǔn)正弦波形。在三相電網(wǎng)供電系統(tǒng)中,A,B.C三相電壓電流的幅值大小相等、相位差依次落后120度。但當(dāng)電力用戶的各種用電裝置接入電力系統(tǒng)后,電力供應(yīng)由理想的電力供應(yīng)變成了電壓電流偏離這種狀態(tài)的非理想狀態(tài)。電網(wǎng)中的許多用電負(fù)荷都具有低功率因數(shù)、非線性、不平衡性和沖擊性的特征,這些特征嚴(yán)重地危害著電網(wǎng)的電力供應(yīng),可表現(xiàn)在:電壓值跌落或浪涌、各次諧波含量大、電壓波形發(fā)生閃變、電壓電流波形失真等,這樣便出現(xiàn)了電能質(zhì)量問題。實際電網(wǎng)中的電能質(zhì)量問題主要表現(xiàn)如下:
標(biāo)簽: 電力系統(tǒng) 無功補償器
上傳時間: 2022-06-17
上傳用戶:
超聲波電源廣泛應(yīng)用于超聲波加工、診斷、清洗等領(lǐng)域,其負(fù)載超聲波換能器是一種將超音頻的電能轉(zhuǎn)變?yōu)闄C械振動的器件。由于超聲換能器是一種容性負(fù)載,因此換能器與發(fā)生器之間需要進(jìn)行阻抗匹配才能工作在最佳狀態(tài)。串聯(lián)匹配能夠有效濾除開關(guān)型電源輸出方波存在的高次諧波成分,因此應(yīng)用較為廣泛。但是環(huán)境溫度或元件老化等原因會導(dǎo)致?lián)Q能器的諧振頻率發(fā)生漂移,使諧振系統(tǒng)失諧。傳統(tǒng)的解決辦法就是頻率跟蹤,但是頻率跟蹤只能保證系統(tǒng)整體電壓電流同頻同相,由于工作頻率改變了而匹配電感不變,此時換能器內(nèi)部動態(tài)支路工作在非諧振狀態(tài),導(dǎo)致?lián)Q能器功率損耗和發(fā)熱,致使輸出能量大幅度下降甚至停振,在實際應(yīng)用中受到限制。所以,在跟蹤諧振點調(diào)節(jié)逆變器開關(guān)頻率的同時應(yīng)改變匹配電感才能使諧振系統(tǒng)工作在最高效能狀態(tài)。針對按固定諧振點匹配超聲波換能器電感參數(shù)存在的缺點,本文應(yīng)用耦合振蕩法對換能器的匹配電感和耦合頻率之間的關(guān)系建立數(shù)學(xué)模型,證實了匹配電感隨諧振頻率變化的規(guī)律。給出利用這一模型與耦合工作頻率之間的關(guān)系動態(tài)選擇換能器匹配電感的方法。經(jīng)過分析比較,選擇了基于磁通控制原理的可控電抗器作為匹配電感,通過改變電抗控制度調(diào)節(jié)電抗值。并給出了實現(xiàn)這一方案的電路原理和控制方法。最后本文以DSPTMS320F2812為核心設(shè)計出實現(xiàn)這一原理的超聲波逆變電源。實驗結(jié)果表明基于磁通控制的可控電抗器可以實現(xiàn)電抗值隨電抗控制度線性無級可調(diào),由于該電抗器輸出正弦波,理論上沒有諧波污染。具體采用復(fù)合控制策略,穩(wěn)態(tài)時,換能器工作在DPLL鎖定頻率上;動態(tài)時,逐步修改匹配電抗大小,搜索輸出電流的最大值,再結(jié)合DPLL鎖定該頻率。配合PS-PWM可實現(xiàn)功率連續(xù)可調(diào)。該超聲波換能系統(tǒng)能夠有效的跟隨最大電流輸出頻率,即使頻率發(fā)生漂移系統(tǒng)仍能保持工作在最佳狀態(tài),具有實際應(yīng)用價值。
標(biāo)簽: 動態(tài)匹配換能器 超聲波電源
上傳時間: 2022-06-18
上傳用戶:
人類進(jìn)入21世紀(jì)以來,計算機科學(xué)技術(shù)、信息科學(xué)技術(shù)和自動化控制技術(shù)被廣泛的應(yīng)用于現(xiàn)場的工業(yè)生產(chǎn)中,而數(shù)據(jù)傳輸是工業(yè)生產(chǎn)的重要環(huán)節(jié),數(shù)據(jù)傳輸?shù)馁|(zhì)量直接影響到生產(chǎn)效益。數(shù)據(jù)集中器被用在數(shù)據(jù)傳輸環(huán)節(jié),傳統(tǒng)的數(shù)據(jù)集中器由于功能單一、總線接口過少、無數(shù)據(jù)處理能力等缺點已逐漸跟不上時代發(fā)展,新型的數(shù)據(jù)傳輸系統(tǒng)的研究迫在眉睫。多通信接口的MBUS主站/中繼器運用了歐洲儀表總線MBUS技術(shù),代替?zhèn)鹘y(tǒng)的RS485總線技術(shù),在數(shù)據(jù)傳輸方面有者極大優(yōu)勢。由于PROFIBUS總線、CAN總線、MBUS總線和以太網(wǎng)技術(shù),它們技術(shù)成熟、穩(wěn)定性能高、應(yīng)用范圍廣,在工業(yè)生產(chǎn)的數(shù)據(jù)傳輸環(huán)節(jié)應(yīng)用極為廣泛,而嵌入式技術(shù)作為當(dāng)今的新型技術(shù)的代表,也在生產(chǎn)實踐中被廣泛運用,所以多通信接口的M BUS主站/中繼器將PROFIBUS,CAN總線技術(shù)、MBUS總線技術(shù)和以太網(wǎng)技術(shù)與嵌入式相結(jié)合,以NXP公司的LPC2387作為核心控制芯片,成功的實現(xiàn)了M BUS從節(jié)點的數(shù)據(jù)與PROFIBUS、CAN總線和以太網(wǎng)之間的數(shù)據(jù)雙向傳輸。多通信接口的MBUS主站/中繼器的下行接口采用的是MBUS總線技術(shù),上行接口采用了Profibus.總線、CAN總線和以太網(wǎng)通信技術(shù),考慮到多功能性,還設(shè)計了MBUS中繼器接口,增加了MBUS從機的數(shù)據(jù)傳輸距離。多通信接口的MBUS主站/中繼器的設(shè)計彌補了傳統(tǒng)數(shù)據(jù)傳輸系統(tǒng)的不足,通過系統(tǒng)功能測試,多通信接口的MBUS主站/中繼器符合實際使用要求,可以用于各種工業(yè)生產(chǎn)場合。
上傳時間: 2022-06-20
上傳用戶:qingfengchizhu
基于LTspice的射極跟隨器仿真實驗1,實驗要求與目的(1)進(jìn)一步掌握靜態(tài)工作點的調(diào)試方法,深入理解靜態(tài)工作點的作用。(2)調(diào)節(jié)電路的跟隨范圍,使輸出信號的跟隨范圍最大。(3)測量電路的電壓放大倍數(shù)、輸入電阻和輸出電阻。(4)測量電路的頻率特性。2·實驗原理在射極跟隨器電路中,信號由基極和地之間輸入,由發(fā)射極和地之間輸出,集電極交流等效接地,所以,集電極是輸入/輸出信號的公共端,故稱為共集電極電路。又由于該電路的輸出電壓是跟隨輸入電壓變化的,所以又稱為射極跟隨器。3.實驗電路射極跟隨器電路如圖 1所示。4.實驗步驟(1)靜態(tài)工作點的調(diào)整。按圖 1連接電路,輸入信號由信號發(fā)生器產(chǎn)生一個幅度為 1V、頻率為1kHz的正弦信號。要注意使信號不失真輸出。(2)跟隨范圍調(diào)節(jié)。增大輸入信號直到輸出出現(xiàn)失真,觀察出現(xiàn)了飽和失真還是截止失真,再增大或減小信號,使失真消除。再次增大輸入信號,若出現(xiàn)失真,再調(diào)節(jié)信號使輸出波形達(dá)到最大不失真輸出,此時電路的靜態(tài)工作點是最佳工作點,輸入信號是最大的跟隨范圍。最后輸入信號增加到28 v,電路達(dá)到最大不失真輸出如圖 2所示。最大輸入、輸出信號波形如圖 3所示。
上傳時間: 2022-06-26
上傳用戶:
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1