由于信道中存在干擾,數(shù)字信號(hào)在信道中傳輸?shù)倪^程中會(huì)產(chǎn)生誤碼.為了提高通信質(zhì)量,保證通信的正確性和可靠性,通常采用差錯(cuò)控制的方法來糾正傳輸過程中的錯(cuò)誤.本文的目的就是研究如何通過差錯(cuò)控制的方法以提高通信質(zhì)量,保證傳輸?shù)恼_性和可靠性.重點(diǎn)研究一種信道編解碼的算法和邏輯電路的實(shí)現(xiàn)方法,并在硬件上驗(yàn)證,利用碼流傳輸?shù)臏y(cè)試方法,對(duì)設(shè)計(jì)進(jìn)行測(cè)試.在以上的研究基礎(chǔ)之上,橫向擴(kuò)展和課題相關(guān)問題的研究,包括FPGA實(shí)現(xiàn)和高速硬件電路設(shè)計(jì)等方面的研究. 糾錯(cuò)碼技術(shù)是一種通過增加一定的冗余信息來提高信息傳輸可靠性的有效方法.RS碼是一種典型的糾錯(cuò)碼,在線性分組碼中,它具有最強(qiáng)的糾錯(cuò)能力,既能糾正隨機(jī)錯(cuò)誤,也能糾正突發(fā)錯(cuò)誤.在深空通信,移動(dòng)通信以及數(shù)字視頻廣播等系統(tǒng)中具有廣泛的應(yīng)用,隨著RS編碼和解碼算法的改進(jìn)和相關(guān)的硬件實(shí)現(xiàn)技術(shù)的發(fā)展,RS碼在實(shí)際中的應(yīng)用也將更加廣泛. 在研究中,對(duì)所研究的問題進(jìn)行分解,集中精力研究課題中的重點(diǎn)和難點(diǎn),在各個(gè)模塊成功實(shí)現(xiàn)的基礎(chǔ)上,成功的進(jìn)行系統(tǒng)組合,協(xié)調(diào)各個(gè)模塊穩(wěn)定的工作. 在本文中的EDA設(shè)計(jì)中,使用了自頂向下的設(shè)計(jì)方法,編解碼算法每一個(gè)子模塊分開進(jìn)行設(shè)計(jì),最后在頂層進(jìn)行元件例化,正確實(shí)現(xiàn)了編碼和解碼的功能. 本文首先介紹相關(guān)的數(shù)字通信背景;接著提出糾錯(cuò)碼的設(shè)計(jì)方案,介紹RS(31,15)碼的編譯碼算法和邏輯電路的實(shí)現(xiàn)方法,RTL代碼編寫和邏輯仿真以及時(shí)序仿真,并討論了FPGA設(shè)計(jì)的一般性準(zhǔn)則以及高速數(shù)字電路設(shè)計(jì)的一些常用方法和注意事項(xiàng);最后設(shè)計(jì)基于FPGA的硬件電路平臺(tái),并利用靜態(tài)和動(dòng)態(tài)的方法對(duì)編解碼算法進(jìn)行測(cè)試. 通過對(duì)編碼和解碼算法的充分理解,本人使用Verilog HDL語(yǔ)言對(duì)算法進(jìn)行了RTL描述,在Altera公司Cyclone系列FPGA平臺(tái)上面實(shí)現(xiàn)了編碼和解碼算法. 其中,編碼的最高工作頻率達(dá)到158MHz,解碼的最高工作頻率達(dá)到91MHz.在進(jìn)行硬件調(diào)試的時(shí)候,整個(gè)系統(tǒng)工作在30MHz的時(shí)鐘頻率下,通過了硬件上的靜態(tài)測(cè)試和動(dòng)態(tài)測(cè)試,并能夠正確實(shí)現(xiàn)預(yù)期的糾錯(cuò)功能.
上傳時(shí)間: 2013-07-01
上傳用戶:liaofamous
本文首先介紹了利用FPGA設(shè)計(jì)數(shù)字電路系統(tǒng)的流程和雷達(dá)數(shù)字信號(hào)處理的主要內(nèi)容。 在第二章中主要闡述了FIR數(shù)字濾波器的窗函數(shù)設(shè)計(jì)方法,并應(yīng)用FIR濾波器設(shè)計(jì)數(shù)字動(dòng)目標(biāo)顯示和數(shù)字動(dòng)目標(biāo)檢測(cè)系統(tǒng);脈沖壓縮處理是現(xiàn)代雷達(dá)信號(hào)處理的一個(gè)重要組成部分,線性調(diào)頻信號(hào)和二相巴克碼的脈沖壓縮處理方法在第三章做了重點(diǎn)描述。 Cyclone系列芯片是高性價(jià)比,基于1.5V、0.13um采用銅制層的SRAM工藝。它是第一種支持配置數(shù)據(jù)解壓的FPGA芯片。論文設(shè)計(jì)的最后部分是利用Altera公司Cyclone系列FPGA芯片EP1C6F256C6和EPCS4配置芯片設(shè)計(jì)設(shè)計(jì)SD轉(zhuǎn)換器,在QuartusⅡ4.0下采用VHDL語(yǔ)言和邏輯電路圖結(jié)合的設(shè)計(jì)方法,經(jīng)過仿真并最終實(shí)現(xiàn)了硬件設(shè)計(jì)。 設(shè)計(jì)結(jié)果表明電路性能可靠,SD轉(zhuǎn)換的精度較高,完全滿足設(shè)計(jì)的要求。
標(biāo)簽: FPGA 雷達(dá)信號(hào)處理 中的設(shè)計(jì)
上傳時(shí)間: 2013-06-26
上傳用戶:華華123
JPEG2000是由ISO/ITU-T組織下的IECJTC1/SC29/WG1小組制定的下一代靜止圖像壓縮標(biāo)準(zhǔn),其優(yōu)良的壓縮特性使得它將具有廣泛的應(yīng)用領(lǐng)域。JPEG2000算法非常復(fù)雜,圖像編碼過程占用了大量的處理器時(shí)間開銷和內(nèi)存開銷,因而通過對(duì)JPEG2000算法進(jìn)行優(yōu)化并采用硬件電路來實(shí)現(xiàn)JPEG2000標(biāo)準(zhǔn)的部分或全部?jī)?nèi)容,對(duì)加快編碼速度從而擴(kuò)展其應(yīng)用領(lǐng)域有重要的意義。 本文的研究主要包括兩方面的內(nèi)容,其一是JPEG2000算術(shù)編碼器算法的研究與硬件設(shè)計(jì),其二是JPEG2000碼率控制算法的研究與優(yōu)化算法的設(shè)計(jì)。在研究算術(shù)編碼器過程中,首先研究了JPEG2000中基于上下文的MQ算術(shù)編碼器的編碼原理和編碼流程,之后采用有限狀態(tài)機(jī)和二級(jí)流水線技術(shù),并在不影響關(guān)鍵路徑的情況下通過對(duì)算術(shù)編碼步驟優(yōu)化采用硬件描述語(yǔ)言對(duì)算術(shù)編碼器進(jìn)行了設(shè)計(jì),并通過了功能仿真與綜合。實(shí)驗(yàn)證明該設(shè)計(jì)不但編碼速度快,而且流水線短,硬件設(shè)計(jì)的復(fù)雜度低且易于控制。 在研究碼率控制算法過程中,首先結(jié)合率失真理論建立了算法的數(shù)學(xué)模型,并驗(yàn)證了該算法的有效性,之后深入分析了該數(shù)學(xué)模型的實(shí)現(xiàn)流程,找出影響算法效率的關(guān)鍵路徑。在對(duì)算法優(yōu)化時(shí)采用黃金分割點(diǎn)算法代替原來的二分查找法,并使用了碼塊R-D斜率最值記憶和碼率誤差控制算法。實(shí)驗(yàn)證明,采用優(yōu)化算法在增加少量系統(tǒng)資源的情況下使得計(jì)算效率提高了60%以上。之后,分析了率失真理論與JPEG2000中PCRD-opt算法的具體實(shí)現(xiàn),又提出了一種失真更低的比特分配方案,即按照“失真/碼長(zhǎng)”值從大到小通道編碼順序進(jìn)行編碼,通過對(duì)該算法的仿真驗(yàn)證,得出在固定碼率條件下新算法將產(chǎn)生更少的失真。
標(biāo)簽: JPEG 2000 FPGA 標(biāo)準(zhǔn)
上傳時(shí)間: 2013-07-13
上傳用戶:long14578
最新的研究進(jìn)展是OFDM的出現(xiàn),并且在2000年出現(xiàn)了第一個(gè)采用此技術(shù)的無線標(biāo)準(zhǔn)(HYPERLAN-Ⅱ)。由于它與TDMA及CDMA相比能處理更高數(shù)據(jù)速率,因此可以預(yù)想在第四代系統(tǒng)中也將使用此技術(shù)。 寬帶應(yīng)用和高速率數(shù)據(jù)傳輸是OFDM調(diào)制/多址技術(shù)通信系統(tǒng)的重要特征之一。作者通過參與國(guó)家863計(jì)劃項(xiàng)目“OFDM通信系統(tǒng)”一年以來的研發(fā)工作,對(duì)OFDM通信系統(tǒng)及相關(guān)技術(shù)有了深入的理解,積累了大量實(shí)際經(jīng)驗(yàn),并在相關(guān)工作中取得了部分研究成果。 另一方面,關(guān)于寬帶自適應(yīng)均衡技術(shù)的研究在近年來也引起了廣泛的關(guān)注。它是補(bǔ)償信道畸變的重要的技術(shù)之一。作者通過參與該項(xiàng)目FPGA部分的開發(fā)與調(diào)試工作,基于單片F(xiàn)PGA實(shí)現(xiàn)了均衡部分;此外,作者在頻域自適應(yīng)均衡算法方面也取得了一些理論成果。 本文的主體部分就是根據(jù)上述工作的內(nèi)容展開的。 首先介紹了本課題相關(guān)技術(shù)的發(fā)展情況,主要包括:OFDM系統(tǒng)的技術(shù)原理、技術(shù)優(yōu)勢(shì)、歷史和現(xiàn)狀,均衡技術(shù)的特點(diǎn)和發(fā)展等。末尾敘述了本課題的來源和研究意義,并簡(jiǎn)介了作者的主要工作和貢獻(xiàn)。確定將WSSUS分布和瑞利衰落作為本文研究的信道模型。主要分析了常用的時(shí)域均衡器,均是單載波非擴(kuò)頻數(shù)字調(diào)制中常用到的均衡器和均衡算法,為接下來的進(jìn)一步研究作理論參考。 接著,論述了均衡必須用到的信道估計(jì)技術(shù)。重點(diǎn)就該方案的核心算法(頻域均衡算法)進(jìn)行了數(shù)學(xué)上進(jìn)行了較深入的研究,建立系統(tǒng)模型,并據(jù)此推導(dǎo)了三種頻域均衡的算法:頻域消除HICI,Gauss-Seidel迭代算法,頻域線性內(nèi)插。采用WSSUS信道模型進(jìn)行了計(jì)算機(jī)仿真,得出了采用這些均衡算法在不同條件下的性能曲線。并且系統(tǒng)地、有重點(diǎn)地對(duì)該方案的原理和實(shí)質(zhì)進(jìn)行了較深入的討論。歸納比較了各種算法的算法復(fù)雜度和能達(dá)到的性能,并且結(jié)合信道糾錯(cuò)編解碼進(jìn)行了細(xì)致的分析。進(jìn)一步嘗試設(shè)計(jì)了無線局域網(wǎng)OFDM系統(tǒng)的設(shè)計(jì),采用典型的歐洲Hyperlan2系統(tǒng)為例,把研究成果引入到實(shí)際的整個(gè)系統(tǒng)中來看。結(jié)合具體的系統(tǒng)指出了該均衡算法在抗衰落和相位偏移方面的應(yīng)用。 最后,描述了利用Xilinx的xc2v3000-4FG676型號(hào)芯片針對(duì)OFDM系統(tǒng)實(shí)現(xiàn)頻域自適應(yīng)均衡的方法,主要給出了設(shè)計(jì)方法、時(shí)序仿真結(jié)果和處理速度估值等;并結(jié)合最新的FPGA發(fā)展動(dòng)態(tài)和特點(diǎn),對(duì)基于FPGA實(shí)現(xiàn)其他均衡算法的升級(jí)空間進(jìn)行了討論。 本文的結(jié)束語(yǔ)中,對(duì)作者在本文中所作貢獻(xiàn)進(jìn)行了總結(jié),并指出了仍有待深入研究的幾個(gè)問題。
上傳時(shí)間: 2013-04-24
上傳用戶:
偏振模色散(PMD)是限制光通信系統(tǒng)向高速率和大容量擴(kuò)展的主要障礙,尤其是160Gb/s光傳輸系統(tǒng)中,由PMD引起的脈沖畸變現(xiàn)象更加嚴(yán)重。為了克服PMD帶來的危害,國(guó)內(nèi)外已經(jīng)開始了對(duì)PMD補(bǔ)償?shù)难芯俊5悄壳暗难a(bǔ)償系統(tǒng)復(fù)雜、成本高且補(bǔ)償效果不理想,因此采用前向糾錯(cuò)(FEC)和偏振擾偏器配合抑制PMD的方法,可以實(shí)現(xiàn)低成本的PMD補(bǔ)償。 在實(shí)驗(yàn)中將擾偏器連入光時(shí)分復(fù)用系統(tǒng),通過觀察其工作前后的脈沖波形,發(fā)現(xiàn)擾偏器的應(yīng)用改善了系統(tǒng)的性能。隨著系統(tǒng)速率的提高,對(duì)擾偏器速率的要求也隨之提高,目前市場(chǎng)上擾偏器的速率無法滿足160Gb/s光傳輸系統(tǒng)要求。通過對(duì)偏振擾偏器原理的分析,決定采用高速控制電路驅(qū)動(dòng)偏振控制器的方法來實(shí)現(xiàn)高速擾偏器的設(shè)計(jì)。擾偏器采用鈮酸鋰偏振控制器,其響應(yīng)時(shí)間小于100ns,是目前偏振控制器能夠達(dá)到的最高速率,但是將其用于160Gb/s高速光通信系統(tǒng)擾偏時(shí),這個(gè)速率仍然偏低,因此,提出采用多段鈮酸鋰晶體并行擾偏的方法,彌補(bǔ)鈮酸鋰偏振控制器速率低的問題。通過對(duì)幾種處理器的分析和比較,選擇DSP+FPGA作為控制端,DSP芯片用于產(chǎn)生隨機(jī)數(shù)據(jù),F(xiàn)PGA芯片具有豐富的I/O引腳,工作頻率高,可以實(shí)現(xiàn)大量數(shù)據(jù)的快速并行輸出。這樣的方案可以充分發(fā)揮DSP和FPGA各自的優(yōu)勢(shì)。另外對(duì)數(shù)模轉(zhuǎn)換芯片也要求響應(yīng)速度快,本論文以FPGA為核心,完成了FPGA與其它芯片的接口電路設(shè)計(jì)。在QuartusⅡ集成環(huán)境中進(jìn)行FPGA的開發(fā),使用VHDL語(yǔ)言和原理圖輸入法進(jìn)行電路設(shè)計(jì)。 本文設(shè)計(jì)的偏振擾偏器在高速控制電路的驅(qū)動(dòng)下,可以實(shí)現(xiàn)大量的數(shù)據(jù)處理,采用多段鈮酸鋰晶體并行工作的方法,可以提高偏振擾偏器的速率。利用本方案制作的擾偏器具有高擾偏速率,適合應(yīng)用于160Gb/s光通信系統(tǒng)中進(jìn)行PMD補(bǔ)償。
上傳時(shí)間: 2013-04-24
上傳用戶:suxuan110425
激光測(cè)距是激光技術(shù)在軍事上最早和最成熟的應(yīng)用,自1961.年美國(guó)休斯飛機(jī)公司研制成功世界上第一臺(tái)激光測(cè)距機(jī)之后,激光測(cè)距技術(shù)發(fā)展迅速。如今,它已經(jīng)被廣泛運(yùn)用于軍用領(lǐng)域和民用領(lǐng)域。為了進(jìn)一步提高我國(guó)激光測(cè)距水平,研制更高性能激光測(cè)距機(jī)依然是我國(guó)國(guó)防科技研究中的重要課題之一。其中,測(cè)距精度是激光測(cè)距機(jī)的一個(gè)重要參數(shù)。而激光測(cè)距機(jī)能否準(zhǔn)確的檢測(cè)激光回波信號(hào)將直接影響測(cè)距精度。 脈沖激光測(cè)距系統(tǒng)主要包括激光發(fā)射子系統(tǒng)、激光回波探測(cè)子系統(tǒng)、回波檢測(cè)與主控子系統(tǒng)、終端顯示子系統(tǒng)等組成。其中設(shè)計(jì)高精度激光回波檢測(cè)與主控子系統(tǒng)是實(shí)現(xiàn)高精度激光測(cè)距的核心問題。傳統(tǒng)激光回波檢測(cè)與主控子系統(tǒng)通常采用分立元件和小規(guī)模集成電路設(shè)計(jì),電路復(fù)雜且精度較低。隨著數(shù)字電路設(shè)計(jì)技術(shù)的發(fā)展,已出現(xiàn)大規(guī)模可編程邏輯器件FPGA(現(xiàn)場(chǎng)可編程門陣列)和CPLD(復(fù)雜可編程邏輯器件)。采用FPGA代替?zhèn)鹘y(tǒng)的分立元件和小規(guī)模集成電路來設(shè)計(jì)激光回波檢測(cè)與主控子系統(tǒng),不僅提高了回波檢測(cè)精度,同時(shí)簡(jiǎn)化了整個(gè)測(cè)距系統(tǒng)的設(shè)計(jì)。 本文研究了將激光回波信號(hào)直接送入FPGA進(jìn)行檢測(cè)的方案。同時(shí),采用這種方案設(shè)計(jì)了一種激光回波檢測(cè)系統(tǒng),并把它成功運(yùn)用在一引信項(xiàng)目中。這種方案電路設(shè)計(jì)簡(jiǎn)單,易于實(shí)現(xiàn)。在實(shí)際應(yīng)用中,由于激光回波探測(cè)子系統(tǒng)只是完成由光信號(hào)到電信號(hào)的轉(zhuǎn)換及簡(jiǎn)單放大,理論分析和試驗(yàn)結(jié)果均表明,采用該方案進(jìn)行回波檢測(cè)的精度較低,這種回波檢測(cè)方法也只能應(yīng)用在測(cè)距精度要求低的項(xiàng)目中。 為了滿足另一高精度測(cè)距項(xiàng)目的需要,在FPGA直接進(jìn)行激光回波檢測(cè)方案的基礎(chǔ)上,設(shè)計(jì)了一種高精度激光回波檢測(cè)系統(tǒng)。文中介紹了其實(shí)現(xiàn)原理,理論上分析了該系統(tǒng)所能達(dá)到的回波檢測(cè)精度及整機(jī)測(cè)距系統(tǒng)的測(cè)距精度。與第一種方案相比,該方案引入了超高速數(shù)據(jù)采集電路。由于采樣速率高達(dá)lGsps,該方案實(shí)現(xiàn)的難點(diǎn)在于如何保證數(shù)據(jù)采集電路的穩(wěn)定工作。文中從總體方案的設(shè)計(jì),到器件的選型,硬件電路板的實(shí)現(xiàn)等方面做了詳細(xì)的闡述,最終完成了系統(tǒng)硬件電路設(shè)計(jì)。接著介紹了系統(tǒng)程序設(shè)計(jì)。后面給出了試驗(yàn)測(cè)試結(jié)果,該系統(tǒng)工作穩(wěn)定,性能良好。系統(tǒng)設(shè)計(jì)中引入的超高速數(shù)據(jù)采集電路有著廣泛的應(yīng)用,為其他相關(guān)設(shè)計(jì)提供了參考。最后,對(duì)全文做了工作總結(jié),并給出了接下來的后續(xù)工作與展望。 本文在高速FPGA對(duì)激光回波信號(hào)檢測(cè)方向取得了一定的成果,為進(jìn)一步研究提供了參考價(jià)值。
標(biāo)簽: FPGA 激光 回波 中的應(yīng)用
上傳時(shí)間: 2013-06-13
上傳用戶:cy1109
數(shù)字信息在有噪聲的信道中傳輸時(shí),受到噪聲的影響,誤碼總是不可避免的。根據(jù)香農(nóng)信息理論,只要使Es/N0足夠大,就可以達(dá)到任意小的誤碼率。采用差錯(cuò)控制編碼,即信道編碼技術(shù),可以在一定的Es/N0條件下有效地降低誤碼率。按照對(duì)信息元處理方式不同,信道編碼分為分組碼與卷積碼兩類。卷積碼的k0和n0較小,實(shí)現(xiàn)最佳譯碼與準(zhǔn)最佳譯碼更加容易。卷積碼運(yùn)用廣泛,被ITU選入第三代移動(dòng)通信系統(tǒng),作為包括WCDMA,CDMA2000和TD-SCDMA在內(nèi)的信道編碼的標(biāo)準(zhǔn)方案。 本文研究了CDMA2000業(yè)務(wù)通道中的幀結(jié)構(gòu),對(duì)CDMA2000系統(tǒng)中的卷積碼特性及維特比譯碼的性能限進(jìn)行了分析,并基于MATLAB平臺(tái)做了相應(yīng)的譯碼性能仿真。我們?cè)O(shè)計(jì)了一種可用于CDMA2000通信系統(tǒng)的通用、高速維特比譯碼器。該譯碼器在設(shè)計(jì)上具有以下創(chuàng)新之處:(1)采用通用碼表結(jié)構(gòu),支持可變碼率;幀控制模塊和頻率控制器模塊的設(shè)計(jì)中采用計(jì)數(shù)器、定時(shí)器等器件實(shí)現(xiàn)了可變幀長(zhǎng)、可變數(shù)據(jù)速率的數(shù)據(jù)幀處理方式。(2)結(jié)合流水線結(jié)構(gòu)思想,利用四個(gè)ACS模塊并行運(yùn)行,加快數(shù)據(jù)處理速度;在ACS模塊中,將路徑度量值存貯器的存儲(chǔ)結(jié)構(gòu)進(jìn)行優(yōu)化,防止數(shù)據(jù)讀寫的阻塞,縮短存儲(chǔ)器讀寫時(shí)間,使譯碼器的處理速度更快。(3)為了防止路徑度量值和幸存路徑長(zhǎng)度的溢出,提出了保護(hù)處理策略。我們還將設(shè)計(jì)結(jié)果在APEXEP20K30E芯片上進(jìn)行了硬件實(shí)現(xiàn)。該譯碼器芯片具有可變的碼率和幀長(zhǎng)處理能力,可以運(yùn)行于40MHZ系統(tǒng)時(shí)鐘下,內(nèi)部最高譯碼速度可達(dá)625kbps。本文所提出的維特比譯碼器硬件結(jié)構(gòu)具有很強(qiáng)的通用性和高速性,可以方便地應(yīng)用于CDMA2000移動(dòng)通信系統(tǒng)。
上傳時(shí)間: 2013-06-24
上傳用戶:lingduhanya
近年來LED顯示技術(shù)發(fā)展迅速,LED全彩顯示屏得到了廣泛的應(yīng)用.LED顯示技術(shù)涵蓋了微機(jī)控制、視頻、光學(xué)、機(jī)械和數(shù)字圖像處理等多種技術(shù).針對(duì)現(xiàn)有LED顯示系統(tǒng)數(shù)據(jù)傳輸和顯示存在的缺陷和開發(fā)難度,本文提出并實(shí)現(xiàn)了一種新型的LED顯示系統(tǒng)方案.該方案把ARM處理器應(yīng)用到LED顯示屏中,采用FPGA技術(shù)開發(fā)了LED顯示屏系統(tǒng).本文主要討論了利用網(wǎng)絡(luò)傳輸LED顯示數(shù)據(jù)的實(shí)現(xiàn)方法,包括嵌入式系統(tǒng)的設(shè)計(jì)以及TCP/IP協(xié)議的實(shí)現(xiàn)等分析和設(shè)計(jì)工作.全文分為七章,首先提出現(xiàn)有LED顯示系統(tǒng)數(shù)據(jù)傳輸和顯示存在的缺陷和開發(fā)難度,然后提出新的LED顯示系統(tǒng)方案,并論證該方案的可行性.接著闡述了作者采用的嵌入式系統(tǒng)的設(shè)計(jì)方法和過程.第三章和第四章是嵌入式系統(tǒng)的設(shè)計(jì)和TCP/IP協(xié)議的實(shí)現(xiàn),其中包括硬件和軟件的設(shè)計(jì)以及嵌入式操作系統(tǒng)μ C/OS-Ⅱ的移植.詳細(xì)地分析了基于LPC2214芯片的操作系統(tǒng)移植步驟和過程.本文使用的是1wIP網(wǎng)關(guān)協(xié)議,把其應(yīng)用于μ C/OS-Ⅱ,實(shí)現(xiàn)了LED顯示屏的網(wǎng)絡(luò)通信,還分析了RTL8019芯片的工作過程,編寫了有關(guān)驅(qū)動(dòng)代碼.在第五章和第六章中闡述了LED顯示屏顯示原理和利用FPGA實(shí)現(xiàn)LED顯示的驅(qū)動(dòng)開發(fā)過程,利用占空比法實(shí)現(xiàn)LED顯示屏的灰度顯示,使用VHDL語(yǔ)言描述LED顯示屏的灰度實(shí)現(xiàn)邏輯.最后根據(jù)本文的方案實(shí)現(xiàn)了LED顯示屏的彩色顯示,通過分析比較,該方案可行并且達(dá)到了預(yù)定的要求.
標(biāo)簽: FPGA LED 嵌入式系統(tǒng) 中的應(yīng)用
上傳時(shí)間: 2013-04-24
上傳用戶:yoleeson
信息技術(shù)的不斷發(fā)展,對(duì)信息的安全提出了更高的要求.在應(yīng)用公鑰密碼體制的時(shí)候,對(duì)密鑰長(zhǎng)度要求越來越大,處理的速度要求越來越快.而基于橢圓曲線離散對(duì)數(shù)問題的橢圓曲線密碼體制,因其每比特最大的安全性,受到了越來越廣泛的注意.橢圓曲線密碼體制(ECC:Elliptic Curve Cryptosystem)的快速實(shí)現(xiàn)也成為一個(gè)關(guān)注的方面.該文按照確定有限域、選取曲線參數(shù)、劃分結(jié)構(gòu)模塊、優(yōu)化模塊算法、實(shí)現(xiàn)模塊設(shè)計(jì),驗(yàn)證模塊功能的順序進(jìn)行書寫.為了硬件實(shí)現(xiàn)上的方便,設(shè)計(jì)選擇了含有Ⅱ型優(yōu)化正規(guī)基的伽略域GF(2191),并在該域上構(gòu)造了隨機(jī)的橢圓曲線.根據(jù)層次化、結(jié)構(gòu)化的設(shè)計(jì)思路,將橢圓曲線上的標(biāo)量乘法運(yùn)算劃分成兩個(gè)運(yùn)算層次:橢圓曲線上的運(yùn)算和有限域上的運(yùn)算.模塊劃分之后,利用自底向上的設(shè)計(jì)思路,主要針對(duì)有限域上的乘法運(yùn)算進(jìn)行了重要的改進(jìn),并對(duì)加法群中的標(biāo)量乘運(yùn)算的算法進(jìn)行了分析、證明,以達(dá)到面積優(yōu)化和快速執(zhí)行的效果.具體設(shè)計(jì)中,采用硬件描述語(yǔ)言Verilog HDL,在Mentor Graphics公司出品的FPGA Advantage平臺(tái)上進(jìn)行電路設(shè)計(jì).完成了各個(gè)模塊的設(shè)計(jì)輸入和仿真.設(shè)計(jì)選用了Altera公司的APEX Ⅱ系列器件,利用第一方軟件Quartus Ⅱ 2.2進(jìn)行綜合、布局、布線和時(shí)序仿真.文中給出了橢圓曲線上的點(diǎn)加、倍點(diǎn)和標(biāo)量乘法模塊的具體設(shè)計(jì)結(jié)構(gòu)框圖.并且根據(jù)橢圓曲線的標(biāo)量乘特點(diǎn),提出了合適的驗(yàn)證方案.該設(shè)計(jì)完成了橢圓曲線上的標(biāo)量乘法運(yùn)算.設(shè)計(jì)主要針對(duì)資源受限的應(yīng)用環(huán)境:改進(jìn)了有限域上的乘法運(yùn)算、使用了沒有預(yù)處理的標(biāo)量乘算法.改進(jìn)后的橢圓曲線標(biāo)量乘法需要2,741,998個(gè)邏輯單元,在100MHz的時(shí)鐘約束下,運(yùn)行一次標(biāo)量乘法運(yùn)算需要567.69us.該次設(shè)計(jì)的結(jié)果可以直接用來構(gòu)造橢圓曲線上的簽名、驗(yàn)證、密鑰交換等算法.
標(biāo)簽: FPGA 橢圓曲線 密碼體制 乘法運(yùn)算
上傳時(shí)間: 2013-05-24
上傳用戶:zhuo0008
本論文主要對(duì)無線擴(kuò)頻集成電路設(shè)計(jì)中的信道編解碼算法進(jìn)行研究并對(duì)其FPGA實(shí)現(xiàn)思路和方法進(jìn)行相關(guān)研究。 近年來無線局域網(wǎng)IEEE802.11b標(biāo)準(zhǔn)建議物理層采用無線擴(kuò)頻技術(shù),所以開發(fā)一套擴(kuò)頻通信芯片具有重大的現(xiàn)實(shí)意義。無線擴(kuò)頻通信系統(tǒng)與常規(guī)通信相比,具有很強(qiáng)的抗干擾能力,并具有信息蔭蔽、多址保密通信等特點(diǎn)。無線信道的特性較復(fù)雜,因此在無線擴(kuò)頻集成電路設(shè)計(jì)中,加入信道編碼是提高芯片穩(wěn)定性的重要方法。 在了解擴(kuò)頻通信基本原理的基礎(chǔ)上,本文提出了“串聯(lián)級(jí)聯(lián)碼+兩次交織”的信道編碼方案。串聯(lián)的級(jí)聯(lián)碼由外碼——(15,9,4)里德-所羅門(Reed-Solomon)碼,和內(nèi)碼-(2,1,3)卷積碼構(gòu)成,交織則采用交織深度為4的塊交織。重點(diǎn)對(duì)RS碼的時(shí)域迭代譯碼算法和卷積碼的維特比譯碼算法進(jìn)行了詳細(xì)的討論,并完成信道編譯碼方案的性能仿真及用FPGA實(shí)現(xiàn)的方法。 計(jì)算機(jī)仿真的結(jié)果表明,采用此信道編碼方案可以較好的改善現(xiàn)有仿真系統(tǒng)的誤符號(hào)率。 本論文的內(nèi)容安排如下:第一章介紹了無線擴(kuò)頻通信技術(shù)的發(fā)展?fàn)顟B(tài)以及國(guó)內(nèi)外開發(fā)擴(kuò)頻通信芯片的現(xiàn)狀,并給出了本論文的研究?jī)?nèi)容和安排。第二章主要介紹了擴(kuò)頻通信的基本原理,主要包括擴(kuò)頻通信的定義、理論基礎(chǔ)和分類,直接序列擴(kuò)頻通信方式的數(shù)學(xué)模型。第三章介紹了基本的信道編碼原理,信道編碼的分類和各自的特點(diǎn)。第四章給出了本課題選擇的信道編碼方案——“串聯(lián)級(jí)聯(lián)碼+兩次交織”,詳細(xì)討論了方案中里德-所羅門(Reed-Solomon)碼和卷積碼的基本原理、編碼算法和譯碼算法。最后給出編碼方案的實(shí)際參數(shù)。第五章對(duì)第四章提出的編碼方案進(jìn)行了性能仿真。第六章結(jié)合項(xiàng)目實(shí)際,討論了FPGA開發(fā)基帶擴(kuò)頻通信系統(tǒng)的設(shè)計(jì)思路和方法。首先對(duì)FPGA開發(fā)流程以及實(shí)際開發(fā)的工具進(jìn)行了簡(jiǎn)要的介紹,然后給出了擴(kuò)頻通信系統(tǒng)的總體設(shè)計(jì)。對(duì)發(fā)射和接收子系統(tǒng)中信道編碼、解碼等相關(guān)功能模塊的實(shí)現(xiàn)原理和方法進(jìn)行分析。第七章對(duì)論文的工作進(jìn)行總結(jié)。
標(biāo)簽: FPGA 無線擴(kuò)頻 信道編解 技術(shù)研究
上傳時(shí)間: 2013-07-18
上傳用戶:hbsunhui
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1