提出一種用于光伏發電系統與公用電網并網的逆變器定頻滯環電流控制新方法, 該方法首先基于電網線電壓空間矢量將復平面分為6 個扇區, 在每個扇區內實現兩相開關解耦分別控制相應的線電流; 然后, 在控制相的下一個線電流誤差周期到來時, 計算并調節下一周期的滯環寬度以達到定頻滯環電流跟蹤, 改善輸出電流波形, 提高控制精度。該方法的主要特點是不需要額外的模擬電路便可以實現開關頻率的穩定。利用Matlab 進行建模, 仿真結果證明了該方法對穩定滯環開關頻率是有效的, 同時也表明該方法應用于光伏并網逆變器是可行的。
上傳時間: 2013-10-28
上傳用戶:123312
介紹了有源功率因數校正器(7*4)的拓撲結構和幾種工作模式,分析了電流斷續臨界模式(3456 )控制的7*4 電路的工作原理,并給出了#-)8 7*4 電路參數的選取方法、實驗波形和結果。實驗結果表明此類7*4 具有高效率、高功率因數及低成本等優點。
上傳時間: 2013-10-23
上傳用戶:604759954
變頻器是利用電力半導體器件的通斷作用將工頻電源變換為另一頻率的電能控制裝置。我們現在使用的變頻器主要采用交—直—交方式(VVVF變頻或矢量控制變頻),先把工頻交流電源通過整流器轉換成直流電源,然后再把直流電源轉換成頻率、電壓均可控制的交流電源以供給電動機。變頻器的電路一般由整流、中間直流環節、逆變和控制4個部分組成。整流部分為三相橋式不可控整流器,逆變部分為IGBT三相橋式逆變器,且輸出為PWM波形,中間直流環節為濾波、直流儲能和緩沖無功功率。
上傳時間: 2013-11-20
上傳用戶:sevenbestfei
利用電流型PWM控制器UC3844設計單端反激式IGBT驅動電源。介紹了電壓型PWM控制器和電流型PWM控制器的區別并詳細說明電流型PWM控制器UC3844的工作原理,給出了單端反激式驅動電源的拓撲結構, 并詳細介紹外圍電路的搭建和器件選取數值計算過程。最后給出樣機實驗波形, 該驅動電源經長時間運行, 各項技術指標符合變頻器IGBT驅動的要求, 表明該設計方案正確、可靠, 在工程應用中具有一定的參考價值。
上傳時間: 2013-10-14
上傳用戶:wangzeng
方波逆變器在輸出失真度最小時波形最接近正弦波。采用功率譜分析的方法, 得出了單相方波逆變器諧波失真度最小時的脈寬數值。對于固定脈寬系統, 導通角取21331 rad 時最佳; 對于變脈寬系統, 導通角變化區間兩端失真度相等時, 系統的平均失真最小。該結論在光伏電站控制系統電源的設計中得到了應用與驗證。
上傳時間: 2013-11-29
上傳用戶:Aeray
第一章 序論……………………………………………………………6 1- 1 研究動機…………………………………………………………..7 1- 2 專題目標…………………………………………………………..8 1- 3 工作流程…………………………………………………………..9 1- 4 開發環境與設備…………………………………………………10 第二章 德州儀器OMAP 開發套件…………………………………10 2- 1 OMAP介紹………………………………………………………10 2-1.1 OMAP是什麼?…….………………………………….…10 2-1.2 DSP的優點……………………………………………....11 2- 2 OMAP Architecture介紹………………………………………...12 2-2-1 OMAP1510 硬體架構………………………………….…12 2-2.2 OMAP1510軟體架構……………………………………...12 2-2.3 DSP / BIOS Bridge簡述…………………………………...13 2- 3 TI Innovator套件 -- OMAP1510 ……………………………..14 2-2.1 General Purpose processor -- ARM925T………………...14 2-2.2 DSP processor -- TMS320C55x …………………………15 2-2.3 IDE Tool – CCS …………………………………………15 2-2.4 Peripheral ………………………………………………..16 第三章 在OMAP1510上建構Embedded Linux System…………….17 3- 1 嵌入式工具………………………………………………………17 3-1.1 嵌入式程式開發與一般程式開發之不同………….….17 3-1.2 Cross Compiling的GNU工具程式……………………18 3-1.3 建立ARM-Linux Cross-Compiling 工具程式………...19 3-1.4 Serial Communication Program………………………...20 3- 2 Porting kernel………………………………………………….…21 3-2.1 Setup CCS ………………………………………….…..21 3-2.2 編譯及上傳Loader…………………………………..…23 3-2.3 編譯及上傳Kernel…………………………………..…24 3- 3 建構Root File System………………………………………..…..26 3-3.1 Flash ROM……………………………………………...26 3-3.2 NFS mounting…………………………………………..27 3-3.3 支援NFS Mounting 的kernel…………………………..27 3-3.4 提供NFS Mounting Service……………………………29 3-3.5 DHCP Server……………………………………………31 3-3.6 Linux root 檔案系統……………………………….…..32 3- 4 啟動及測試Innovator音效裝置…………………………..…….33 3- 5 建構支援DSP processor的環境…………………………...……34 3-5.1 Solution -- DSP Gateway簡介……………………..…34 3-5.2 DSP Gateway運作架構…………………………..…..35 3- 6 架設DSP Gateway………………………………………….…36 3-6.1 重編kernel……………………………………………...36 3-6.2 DEVFS driver…………………………………….……..36 3-6.3 編譯DSP tool和API……………………………..…….37 3-6.4 測試……………………………………………….…….37 第四章 MP3 Player……………………………………………….…..38 4- 1 MP3 介紹………………………………………………….…….38 4- 2 MP3 壓縮原理……………………………………………….….39 4- 3 Linux MP3 player – splay………………………………….…….41 4.3-1 splay介紹…………………………………………….…..41 4.3-2 splay 編譯………………………………………….…….41 4.3-3 splay 的使用說明………………………………….……41 第五章 程式改寫………………………………………………...…...42 5-1 程式評估與改寫………………………………………………...…42 5-1.1 Inter-Processor Communication Scheme…………….....42 5-1.2 ARM part programming……………………………..…42 5-1.3 DSP part programming………………………………....42 5-2 程式碼………………………………………………………..……43 5-3 雙處理器程式開發注意事項…………………………………...…47 第六章 效能評估與討論……………………………………………48 6-1 速度……………………………………………………………...48 6-2 CPU負載………………………………………………………..49 6-3 討論……………………………………………………………...49 6-3.1分工處理的經濟效益………………………………...49 6-3.2音質v.s 浮點與定點運算………………………..…..49 6-3.3 DSP Gateway架構的限制………………………….…50 6-3.4減少IO溝通……………….………………………….50 6-3.5網路掛載File System的Delay…………………..……51 第七章 結論心得…
上傳時間: 2013-10-14
上傳用戶:a471778
在超聲技術日益發展的今天,一個高質量的超聲信號源成為各種超聲產品的主動力。傳統模擬超聲信號源的智能化控制尚不完善,只能直接產生適當頻率的電信號,用以驅動特定的超聲波換能器。這對于信號源的合理利用是一個較大的弊端。本文介紹了一種采用單片機與復雜可編程邏輯器件(CPLD)相結合的方法設計的新型任意波形發生器(AWG)。其中波形合成采用了直接數字合成(DDS)技術。本系統能輸出頻率和幅度可調的多種標準函數波以及任意波形。信號頻率范圍覆蓋超低頻和高頻,同時極大地提高了頻率的分辨率和準確度,因此可以用它代替常用的模擬超聲信號源。本系統采用單片機(AT89S52)對整機的輸入、輸出過程和波形數據采集進行控制。高速的CPLD(EPM7128S)將波形數據從存儲器(AT28C256)中讀出并送給波形生成DAC(AD7524)進行轉換,形成所要的波形。并通過改變幅度控制DAC(DAC0832)的輸入值來調節輸出波形的峰值。用戶通過面板上的矩陣鍵盤和1602液晶模塊進行人機交互。串行E2PROM(AT24C02)實現了波形數據掉電保存功能。任意波形數據既可由輸入的模擬信號經A/D轉換后獲得,也可采用具備RS-232接口的手寫板直接輸入。
上傳時間: 2013-11-25
上傳用戶:wvbxj
在電子工程設計與測試中,常常需要一些復雜的、具有特殊要求的信號,要求其波形可任意產生,頻率方便可調。通常的信號產生器難以滿足要求,市場上出售的任意信號產生器價格昂貴。結合實際需要,我們設計了一種任意波形發生器。電路設計中充分利用MATLAB的仿真功能,將希望得到的波形信號在MATLAB中完成信號的產生、抽樣和模數轉換,并將得到的數字波形數據存放在數據存儲器中,通過單片機和CPLD控制,將波形數據讀出,送入后向通道進行A/D轉換和放大處理后得到所需的模擬信號波形。利用上述方法設計的任意波形發生器,信號產生靈活方便、功能擴展靈活、信號參數可調,實現了硬件電路的軟件化設計。具有電路結構簡單、實用性強、成本低廉等優點。
上傳時間: 2013-11-21
上傳用戶:cccole0605
利用TPM2定時器產生一通道語音信號輸出,語音數據為PCM格式:PCM的概念脈沖編碼調制(Pulse Code Modulation,PCM)是概念上最簡單、理論上最完善的編碼系統,是最早研制成功、使用最為廣泛的編碼系統,但也是數據量最大的編碼系統。PCM的編碼原理比較直觀和簡單,它的原理框圖如圖1-1所示。在這個編碼框圖中,它的輸入是模擬聲音信號,它的輸出是PCM樣本。圖中的“防失真濾波器”是一個低通濾波器,用來濾除聲音頻帶以外的信號;“波形編碼器”可暫時理解為“采樣器”,“量化器”可理解為“量化階大小(step-size)”生成器或者稱為“量化間隔”生成器。
上傳時間: 2013-11-21
上傳用戶:DXM35
MCP定時器產生中心對稱PWM輸出:PWM波是一種脈寬可調的脈沖波,用于交、直流電機的電壓控制。PWM一共有兩種調整方法,一是定頻調寬、另一種是定寬調頻。其中定頻調寬是種最常見的脈寬調制方式,它使脈沖波的頻率保持不變,只調整脈沖寬度。同時定頻調寬的PWM波形也分為兩種,一種是單邊的PWM,另一種是中心對稱的雙邊PWM。中心對稱的PWM主要應用在需要對稱PWM波形的場合,如半橋、全橋的雙極性驅動等。中心對稱的PWM的生成原理如圖1-2所示:定時計數器工作在連續增減計數方式,在計數初值設置為0且比較值小于周期值的條件下,當增計數過程中計數值和比較值匹配時置位輸出,而在周期匹配時會改計數方向為減計數,當減計數過程中計數值和比較值匹配時復位輸出,當減計數到零時會改計數方向為增計數,開始下一個循環。因此中心對稱的PWM的周期為設定周期的二倍,占空比為:%100))((×−TPRNTPR(N為比較匹配數據,TPR為周期寄存器的值)。比較值的改變會影響PWM的兩邊的波形,并且兩邊相對高電平的中心對稱,這便是中心對稱雙邊PWM波形的特點。如果比較值為零,那么PWM將一直輸出高電平;如比較值大于等于周期值,則PWM會一直輸出低電平,占空比為0。
上傳時間: 2013-11-13
上傳用戶:sammi