單片機指令系統原理 51單片機的尋址方式 學習匯編程序設計,要先了解CPU的各種尋址法,才能有效的掌握各個命令的用途,尋址法是命令運算碼找操作數的方法。在我們學習的8051單片機中,有6種尋址方法,下面我們將逐一進行分析。 立即尋址 在這種尋址方式中,指令多是雙字節的,一般第一個字節是操作碼,第二個字節是操作數。該操作數直接參與操作,所以又稱立即數,有“#”號表示。立即數就是存放在程序存儲器中的常數,換句話說就是操作數(立即數)是包含在指令字節中的。 例如:MOV A,#3AH這條指令的指令代碼為74H、3AH,是雙字節指令,這條指令的功能是把立即數3AH送入累加器A中。MOV DPTR,#8200H在前面學單片機的專用寄存器時,我們已學過,DPTR是一個16位的寄存器,它由DPH及DPL兩個8位的寄存器組成。這條指令的意思就是把立即數的高8位(即82H)送入DPH寄存器,把立即數的低8位(即00H)送入DPL寄存器。這里也特別說明一下:在80C51單片機的指令系統中,僅有一條指令的操作數是16位的立即數,其功能是向地址指針DPTR傳送16位的地址,即把立即數的高8位送入DPH,低8位送入DPL。 直接尋址 直接尋址方式是指在指令中操作數直接以單元地址的形式給出,也就是在這種尋址方式中,操作數項給出的是參加運算的操作數的地址,而不是操作數。例如:MOV A,30H 這條指令中操作數就在30H單元中,也就是30H是操作數的地址,并非操作數。 在80C51單片機中,直接地址只能用來表示特殊功能寄存器、內部數據存儲器以及位地址空間,具體的說就是:1、內部數據存儲器RAM低128單元。在指令中是以直接單元地址形式給出。我們知道低128單元的地址是00H-7FH。在指令中直接以單元地址形式給出這句話的意思就是這0-127共128位的任何一位,例如0位是以00H這個單元地址形式給出、1位就是以01H單元地址給出、127位就是以7FH形式給出。2、位尋址區。20H-2FH地址單元。3、特殊功能寄存器。專用寄存器除以單元地址形式給出外,還可以以寄存器符號形式給出。例如下面我們分析的一條指令 MOV IE,#85H 前面的學習我們已知道,中斷允許寄存器IE的地址是80H,那么也就是這條指令可以以MOV IE,#85H 的形式表述,也可以MOV 80H,#85H的形式表述。 關于數據存儲器RAM的內部情況,請查看我們課程的第十二課。 直接尋址是唯一能訪問特殊功能寄存器的尋址方式! 大家來分析下面幾條指令:MOV 65H,A ;將A的內容送入內部RAM的65H單元地址中MOV A,direct ;將直接地址單元的內容送入A中MOV direct,direct;將直接地址單元的內容送直接地址單元MOV IE,#85H ;將立即數85H送入中斷允許寄存器IE 前面我們已學過,數據前面加了“#”的,表示后面的數是立即數(如#85H,就表示85H就是一個立即數),數據前面沒有加“#”號的,就表示后面的是一個地址地址(如,MOV 65H,A這條指令的65H就是一個單元地址)。 寄存器尋址 寄存器尋址的尋址范圍是:1、4個工作寄存器組共有32個通用寄存器,但在指令中只能使用當前寄存器組(工作寄存器組的選擇在前面專用寄存器的學習中,我們已知道,是由程序狀態字PSW中的RS1和RS0來確定的),因此在使用前常需要通過對PSW中的RS1、RS0位的狀態設置,來進行對當前工作寄存器組的選擇。2、部份專用寄存器。例如,累加器A、通用寄存器B、地址寄存器DPTR和進位位CY。 寄存器尋址方式是指操作數在寄存器中,因此指定了寄存器名稱就能得到操作數。例如:MOV A,R0這條指令的意思是把寄存器R0的內容傳送到累加器A中,操作數就在R0中。INC R3這條指令的意思是把寄存器R3中的內容加1 從前面的學習中我產應可以理解到,其實寄存器尋址方式就是對由PSW程序狀態字確定的工作寄存器組的R0-R7進行讀/寫操作。 寄存器間接尋址 寄存間接尋址方式是指寄存器中存放的是操作數的地址,即操作數是通過寄存器間接得到的,因此稱為寄存器間接尋址。 MCS-51單片機規定工作寄存器的R0、R1做為間接尋址寄存器。用于尋址內部或外部數據存儲器的256個單元。為什么會是256個單元呢?我們知道,R0或者R1都是一個8位的寄存器,所以它的尋址空間就是2的八次方=256。例:MOV R0,#30H ;將值30H加載到R0中 MOV A,@R0 ;把內部RAM地址30H內的值放到累加器A中 MOVX A,@R0 ;把外部RAM地址30H內的值放到累加器A中 大家想想,如果用DPTR做為間址寄存器,那么它的尋址范圍是多少呢?DPTR是一個16位的寄存器,所以它的尋址范圍就是2的十六次方=65536=64K。因用DPTR做為間址寄存器的尋址空間是64K,所以訪問片外數據存儲器時,我們通常就用DPTR做為間址寄存器。例:MOV DPTR,#1234H ;將DPTR值設為1234H(16位) MOVX A,@DPTR ;將外部RAM或I/O地址1234H內的值放到累加器A中 在執行PUSH(壓棧)和POP(出棧)指令時,采用堆棧指針SP作寄存器間接尋址。例:PUSH 30H ;把內部RAM地址30H內的值放到堆棧區中堆棧區是由SP寄存器指定的,如果執行上面這條命令前,SP為60H,命令執行后會把內部RAM地址30H內的值放到RAM的61H內。 那么做為寄存器間接尋址用的寄存器主要有哪些呢?我們前面提到的有四個,R0、R1、DPTR、SP 寄存器間接尋址范圍總結:1、內部RAM低128單元。對內部RAM低128單元的間接尋址,應使用R0或R1作間址寄存器,其通用形式為@Ri(i=0或1)。 2、外部RAM 64KB。對外部RAM64KB的間接尋址,應使用@DPTR作間址尋址寄存器,其形式為:@DPTR。例如MOVX A,@DPTR;其功能是把DPTR指定的外部RAM的單元的內容送入累加器A中。外部RAM的低256單元是一個特殊的尋址區,除可以用DPTR作間址寄存器尋址外,還可以用R0或R1作間址寄存器尋址。例如MOVX A,@R0;這條指令的意思是,把R0指定的外部RAM單元的內容送入累加器A。 堆棧操作指令(PUSH和POP)也應算作是寄存器間接尋址,即以堆棧指針SP作間址寄存器的間接尋址方式。 寄存器間接尋址方式不可以訪問特殊功能寄存器!! 寄存器間接尋址也須以寄存器符號的形式表示,為了區別寄存器尋址我寄存器間接尋址的區別,在寄存器間接尋址方式式中,寄存器的名稱前面加前綴標志“@”。 基址寄存器加變址寄存器的變址尋址 這種尋址方式以程序計數器PC或DPTR為基址寄存器,累加器A為變址寄存器,變址尋址時,把兩者的內容相加,所得到的結果作為操作數的地址。這種方式常用于訪問程序存儲器ROM中的數據表格,即查表操作。變址尋址只能讀出程序內存入的值,而不能寫入,也就是說變址尋址這種方式只能對程序存儲器進行尋址,或者說它是專門針對程序存儲器的尋址方式。例:MOVC A,@A+DPTR這條指令的功能是把DPTR和A的內容相加,再把所得到的程序存儲器地址單元的內容送A假若指令執行前A=54H,DPTR=3F21H,則這條指令變址尋址形成的操作數地址就是54H+3F21H=3F75H。如果3F75H單元中的內容是7FH,則執行這條指令后,累加器A中的內容就是7FH。 變址尋址的指令只有三條,分別如下:JMP @A+DPTRMOVC A,@A+DPTRMOVC A,@A+PC 第一條指令JMP @A+DPTR這是一條無條件轉移指令,這條指令的意思就是DPTR加上累加器A的內容做為一個16位的地址,執行JMP這條指令是,程序就轉移到A+DPTR指定的地址去執行。 第二、三條指令MOVC A,@A+DPTR和MOVC A,@A+PC指令這兩條指令的通常用于查表操作,功能完全一樣,但使用起來卻有一定的差別,現詳細說明如下。我們知道,PC是程序指針,是十六位的。DPTR是一個16位的數據指針寄存器,按理,它們的尋址范圍都應是64K。我們在學習特殊功能寄存器時已知道,程序計數器PC是始終跟蹤著程序的執行的。也就是說,PC的值是隨程序的執行情況自動改變的,我們不可以隨便的給PC賦值。而DPTR是一個數據指針,我們就可以給空上數據指針DPTR進行賦值。我們再看指令MOVC A,@A+PC這條指令的意思是將PC的值與累加器A的值相加作為一個地址,而PC是固定的,累加器A是一個8位的寄存器,它的尋址范圍是256個地址單元。講到這里,大家應可明白,MOVC A,@A+PC這條指令的尋址范圍其實就是只能在當前指令下256個地址單元。所在,這在我們實際應用中,可能就會有一個問題,如果我們需要查詢的數據表在256個地址單元之內,則可以用MOVC A,@A+PC這條指令進行查表操作,如果超過了256個單元,則不能用這條指令進行查表操作。剛才我們已說到,DPTR是一個數據指針,這個數據指針我們可以給它賦值操作的。通過賦值操作。我們可以使MOVC A,@A+DPTR這條指令的尋址范圍達到64K。這就是這兩條指令在實際應用當中要注意的問題。 變址尋址方式是MCS-51單片機所獨有的一種尋址方式。 位尋址 80C51單片機有位處理功能,可以對數據位進行操作,因此就有相應的位尋址方式。所謂位尋址,就是對內部RAM或可位尋址的特殊功能寄存器SFR內的某個位,直接加以置位為1或復位為0。 位尋址的范圍,也就是哪些部份可以進行位尋址: 1、我們在第十二課學習51單片機的存儲器結構時,我們已知道在單片機的內部數據存儲器RAM的低128單元中有一個區域叫位尋址區。它的單元地址是20H-2FH。共有16個單元,一個單元是8位,所以位尋址區共有128位。這128位都單獨有一個位地址,其位地址的名字就是00H-7FH。這里就有一個比較麻煩的問題需要大家理解清楚了。我們在前面的學習中00H、01H。。。。7FH等等,所表示的都是一個字節(或者叫單元地址),而在這里,這些數據都變成了位地址。我們在指令中,或者在程序中如何來區分它是一個單元地址還是一個位地址呢?這個問題,也就是我們現在正在研究的位尋址的一個重要問題。其實,區分這些數據是位地址還是單元地址,我們都有相應的指令形式的。這個問題我們在后面的指令系統學習中再加以論述。 2、對專用寄存器位尋址。這里要說明一下,不是所有的專用寄存器都可以位尋址的。具體哪些專用寄存器可以哪些專用寄存器不可以,請大家回頭去看看我們前面關于專用寄存器的相關文章。一般來說,地址單元可以被8整除的專用寄存器,通常都可以進行位尋址,當然并不是全部,大家在應用當中應引起注意。 專用寄存器的位尋址表示方法: 下面我們以程序狀態字PSW來進行說明 D7 D6 D5 D4 D3 D2 D1 D0 CY AC F0 RS1 RS0 OV P 1、直接使用位地址表示:看上表,PSW的第五位地址是D5,所以可以表示為D5H MOV C,D5H 2、位名稱表示:表示該位的名稱,例如PSW的位5是F0,所以可以用F0表示 MOV C,F0 3、單元(字節)地址加位表示:D0H單元位5,表示為DOH.5 MOV C,D0H.5 4、專用寄存器符號加位表示:例如PSW.5 MOV C,PSW.5 這四種方法實現的功能都是相同的,只是表述的方式不同而已。 例題: 1. 說明下列指令中源操作數采用的尋址方式。 MOV R5,R7 答案:寄存器尋址方式 MOV A,55H 直接尋址方式 MOV A,#55H 立即尋址方式 JMP @A+DPTR 變址尋址方式 MOV 30H,C 位尋址方式 MOV A,@R0 間接尋址方式 MOVX A,@R0 間接尋址方式 改錯題 請判斷下列的MCS-51單片機指令的書寫格式是否有錯,若有,請說明錯誤原因。 MOV R0,@R3 答案:間址寄存器不能使用R2~R7。 MOVC A,@R0+DPTR 變址尋址方式中的間址寄存器不可使用R0,只可使用A。 ADD R0,R1 運算指令中目的操作數必須為累加器A,不可為R0。 MUL AR0 乘法指令中的乘數應在B寄存器中,即乘法指令只可使用AB寄存器組合。
上傳時間: 2013-11-11
上傳用戶:caozhizhi
用51單片機設計的時鐘電路畢業論文第一章電路原理分析1-1 顯示原理1-2 數碼管結構及代碼顯示1-3 鍵盤及讀數原理1-4 連擊功能的實現第 二 章 程序設計思想和相關指令介紹2-1 數據與代碼轉換2-2 計時功能的實現與中斷服務程序2-3 時間控制功能與比較指令2-4 時鐘誤差的分析附錄A 電路圖附錄B 存儲單元地址表附錄C 輸入輸出口功能分配表附錄D 定時中斷程序流程圖附錄F 調時功能流程圖附錄G 程序清單
上傳時間: 2013-10-29
上傳用戶:hoperingcong
地彈的形成:芯片內部的地和芯片外的PCB地平面之間不可避免的會有一個小電感。這個小電感正是地彈產生的根源,同時,地彈又是與芯片的負載情況密切相關的。下面結合圖介紹一下地彈現象的形成。 簡單的構造如上圖的一個小“場景”,芯片A為輸出芯片,芯片B為接收芯片,輸出端和輸入端很近。輸出芯片內部的CMOS等輸入單元簡單的等效為一個單刀雙擲開關,RH和RL分別為高電平輸出阻抗和低電平輸出阻抗,均設為20歐。GNDA為芯片A內部的地。GNDPCB為芯片外PCB地平面。由于芯片內部的地要通過芯片內的引線和管腳才能接到GNDPCB,所以就會引入一個小電感LG,假設這個值為1nH。CR為接收端管腳電容,這個值取6pF。這個信號的頻率取200MHz。雖然這個LG和CR都是很小的值,不過,通過后面的計算我們可以看到它們對信號的影響。先假設A芯片只有一個輸出腳,現在Q輸出高電平,接收端的CR上積累電荷。當Q輸出變為低電平的時候。CR、RL、LG形成一個放電回路。自諧振周期約為490ps,頻率為2GHz,Q值約為0.0065。使用EWB建一個仿真電路。(很老的一個軟件,很多人已經不懈于使用了。不過我個人比較依賴它,關鍵是建模,模型參數建立正確的話仿真結果還是很可靠的,這個小軟件幫我發現和解決過很多實際模擬電路中遇到的問題。這個軟件比較小,有比較長的歷史,也比較成熟,很容易上手。建議電子初入門的同學還是熟悉一下。)因為只關注下降沿,所以簡單的構建下面一個電路。起初輸出高電平,10納秒后輸出低電平。為方便起見,高電平輸出設為3.3V,低電平是0V。(實際200M以上芯片IO電壓會比較低,多采用1.5-2.5V。)
標簽: 分
上傳時間: 2013-10-17
上傳用戶:zhishenglu
設計一個單片機控制的簡易定時報警器。要求根據設定的初始值(1-59秒)進行倒計時,當計時到0時數碼管閃爍“00”(以1Hz閃爍),按鍵功能如下:(1)設定鍵:在倒計時模式時,按下此鍵后停止倒計時,進入設置狀態;如果已經處于設置狀態則此鍵無效。(2)增一鍵:在設置狀態時,每按一次遞增鍵,初始值的數字增1。(3)遞一鍵:在設置狀態時,每按一次遞減鍵,初始值的數字減1。(4)確認鍵:在設置狀態時,按下此鍵后,單片機按照新的初始值進行倒計時及顯示倒計時的數字。如果已經處于計時狀態則此鍵無效。3.1.2 模塊1:系統設計(1)任務分析與整體設計思路根據題目的要求,需要實現如下幾個方面的功能。計時功能:要實現計時功能則需要使用定時器來計時,通過設置定時器的初始值來控制溢出中斷的時間間隔,再利用一個變量記錄定時器溢出的次數,達到定時1秒中的功能。然后,當計時每到1秒鐘后,倒計時的計數器減1。當倒計時計數器到0時,觸發另一個標志變量,進入閃爍狀態。顯示功能:顯示倒計時的數字要采用動態掃描的方式將數字拆成“十位”和“個位”動態掃描顯示。如果處于閃爍狀態,則可以不需要動態掃描顯示,只需要控制共陰極數碼管的位控線,實現數碼管的滅和亮。鍵盤掃描和運行模式的切換:主程序在初始化一些變量和寄存器之后,需要不斷循環地讀取鍵盤的狀態和動態掃描數碼管顯示相應的數字。根據鍵盤的按鍵值實現設置狀態、計時狀態的切換。 (2)單片機型號及所需外圍器件型號,單片機硬件電路原理圖選用MCS-51系列AT89S51單片機作為微控制器,選擇兩個四聯的共陰極數碼管組成8位顯示模塊,由于AT89S51單片機驅動能力有限,采用兩片74HC244實現總線的驅動,一個74HC244完成位控線的控制和驅動,另一個74HC244完成數碼管的7段碼輸出,在輸出口上各串聯一個100歐姆的電阻對7段數碼管限流。由于鍵盤數量不多,選擇獨立式按鍵與P1口連接作為四個按鍵輸入。沒有鍵按下時P1.0-P1.3為高電平,當有鍵按下時,P1.0-P1.3相應管腳為低電平。電路原理圖如圖3-1所示。
上傳時間: 2013-11-13
上傳用戶:曹云鵬
一、實驗目的1.掌握定時/計數器、輸入/輸出接口電路設計方法。 2.掌握中斷控制編程技術的方法和應用。3.掌握8086匯編語言程序設計方法。 二、實驗內容與要求 微機燈光控制系統主要用于娛樂場所的彩燈控制。系統的彩燈共有12組,在實驗時用12個發光二極管模擬。1. 基本要求:燈光控制共有8種模式,如12個燈依次點亮;12個燈同時閃爍等八種。系統可以通過鍵盤和顯示屏的人機對話,將8種模式進行任意個數、任意次序的連接組合。系統不斷重復執行輸入的模式組合,直至鍵盤有任意一個鍵按下,退出燈光控制系統,返回DOS系統。2. 提高要求:音樂彩燈控制系統,根據音樂的變化控制彩燈的變化,主要有以下幾種:第一種為音樂節奏控制彩燈,按音樂的節拍變換彩燈花樣。第二種音律的強弱(信號幅度大小)控制彩燈。強音時,燈的亮度加大,且被點亮的數目增多。第三種按音調高低(信號頻率高低)控制彩燈。低音時,某一部分燈點亮;高音時,另一部分點亮。 三、實驗報告要求 1.設計目的和內容 2.總體設計 3.硬件設計:原理圖(接線圖)及簡要說明 4.軟件設計框圖及程序清單5.設計結果和體會(包括遇到的問題及解決的方法) 四、設計原理我們以背景霓虹燈的一種顯示效果為例,介紹控制霓虹燈顯示的基本原理。設有一排 n 段水平排列的霓虹燈,某種顯示方式為從左到右每0.2 秒逐個點亮。其控制過程如下: 若以“ 1 ”代表霓虹燈點亮,以“ 0 ”代表霓虹燈熄滅,則開始時刻, n 段霓虹燈的控制信號均為“ 0 ”,隨后,控制器將一幀 n 個數據送至 n 段霓虹燈的控制端,其中,最左邊的一段霓虹燈對應的控制數據為“ 1 ”,其余的數據均為零,即 1000 … 000 。當 n 個數據送完以后,控制器停止送數,保留這種狀態(定時) 0.2 秒,此時,第 1 段霓虹燈被點亮,其余霓虹燈熄滅。隨后,控制器又在極短的時間內將數據 1100 … 000 送至霓虹燈的控制端,并定時 0.2 秒,這段時間,前兩段霓虹燈被點亮。由于送數據的過程很快,我們觀測到的效果是第一段霓虹燈被點亮 0.2 秒后,第 2 段霓虹燈接著被點亮,即每隔 0.2 秒顯示一幀圖樣。如此下去,最后控制器將數據 1111 … 111 送至 n 段霓虹燈的控制端,則 n 段霓虹燈被全部點亮。 只要改變送至每段霓虹燈的數據,即可改變霓虹燈的顯示方式,顯然,我們可以通過合理地組合數據(編程)來得到霓虹燈的不同顯示方式。 五、總體方案論證分析系統設計思路如下:1) 采集8位開關輸入信號,若輸入數據為0時,將其修改為1。確定輸入的硬件接口電路。采樣輸入開關量,并存入NUM的軟件程序段。2) 以12個燈依次點亮為例(即燈光控制模式M1),考慮與其相應的燈光顯示代碼數據。確定顯示代碼數據輸出的接口電路。輸出一個同期顯示代碼的軟件程序段(暫不考慮時隙的延時要求)。3) 應用定時中斷服務和NUM數據,實現t=N×50ms的方法。4) 實現某一種模式燈光顯示控制中12個時隙一個周期,共重復四次的控制方法。要求在初始化時采樣開關輸入數據NUM,并以此控制每一時隙的延時時間;在每一時隙結束時,檢查有無鍵按下,若是退出鍵按下,則結束燈光控制,返回DOS系統,若是其他鍵就返回主菜單,重新輸入控制模式數據。5) 通過人機對話,輸入8種燈光顯示控制模式的任意個數、任意次序連接組合的控制模式數據串(以ENTER鍵結尾)。對輸入的數據進行檢查,若數據都在1 - 8之間,則存入INBUF;若有錯誤,則通過屏幕顯示輸入錯誤,準備重新輸入燈光顯示控制模式數據。6) 依次讀取INBUF中的控制模式數據進行不同模式的燈光顯示控制,在沒有任意鍵按下的情況下,系統從第一個控制模式數據開始,順序工作到最后一個控制模式數據后,又返回到第一個控制模式數據,不斷重復循環進行燈光顯示控制。7) 本系統的軟件在總體上有兩部份,即主程序(MAIN)和實時中斷服務程序(INTT)。討論以功能明確、相互界面分割清晰的軟件程序模塊化設計方法。即確定有關功能模塊,并畫出以功能模塊表示的主程序(MAIN)流程框圖和定時中斷服務程序的流程框圖。 六、硬件電路設計 以微機實驗平臺和PC機資源為硬件設計的基礎,不需要外加電路。主要利用了以下的資源:1.8255并行口電路8255并行口電路主要負責數據的輸入與輸出,可以輸出數據控制發光二極管的亮滅和讀取乒乓開關的數據。實驗時可以將8255的A口、B口和一組發光二極管相連,C口和乒乓開關相連。2.8253定時/計數器8253定時/計數器和8259中斷控制器一起實現時隙定時。本設計的定時就是采用的t=N×50ms的方法,50ms由8253定時/計數器的計數器0控制定時,N是在中斷服務程序中軟件計時。8253的OUT0接到IRQ2,產生中斷請求信號。8253定時/計數器定時結束會發出中斷信號,進入中斷服務程序。3.PC機資源本設計除了利用PC機作為控制器之外,還利用了PC機的鍵盤和顯示器。鍵盤主要是輸入控制模式數據,顯示器就是顯示提示信息。 七、軟件設計 軟件主要分為主程序(MAIN)和中斷服務程序(INTT),主程序包含系統初始化、讀取乒乓開關、讀取控制模式數據以及按鍵處理等模塊。中斷服務程序主要是定時時間到后根據控制模式數據點亮相應的發光二極管。1.主程序主程序的程序流程圖如圖1所示。
上傳時間: 2014-04-05
上傳用戶:q986086481
微型計算機課程設計論文—通用微機發聲程序的匯編設計 本文講述了在微型計算機中利用可編程時間間隔定時器的通用發聲程序設計,重點講述了程序的發聲原理,節拍的產生,按節拍改變的動畫程序原理,并以設計一個簡單的樂曲評分程序為引子,分析程序設計的細節。關鍵字:微機 8253 通用發聲程序 動畫技術 直接寫屏 1. 可編程時間間隔定時器8253在通用個人計算機中,有一個可編程時間間隔定時器8253,它能夠根據程序提供的計數值和工作方式,產生各種形狀和各種頻率的計數/定時脈沖,提供給系統各個部件使用。本設計是利用計算機控制發聲的原理,編寫演奏樂曲的程序。 在8253/54定時器內部有3個獨立工作的計數器:計數器0,計數器1和計數器2,每個計數器都分配有一個斷口地址,分別為40H,41H和42H.8253/54內部還有一個公用的控制寄存器,端地址為43H.端口地址輸入到8253/54的CS,AL,A0端,分別對3個計數器和控制器尋址. 對8353/54編程時,先要設定控制字,以選擇計數器,確定工作方式和計數值的格式.每計數器由三個引腳與外部聯系,見教材第320頁圖9-1.CLK為時鐘輸入端,GATE為門控信號輸入端,OUT為計數/定時信號輸入端.每個計數器中包含一個16位計數寄存器,這個計數器時以倒計數的方式計數的,也就是說,從計數初值逐次減1,直到減為0為止. 8253/54的三個計數器是分別編程的,在對任一個計數器編程時,必須首先講控制字節寫入控制寄存器.控制字的作用是告訴8253/54選擇哪個計數器工作,要求輸出什么樣的脈沖波形.另外,對8253/54的初始化工作還包括,向選定的計數器輸入一個計數初值,因為這個計數值可以是8為的,也可以是16為的,而8253/5的數據總線是8位的,所以要用兩條輸出指令來寫入初值.下面給出8253/54初始化程序段的一個例子,將計數器2設定為方式3,(關于計數器的工作方式參閱教材第325—330頁)計數初值為65536. MOV AL,10110110B ;選擇計數器2,按方式3工作,計數值是二進制格式 OUT 43H,AL ; j將控制字送入控制寄存器 MOV AL,0 ;計數初值為0 OUT 42H,AL ;將計數初值的低字節送入計數器2 OUT 42H,AL ;將計數初值的高字節送入計數器2 在IBM PC中8253/54的三個時鐘端CLK0,CLK1和CLK2的輸入頻率都是1.1931817MHZ. PC機上的大多數I/O都是由主板上的8255(或8255A)可編程序外圍接口芯片(PPI)管理的.關于8255A的結構和工作原理及應用舉例參閱教材第340—373頁.教材第364頁的”PC/XT機中的揚聲器接口電路”一節介紹了揚聲器的驅動原理,并給出了通用發聲程序.本設計正是基于這個原理,通過編程,控制加到揚聲器上的信號的頻率,奏出樂曲的.2.發聲程序的設計下面是能產生頻率為f的通用發聲程序:MOV AL, 10110110B ;8253控制字:通道2,先寫低字節,后寫高字節 ;方式3,二進制計數OUT 43H, AL ;寫入控制字MOV DX, 0012H ;被除數高位MOV AX, 35DEH ;被除數低位 DIV ID ;求計數初值n,結果在AX中OUT 42H, AL ;送出低8位MOV AL, AHOUT 42H,AL ;送出高8位IN AL, 61H ;讀入8255A端口B的內容MOV AH, AL ;保護B口的原狀態OR AL, 03H ;使B口后兩位置1,其余位保留OUT 61H,AL ;接通揚聲器,使它發聲
上傳時間: 2013-10-17
上傳用戶:sunjet
pic單片機實用教程(提高篇)以介紹PIC16F87X型號單片機為主,并適當兼顧PIC全系列,共分9章,內容包括:存儲器;I/O端口的復位功能;定時器/計數器TMR1;定時器TMR2;輸入捕捉/輸出比較/脈寬調制CCP;模/數轉換器ADC;通用同步/異步收發器USART;主控同步串行端口MSSP:SPI模式和I2C模式。突出特點:通俗易懂、可讀性強、系統全面、學練結合、學用并重、實例豐富、習題齊全。<br>本書作為Microchip公司大學計劃選擇用書,可廣泛適用于初步具備電子技術基礎和計算機知識基礎的學生、教師、單片機愛好者、電子制作愛好者、電器維修人員、電子產品開發設計者、工程技術人員閱讀。本教程全書共分2篇,即基礎篇和提高篇,分2冊出版,以適應不同課時和不同專業的需要,也為教師和讀者增加了一種可選方案。 第1章 EEPROM數據存儲器和FIASH程序存儲器1.1 背景知識1.1.1 通用型半導體存儲器的種類和特點1.1.2 PIC單片機內部的程序存儲器1.1.3 PIC單片機內部的EEPROM數據存儲器1.1.4 PIC16F87X內部EEPROM和FIASH操作方法1.2 與EEPROM相關的寄存器1.3 片內EEPROM數據存儲器結構和操作原理1.3.1 從EEPROM中讀取數據1.3.2 向EEPROM中燒寫數據1.4 與FLASH相關的寄存器1.5 片內FLASH程序存儲器結構和操作原理1.5.1 讀取FLASH程序存儲器1.5.2 燒寫FLASH程序存儲器1.6 寫操作的安全保障措施1.6.1 寫入校驗方法1.6.2 預防意外寫操作的保障措施1.7 EEPROM和FLASH應用舉例1.7.1 EEPROM的應用1.7.2 FIASH的應用思考題與練習題第2章 輸入/輸出端口的復合功能2.1 RA端口2.1.1 與RA端口相關的寄存器2.1.2 電路結構和工作原理2.1.3 編程方法2.2 RB端口2.2.1 與RB端口相關的寄存器2.2.2 電路結構和工作原理2.2.3 編程方法2.3 RC端口2.3.1 與RC端口相關的寄存器2.3.2 電路結構和工作原理2.3.3 編程方法2.4 RD端口2.4.1 與RD端口相關的寄存器2.4.2 電路結構和工作原理2.4.3 編程方法2.5 RE端口2.5.1 與RE端口相關的寄存器2.5.2 電路結構和工作原理2.5.3 編程方法2.6 PSP并行從動端口2.6.1 與PSP端口相關的寄存器2.6.2 電路結構和工作原理2.7 應用舉例思考題與練習題第3章 定時器/計數器TMR13.1 定時器/計數器TMR1模塊的特性3.2 定時器/計數器TMR1模塊相關的寄存器3.3 定時器/計數器TMR1模塊的電路結構3.4 定時器/計數器TMR1模塊的工作原理3.4.1 禁止TMR1工作3.4.2 定時器工作方式3.4.3 計數器工作方式3.4.4 TMR1寄存器的賦值與復位3.5 定時器/計數器TMR1模塊的應用舉例思考題與練習題第4章 定時器TMR24.1 定時器TMR2模塊的特性4.2 定時器TMR2模塊相關的寄存器4.3 定時器TMR2模塊的電路結構4.4 定時器TMR2模塊的工作原理4.4.1 禁止TMR2工作4.4.2 定時器工作方式4.4.3 寄存器TMR2和PR2以及分頻器的復位4.4.4 TMR2模塊的初始化編程4.5 定時器TMR2模塊的應用舉例思考題與練習題第5章 輸入捕捉/輸出比較/脈寬調制CCP5.1 輸入捕捉工作模式5.1.1 輸入捕捉摸式相關的寄存器5.1.2 輸入捕捉模式的電路結構5.1.3 輸入捕捉摸式的工作原理5.1.4 輸入捕捉摸式的應用舉例5.2 輸出比較工作模式5.2.1 輸出比較模式相關的寄存器5.2.2 輸出比較模式的電路結構5.2.3 輸出比較模式的工作原理5.2.4 輸出比較模式的應用舉例5.3 脈寬調制輸出工作模式5.3.1 脈寬調制模式相關的寄存器5.3.2 脈寬調制模式的電路結構5.3.3 脈寬調制模式的工作原理5.3.4 脈定調制模式的應用舉例5.4 兩個CCP模塊之間相互關系思考題與練習題第6章 模/數轉換器ADC6.1 背景知識6.1.1 ADC種類與特點6.1.2 ADC器件的工作原理6.2 PIC16F87X片內ADC模塊6.2.1 ADC模塊相關的寄存器6.2.2 ADC模塊結構和操作原理6.2.3 ADC模塊操作時間要求6.2.4 特殊情況下的A/D轉換6.2.5 ADC模塊的轉換精度和分辨率6.2.6 ADC模塊的內部動作流程和傳遞函數6.2.7 ADC模塊的操作編程6.3 PIC16F87X片內ADC模塊的應用舉例思考題與練習題第7章 通用同步/異步收發器USART7.1 串行通信的基本概念7.1.1 串行通信的兩種基本方式7.1.2 串行通信中數據傳送方向7.1.3 串行通信中的控制方式7.1.4 串行通信中的碼型、編碼方式和幀結構7.1.5 串行通信中的檢錯和糾錯方式7.1.6 串行通信組網方式7.1.7 串行通信接口電路和參數7.1.8 串行通信的傳輸速率7.2 PIC16F87X片內通用同步/異步收發器USART模塊7.2.1 與USART模塊相關的寄存器7.2.2 USART波特率發生器BRG7.2.3 USART模塊的異步工作方式7.2.4 USART模塊的同步主控工作方式7.2.5 USART模塊的同步從動工作方式7.3 通用同步/異步收發器USART的應用舉例思考題與練習題第8章 主控同步串行端口MSSP——SPI模式8.1 SPI接口的背景知識8.1.1 SPI接口信號描述8.1.2 基于SPI的系統構成方式8.1.3 SPI接口工作原理8.1.4 兼容的MicroWire接口8.2 PIC16F87X的SPI接口8.2.1 SPI接口相關的寄存器8.2.2 SPI接口的結構和操作原理8.2.3 SPI接口的主控方式8.2.4 SPI接口的從動方式8.3 SPI接口的應用舉例思考題與練習題第9章 主控同步串行端口MSSP——I(平方)C模式9.1 I(平方)C總線的背景知識9.1.1 名詞術語9.1.2 I(平方)C總線的技術特點9.1.3 I(平方)C總線的基本工作原理9.1.4 I(平方)C總線信號時序分析9.1.5 信號傳送格式9.1.6 尋址約定9.1.7 技術參數9.1.8 I(平方)C器件與I(平方)C總線的接線方式9.1.9 相兼容的SMBus總線9.2 與I(平方)C總線相關的寄存器9.3 典型信號時序的產生方法9.3.1 波特率發生器9.3.2 啟動信號9.3.3 重啟動信號9.3.4 應答信號9.3.5 停止信號9.4 被控器通信方式9.4.1 硬件結構9.4.2 被主控器尋址9.4.3 被控器接收——被控接收器9.4.4 被控器發送——被控發送器9.4.5 廣播式尋址9.5 主控器通信方式9.5.1 硬件結構9.5.2 主控器發送——主控發送器9.5.3 主控器接收——主控接收器9.6 多主通信方式下的總線沖突和總線仲裁9.6.1 發送和應答過程中的總線沖突9.6.2 啟動過程中的總線沖突9.6.3 重啟動過程中的總線沖突9.6.4 停止過程中的總線沖突9.7 I(平方)C總線的應用舉例思考題與練習題附錄A 包含文件P16F877.INC附錄B 新版宏匯編器MPASM偽指令總表參考文獻
上傳時間: 2013-12-14
上傳用戶:xiaoyuer
單片機應用技術選編(9) 目錄 第一章 專題論述1.1 集成電路進入片上系統時代(2)1.2 系統集成芯片綜述(10)1.3 Java嵌入技術綜述(18)1.4 Java的線程機制(23)1.5 嵌入式系統中的JTAG接口編程技術(29)1.6 EPAC器件技術概述及應用(37)1.7 VHDL設計中電路簡化問題的探討(42)1.8 8031芯片主要模塊的VHDL描述與仿真(48)1.9 ISP技術在數字系統設計中的應用(59)1.10 單片機單總線技術(64)1.11 智能信息載體iButton及其應用(70)1.12 基于單片機的高新技術產品加密方法探討(76)1.13 新一代私鑰加密標準AES進展與評述(80)1.14 基于單片機的實時3DES加密算法的實現(86)1.15 ATA接口技術(90)1.16 基于IDE硬盤的高速數據存儲器研究(98)1.17 模擬比較器的應用(102) 第二章 綜合應用技術2.1 閃速存儲器硬件接口和程序設計中的關鍵技術(126)2.2 51單片機節電模式的應用(131)2.3 分布式實時應用的兩個重要問題(137)2.4 分布式運算單元的原理及其實現方法(141)2.5 用PLD器件設計邏輯電路時的競爭冒險現象(147)2.6 IRIG?B格式時間碼解碼接口卡電路設計(150)2.7 一種基于單片機時頻信號處理的實用方法(155)2.8 射頻接收系統晶體振蕩電路的設計與分析(161)2.9 揭開ΣΔ ADC的神秘面紗(166)2.10 過采樣高階A/D轉換器的硬件實現(172)2.11 A/D轉換的計算與編程(176)2.12 一種提高單片機內嵌式A/D分辨力的方法(179)2.13 單片微型計算機多字節浮點快速相對移位法開平方運算的實現(182)2.14 單片微型計算機多字節浮點除法快速掃描運算的實現(186)2.15 DSP芯片與觸摸屏的接口控制(188)第三章 操作系統與軟件技術3.1 嵌入式系統中的實時操作系統(192)3.2 嵌入式系統的開發利器——Windows CE操作系統(197)3.3 介紹一種實時操作系統DSP/BIOS(203)3.4 實時操作系統用于嵌入式應用系統的設計(212)3.5 實時Linux操作系統初探(217)3.6 Linux網絡設備驅動程序分析與設計(223)3.7 在51系列單片機上實現非搶先式消息驅動機制的RTOS(229)3.8 用結構化程序設計思想指導匯編語言開發(236)3.9 單片機高級語言C51與匯編語言ASM51的通用接口(240)3.10 ASM51無參數化調用C51函數的實現(245)3.11 TMS320C3X的匯編語言和C語言及混合編程技術(249)3.12 TMS320C6000嵌入式系統優化編程的研究(254)3.13 TMS320C54X軟件模擬實現UART技術(260)3.14 W78E516及其在系統編程的實現(265)3.15 鍵盤鍵入信號軟件處理方法探討(272)3.16 單片機系統中數字濾波的算法(276)第四章 網絡、通信與數據傳送 4.1 實時單片機通信網絡中的內存管理(284)4.2 CRC16編碼在單片機數據傳輸系統中的實現(288)4.3 在VC++中用ActiveX控件實現與單片機的串行通信(293)4.4 利用Windows API函數構造C++類實現串行通信(298)4.5 用Win32 API實現PC機與多單片機的串行通信(304)4.6 GPS接收機與PC機串行通信技術的開發與應用(311)4.7 TCP/IP協議問題透析(316)4.8 單片機的MODEM通信(328)4.9 無線串行接口電路設計(335)4.10 通用無線數據傳輸電路設計(340)4.11 FX909在無線高速MODEM中的應用(343)4.12 藍牙——短距離無線連接新技術(348)4.13 藍牙技術——一種短距離的無線連接技術(351)4.14 藍牙芯片及其應用(357)4.15 BlueCoreTM01藍牙芯片的特性與應用(361)4.16 內嵌微控制器的無線數據發射器的特性及應用(365)第五章 新器件及其應用技術5.1 一種全新結構的微控制器——Triscend E5(372)5.2 PSD8XXF的在系統編程技術(376)5.3 PSD813F1及其接口編程技術(382)5.4 一種優越的可編程邏輯器件——ISP器件(387)5.5 ISPPLD原理及其設計應用(393)5.6 ispPAC10在系統可編程模擬電路及其應用(397)5.7 在系統可編程器件ispPAC80及其應用(404)5.8 采用ispLSI1016設計高精度光電碼盤計數器(408)5.9 基于ADμC812的一種儀表開發平臺(413)5.10 基于P87LPC764的ΣΔ ADC應用設計方法(418)5.11 MP3解碼芯片組及其應用(431)5.12 射頻IC卡E5550原理及應用(434)5.13 HD7279A鍵盤顯示驅動芯片及應用(439)5.14 基于SPI接口的ISD4104系列語音錄放芯片及其應用(444)5.15 解決DS1820通信誤碼問題的方法(450)5.16 數字電位器在測量放大器中的應用(455)第六章 總線及其應用技術6.1 按平臺模式設計的虛擬I2C總線軟件包VIIC(462)6.2 虛擬I2C總線軟件包的開發及其應用(470)6.3 RS485總線的理論與實踐(479)6.4 RS232至RS485/RS422接口的智能轉換器(484)6.5 實用隔離型RS485通信接口的設計(489)6.6 幾種RS485接口收發方向轉換方法(495)6.7 LonWorks總線技術及發展(498)6.8 LonWorks網絡監控的簡單實現(505)6.9 現場總線CANbus與RS485之間透明轉換的實現(509)6.10 居室自動化系統中的X10和CE總線(513)6.11 通用串行總線USB(519)6.12 USB2.0技術概述(524)6.13 帶通用串行總線USB接口的單片機EZUSB(530)6.14 嵌入式處理器中的慢總線技術應用(536)6.15 SPI串行總線在單片機8031應用系統中的設計與實現(540)第七章 可靠性及安全性技術7.1 軟件可靠性及其評估(546)7.2 網絡通信中的基本安全技術(554)7.3 數字語音混沌保密通信系統及硬件實現(560)7.4 偽隨機序列及PLD實現在程序和系統加密中的應用(565)7.5 增強單片機系統可靠性的若干措施(569)7.6 FPGA中的空間輻射效應及加固技術(573)7.7 一種雙機備份系統的軟實現(577)7.8 計算機系統容錯技術的應用(581)7.9 容錯系統中的自校驗技術及實現方法(585)7.10 基于MAX110的容錯數據采集系統的設計(589)7.11 冗余式時鐘源電路(593)7.12 微機控制系統的抗干擾技術應用(599)7.13 單片開關電源瞬態干擾及音頻噪聲抑制技術(604)7.14 單片機應用系統程序運行出軌問題研究(608)7.15 分布式系統故障卷回恢復技術研究與實踐(613)第八章 典型應用實例8.1 基于單片機系統采用DMA塊傳輸方式實現高速數據采集(620)8.2 GPS數據采集卡的設計(624)8.3 一種新型非接觸式IC卡識別系統研究(629)8.4 自適應調整增益的單片機數據采集系統(633)8.5 利用光纖發射/接收器對實現遠距離高速數據采集(639)8.6 一種頻率編碼鍵盤的設計與實現(645)8.7 高準確度時鐘程序算法(649)8.8 旋轉編碼器的抗抖動計數電路(652)8.9 利用X9241實現高分辨率數控電位器(656)8.10 基于AD2S80A的高精度位置檢測系統及其在機器人控制中的應用(661)第九章 文章摘要一、專題論述(670)1.1 微控制器的發展趨勢(670)1.2 系統微集成技術的發展(670)1.3 多芯片組件技術及其應用(671)1.4 MCS51和80C51系列單片機(671)1.5 PSD813器件在單片機系統中的應用(671)1.6 主輔單片機系統的設計及應用(671)1.7 一種雙單片機結構的微機控制器(671)1.8 用PC機直接開發單片機系統(672)1.9 單片機系統大容量存儲器擴展技術(672)1.10 高性能微處理器性能模型設計(672)1.11 閃速存儲器的選擇與接口(672)1.12 串行存儲器接口的比較及選擇(672)1.13 移位寄存器分析方法的研究(673)1.14 GPS的時頻系統(673)1.15 一種基于C語言的虛擬儀器系統實現方法(673)1.16 智能家庭網絡研究綜述(673)1.17 用C51實現電力部多功能電能表通信規約(674)1.18 測控系統中采樣數據的預處理(674)1.19 數據采集系統動態特性的總體評價(674)1.20 一個高速準確的手寫數字識別系統(674)1.21 日本理光實時時鐘集成電路發展歷史及現狀(675)1.22 單片開關電源的發展及其應用(675)二、綜合應用技術(676)2.1 MCS51系列單片機在SDH系統中的應用(676)2.2 公共閃存接口在Flash Memory程序設計中的應用(676)2.3 應用IA MMXTM技術的離散余弦變換(676)2.4 串行實時時鐘芯片DS1302程序設計中的問題與對策(676)2.5 數字傳感器及其應用(677)2.6 電阻式溫度傳感器的系列化設計及其應用(677)2.7 溫度傳感器及其與微處理器接口(677)2.8 AD7416數字溫度傳感器及其應用(677)2.9 隔離放大器及其應用(677)2.10 高速A/D轉換器動態參數(678)2.11 V/F變換在單片機系統中的應用(678)2.12 微處理器內嵌式模數轉換器在精密儀器中的應用研究(678)2.13 電子秤非線性自動修正方法(678)2.14 光耦傳輸的非線性校正(678)2.15 高斯濾波器在實時系統中的快速實現(679)2.16 用在系統可編程模擬器件實現雙二階型濾波器(679)2.17 最小二乘法在高精度溫度測量中的應用(679)2.18 提高實時頻率測量范圍和精度新方法(679)2.19 具有微控制器的智能儀表設計與應用(679)2.20 用C語言編程的數據采集系統(680)2.21 大動態范圍浮點A/D數據采集器的設計(680)2.22 基于PCI高速數據采集系統(680)2.23 一種基于PC機的高速16位并行數據采集接口(680)2.24 數據采集系統中增強型并行接口(EPP)電路的設計(681)2.25 用增強型并行接口EPP協議擴展計算機的ISA接口(681)2.26 基于增強型并行接口EPP的便攜式高速數據采集系統(681)2.27 增強型并行接口EPP協議及其在CAN監控節點中的應用(681)2.28 利用增強型并行接口協議傳輸圖像文件(681)2.29 用并行接口進行數據采集(682)2.30 高信噪比的VFC/DPLL數據采集裝置(682)2.31 高精度數字式轉速測量系統的研究(682)2.32 用單片機測量相位差的新方法(682)2.33 交流采樣在電力系統中應用(682)2.34 同步圖形存儲器IS42G32256的電源與應用(683)2.35 IBM?PC處理10MHz高速模擬信號的研究(683)2.36 MCS51系列單片機存儲容量擴展方法(683)2.37 用單片機實現數字相位變換器的設計方法(683)2.38 一種新的可重配置的串口擴展方案(683)2.39 VB環境下對雙端口RAM物理讀寫的實現(684)2.40 雙CPU實現遠程多鍵盤鼠標交互(684)2.41 兩種電阻時間變換器設計與分析(684)2.42 液晶顯示器的接口和編程技巧(684)2.43 一種簡單的電機變頻調速方案及其應用(684)2.44 基于單片機的火控系統符號產生器電路原理設計(685)2.45 A/D轉換器性能的改善方法(685)2.46 快速小波變換算法與信噪分離(685)2.47 80C196MC/MD單片機多個中斷程序的同步問題(685)三、操作系統及軟件技術(686)3.1 嵌入式軟件技術的現狀與發展動向(686)3.2 什么是嵌入式實時操作系統(686)3.3 實時多任務系統中的一些基本概念(686)3.4 一個源碼公開的實時內核(687)3.5 Windows CE的實時性分析(687)3.6 串口通信多線程實現的分析(687)3.7 基于中間件的開發研究(688)3.8 Windows 95下實時控制軟件設計的研究(688)3.9 Windows NT 4.0下設備驅動程序的開發與應用(688)3.10 Windows 98 下硬件中斷驅動程序的開發(688)3.11 Windows下實時數據采集的實現(688)3.12 Win 95 下虛擬設備驅動程序設計開發(689)3.13 Win 95 環境下測控軟件中端口讀寫的快速實現(689)3.14 Linux系統中ARP的編程實現技術(689)3.15 Linux中System V進程通信機制及訪問控制技術的改進(689)3.16 VC++6.0中動態創建MSComm控件的問題及對策(689)3.17 在Visual Basic下使用I/O接口程序(690)3.18 VB應用程序速度的優化技術(690)3.19 嵌入式實時操作系統在機車微機測控軟件開發中的應用(690)3.20 結構化程序方法在匯編語言中的應用(690)3.21 AVR單片機編程特性的應用研究(690)3.22 一種有效的51系列單片機軟件仿真器(691)3.23 PIC單片機軟件模擬仿真時輸入信號的激勵方式(691)3.24 基于LabVIEW的分布式VXI儀器教學實驗系統設計(691)四、網絡、通信及數據傳輸(692)4.1 單片機網絡的組成與控制(692)4.2 實現ARINC 429數字信息傳輸的方案設計(692)4.3 結合電力線載波和電話通信的報警網絡系統(692)4.4 網絡電子密碼鎖監控系統的設計與實現(692)4.5 IRIG?E標準FM?FM解調器的有關技術(693)4.6 基于TCP/IP的多媒體通信實現(693)4.7 基于TCP/IP的多線程通信及其在遠程監控系統中的應用(693)4.8 基于Internet的遠程測控技術(693)4.9 Windows 95串行通信的幾種方式及編程(693)4.10 在Windows 95下PC機和單片機的串行通信(693)4.11 基于80C196KC微處理器的高速串行通信(694)4.12 使用PC機并行口與下位單片機通信的方法(694)4.13 雙向并口通信的開發(694)4.14 DSP和計算機并口的高速數據通信(694)4.15 一種高可靠性的PC機與單片機間的串行通信方法(694)4.16 單片機與PC機串行通信的實現方法(695)4.17 89C51單片機I/O口模擬串行通信的實現方法(695)4.18 TMS320C50與PC機高速串行通信的實現(695)4.19 DSP和PC機的異步串行通信設計(695)4.20 基于MCS單片機與PC機串行通信電平轉換(695)4.21 一種簡單的光電隔離RS232電平轉換接口設計(695)4.22 ISA總線工業控制機與單片機系統的數據交換(696)4.23 RS232/422/485綜合接口(696)4.24 基于RS485接口的單片機串行通信(696)4.25 在VC++中利用ActiveX控件開發串行通信程序(696)4.26 上位機和多臺下位機的485通信(696)4.27 計算機與CAN通信的一種方法(697)4.28 用VB語言實現對端口I/O的訪問(697)4.29 異種單片機共享片外存儲器及其與微機通信的方法(697)4.30 單片機與MODEM接口技術及其在智能儀器中的應用研究(697)4.31 采用MCS51單片機實現CPFSK調制(697)4.32 一種新型編碼芯片及其驅動程序的設計方案(698)4.33 DTMF遠程通信的軟硬件實現技術(698)4.34 采用DTMF方式通信的電度表管理系統(698)4.35 基于TAPI的電話語音系統設計方法(698)4.36 語音芯片APR9600及其在電話遙控系統中的應用(699)4.37 串行紅外收發模塊及其控制器在紅外抄表系統中的應用(699)4.38 HSP50214B PDC及其在軟件無線電中的應用(699)4.39 變速率CDMA系統軟件無線電多用戶接收機(699)五、新器件及應用技術(700)5.1 全幀讀出型面陣CCD光電傳感器在圖像采集中的應用(700)5.2 光電碼盤四倍頻分析(700)5.3 H8/300H系列單片機及其應用(700)5.4 PIC 16F877單片機的鍵盤和LED數碼顯示接口(700)5.5 PIC16F877單片機實現D/A轉換的兩種方法(701)5.6 P89C51RX2 的PCA原理及設計(701)5.7 ADμC812中串口及其應用(701)5.8 INTEL96系列單片機中若干問題的討論(701)5.9 關于INTEL96系列單片機中HSO事件的設置(701)5.10 MAX3100與PIC16C5X系列單片機的接口設計(702)5.11 單片MODEM芯片在遠程數據通信中的應用(702)5.12 MX919在無線高速MODEM中的應用(702)5.13 高速串行數據收發器CY7B923/933及應用(702)5.14 雙口RAM與FIFO芯片在數據處理系統中應用的比較(702)5.15 MAX202E在串行通信中的應用(703)5.16 線性隔離放大器ISO122的原理及應用(703)5.17 AD606對數放大器的研究與應用(703)5.18 電流/電壓轉換芯片MAX472在永磁直流電動機虛擬測試系統中的應用… (703)5.19 高精度模數轉換器AD676的原理及應用(703)5.20 DS2450 A/D轉換器的特性與應用(704)5.21 80C196KC內部A/D轉換器的使用(704)5.22 一種16~24位分辨率D/A轉換器的設計(704)5.23 串行A/D轉換器TLC2543與TMS320C25的接口及編程(704)5.24 A/D轉換器ICL7135積分特性應用(704)5.25 高精度A/D轉換器AD7711A及應用(705)5.26 多路A/D轉換器AD7714及其與M68HC11單片機接口技術(705)5.27 用AD7755設計的低成本電能表(705)5.28 20位Σ?Δ立體聲ADA電路TLC320AD75C的接口電路設計(705)5.29 24位A/D轉換器ADS1210/1211及其應用(706)5.30 模數轉換器AD7705及其接口電路(706)5.31 串行A/D轉換器ADS7812與單片機的接口技術(706)5.32 串行A/D轉換器TLC548/549及其應用(706)5.33 采樣率可變16通道16位隔離A/D電路(706)5.34 TLC549在交流有效值測量中的應用(707)5.35 溫度傳感器DS18B20的特性及程序設計方法(707)5.36 DS1820及其高精度溫度測量的實現(707)5.37 采用DS1820的電弧爐爐底溫度監測系統(707)5.38 并行實時時鐘芯片DS12887及其應用(707)5.39 利用實時時鐘X1203開啟單片機系統(708)5.40 時鐘芯片DS1302及其在數據記錄中的應用(708)5.41 串行顯示驅動器PS7219及與單片機的接口技術(708)5.42 MAX7219在PLC中的應用(708)5.43 一種實用的LED光柱顯示器驅動方法(708)5.44 基于電能測量芯片ADE7756的智能電度表設計(709)5.45 TSS721A在自動抄表系統中的應用(709)5.46 電流傳感放大器MAX471/MAX472的原理及應用(709)5.47 8XC552模數轉換過程及其自動調零機制(709)5.48 旋轉變壓器數字轉換器AD2S83在伺服系統中的應用(709)5.49 具有串行接口的I/O擴展器EM83010及其應用(710)5.50 新型LED驅動器TEC9607及其應用(710)5.51 新型語音識別電路AP7003及其應用(710)六、總線技術(711)6.1 現場總線技術的發展及應用展望(711)6.2 CAN總線點對點通信應用研究(711)6.3 基于CAN總線的數據通信系統研究(711)6.4 基于CAN總線的分布式數據采集與控制系統(711)6.5 基于CAN總線的分布式鋁電解智能系統(711)6.6 CAN總線在通信電源監控系統中的應用(712)6.7 CAN總線在弧焊機器人控制系統中的應用(712)6.8 CAN總線及其在噴漿機器人中的應用(712)6.9 基于CAN控制器的單片機農業溫室控制系統的設計(712)6.10 現場總線國際標準與LonWorks在智能電器中的應用(712)6.11 基于LON總線技術的暖通空調控制系統(712)6.12 通用串行總線(USB)及其芯片的使用(713)6.13 USB在數據采集系統中的應用(713)6.14 用MC68HC05JB4開發USB外設(713)6.15 8x930Ax/Hx USB控制器芯片及其在數字音頻中的應用(713)6.16 基于MC68HC(9)08JB8芯片的USB產品——鍵盤設計(713)6.17 I2 C總線在LonWorks網絡節點上的應用(714)6.18 Neuron3150的并行I/O接口對象及其應用(714)6.19 新型串行E2PROM 24LC65在LonWorks節點中的應用(714)6.20 利用I2C總線實現DSP對CMOS圖像傳感器的控制(714)6.21 在I2C總線系統中擴展LCD顯示器(714)6.22 基于Windows環境的GPIB接口設計實現(714)6.23 微機PCI總線接口的研究與設計(715)6.24 通用串行總線(USB)原理及接口設計(715)6.25 CAN總線與1553B總線性能分析比較(715)6.26 利用USB接口實現雙機互聯通信(715)6.27 一種帶USB接口的便攜式語音采集卡的設計(715)七、可靠性技術(716)7.1 電磁干擾與電磁兼容設計(716)7.2 計算機的防電磁泄漏技術(716)7.3 低輻射計算機系統的設計實現(716)7.4 靜電測量及其程序設計(716)7.5 電子產品生產中的靜電防護技術(716)7.6 電子測控系統中的屏蔽與接地技術(717)7.7 微機控制系統的抗干擾技術(717)7.8 如何提高單片機應用產品的抗干擾能力(717)7.9 工業控制計算機系統中的常見干擾及處理措施(717)7.10 GPS用于軍用導航中的抗干擾和干擾對抗研究(717)7.11 基于開放式體系結構的數控機床可靠性及抗干擾設計(717)7.12 變頻器應用技術中的抗干擾問題(718)7.13 單片機的軟件可靠性編程(718)7.14 單片微機的軟件抑噪方案(718)7.15 SmartLock并口單片機軟件狗加密技術(718)7.16 單片機系統中復位電路可靠性設計(718)7.17 測控系統中實現數據安全存儲的實用技術(718)7.18 高精度儀表信號隔離電路設計(719)7.19 基于AT89C2051單片機的防誤操作智能鎖(719)7.20 Email的安全問題與保護措施(719)7.21 雙機容錯系統的一種實現途徑(719)7.22 單片機應用系統抗干擾設計綜述(719)7.23 微機控制系統中的干擾及其抑制方法(720)7.24 智能儀表的抗干擾和故障診斷(720)八、應用實踐(721)8.1 AT89C51在銀行利率顯示屏中的應用(721)8.2 基于8xC196MC實現的磁鏈軌跡跟蹤控制(721)8.3 基于80C196KC的開關磁阻電機測試系統(721)8.4 80C196KB單片機在繞線式異步電動機啟動控制中的應用(721)8.5 GPS時鐘系統(721)8.6 一種由AT89C2051單片微機實現的功率因數補償裝置(722)8.7 數據采集系統芯片ADμC812及其在溫度監測系統中的應用(722)8.8 用AVR單片機實現蓄電池剩余電量的測量(722)8.9 基于SA9604的多功能電度表(722)8.10 數字正交上變頻器AD9856的原理及其應用(722)8.11 基于MC628的可變參數PID控制方法的實現(723)8.12 Windows 98下遠程數據采集系統設計(723)8.13 一種新式微流量計的研究(723)8.14 一種便攜式多通道精密測溫儀(723)8.15 一種高精度定時器的設計及其應用(723)8.16 智能濕度儀設計(724)8.17 固態數字語音記錄儀的設計與實現(724)8.18 多功能語音電話答錄器的設計(724)8.19 白熾燈色溫測量裝置電路設計(724)8.20 交直流供電無縫連接電源控制系統設計(724)8.21 小型電磁輻射敏感度自動測試系統的設計(725)8.22 生物電極微電流動態檢測裝置(725)8.23 二種鉑電阻4~20 mA電流變送器電路(725)8.24 基于單片機的智能型光電編碼器計數器(725)8.25 嵌入式系統中利用RS232C串口擴展矩陣式鍵盤(725)8.26 電壓矢量控制PWM波的一種實時生成方法(725)8.27 便攜式電能表校驗裝置現場使用分析(726)8.28 用單片機實現大型電動機的在線監測(726)8.29 PLC在L型管彎曲機電控系統中的應用(726)8.30 用EPROM實現步進電機的控制(726)8.31 一種手持設備的智能卡實現技術(726)8.32 鈔票顏色識別系統的設計(727)8.33 數字鎖相環在位置檢測中的應用(727)九、DSP及其應用技術(728)9.1 數字信號處理器DSPs的發展(728)9.2 用TMS320C6201實現多路ITU?T G.728語音編碼標準(728)9.3 采用DSP內核技術進行語音壓縮開發(728)9.4 TMS320C80與存儲器接口分析(728)9.5 TMS320C32浮點DSP存儲器接口設計(728)9.6 TMS320VC5402 DSP的并行I/O引導裝載方法研究(729)9.7 TMS320C30系統與PC104進行雙向并行通信的方法(729)9.8 基于TMS320C6201的G.723.1多通道語音編解碼的實現(729)9.9 基于TMS320C6201的多通道信號處理平臺(729)9.10 基于兩片TMS320C40的高速數據采集系統(729)9.11 使用TMS320C542構成數據采集處理系統(730)9.12 基于TMS320C32的視覺圖像處理系統(730)9.13 用ADSP?2181和MC68302實現MPEG?2傳送復用器(730)9.14 基于DSP的PC加密卡(730)9.15 TMS320C2XX及其在寬帶恒定束寬波束形成器中的應用(730)9.16 DS80C320單片機在無人機測控數據采編器中的應用(731)9.17 基于TMS320F206 DSP的圖像采集卡設計(731)9.18 基于定點DSP的實時語音命令識別模塊(731)9.19 基于TMS320C50的語音頻譜分析儀(731)9.20 利用DSP實現的專用數字錄音機(731)9.21 基于DSP的全數字交流傳動系統硬件平臺設計(732)9.22 ADSP2106x中DMA的應用(732)9.23 軟件無線電中DSP應用模式的分析(732)9.24 快速小波變換在DSP中的實現方法(732)十、PLD及EDA技術應用(733)10.1 可編程器件實現片上系統(733)10.2 VHDL語言在現代數字系統中的應用(733)10.3 用VHDL設計有限狀態機的方法(733)10.4 ISP-PLD在數字系統設計中的應用(733)10.5 基于FPGA技術的新型高速圖像采集(734)10.6 Protel 99SE電路仿真(734)10.7 可編程邏輯器件(PLD)在電路設計中的應用(734)10.8 基于FPGA的全數字鎖相環路的設計(734)10.9 基于EPLD器件的一對多打印機控制器的研制(734)10.10 一種VHDL設計實現的有線電視機頂盒信源發生方案(735)10.11 一種并行存儲器系統的FPGA實現(735)10.12 SDRAM接口的VHDL設計(735)10.13 采用ISP器件設計可變格式和可變速率的通信數字信號源(735)10.14 利用FPGA技術實現數字通信中的交織器和解交織器(735)10.15 XC9500系列CPLD遙控編程的實現(736)10.16 PLD器件在紅外遙控解碼中的應用(736)10.17 利用XCS40實現小型聲納的片上系統集成(736)10.18 可編程邏輯器件的VHDL設計技術及其在航空火控電子設備中的應用… (736)10.19 DSP+FPGA實時信號處理系統(736)10.20 CPLD在IGBT驅動設計中的應用(737)10.21 基于FPGA的FIR濾波器的實現(737)10.22 用可編程邏輯器件取代BCD?二進制轉換器的設計方法(737)
上傳時間: 2014-04-14
上傳用戶:gtf1207
摘要: 本文介紹了L ED 顯示屏常規型驅動電路的設計方式及其存在的缺陷, 提出了簡單的L ED 顯示屏恒流驅動方式及電路的實現。關鍵詞:L ED 顯示屏 動態掃描 驅動電路中圖分類號: TN 873+ . 93 文獻標識碼:A 文章編號: 1005- 9490(2001) 03- 0252- 051 引 言 L ED 顯示屏是80 年代后期在全球迅速發展起來的新型信息顯示媒體, 它利用發光二極管構成的點陣模塊或像素單元, 組成大面積顯示屏幕, 以其可靠性高、使用壽命、環境適應能力強、性能價格比高、使用成本低等特點, 在信息顯示領域已經得到了非常廣泛的應用[ 1 ]。L ED 顯示屏主要包括發光二極管構成的陣列、驅動電路、控制系統及傳輸接口和相應的應用軟件等, 其中驅動電路設計的好壞, 對L ED 顯示屏的顯示效果、制作成本及系統的運行性能起著很重要的作用。所以, 設計一種既能滿足控制驅動的要求, 同時使用器件少、成本低的控制驅動電路是很有必要的。本文就常規型驅動電路的設計作些分析并提出恒流驅動電路的設計方式。2 L ED 顯示屏常規驅動電路的設計 L ED 顯示屏驅動電路的設計, 與所用控制系統相配合, 通常分為動態掃描型驅動及靜態鎖存型驅動二大類。以下就動態掃描型驅動電路的設計為例為進行分析:動態掃描型驅動方式是指顯示屏上的4 行、8 行、16 行等n 行發光二極管共用一組列驅動寄存器, 通過行驅動管的分時工作, 使得每行L ED 的點亮時間占總時間的1ön , 只要每行的刷新速率大于50 Hz, 利用人眼的視覺暫留效應, 人們就可以看到一幅完整的文字或畫面[ 2 ]。常規型驅動電路的設計一般是用串入并出的通用集成電路芯片如74HC595 或MC14094 等作為列數據鎖存, 以8050 等小功率N PN 三極管為列驅動, 而以達林頓三極管如T IP127 等作為行掃描管, 其電路如圖1 所示。
上傳時間: 2014-02-19
上傳用戶:lingzhichao
現實世界中有很多問題,它的機理較簡單,用靜態,線性或邏輯的方法即可建立模型,使用初等的數學方法,即可求解,我們稱之為初等數學模型。本章主要介紹有關自然數,比例關系,狀態轉移,及量剛分析等建模例子,這些問題的巧妙的分析處理方法,可使讀者達到舉一反三,開拓思路,提高分析, 解決實際問題的能力。 在人們的生產實踐中,經常會遇到如何利用現有資源來安排生產,以取得最大經濟效益的問題。此類問題構成了運籌學的一個重要分支—數學規劃,而線性規劃(Linear Programming 簡記LP)則是數學規劃的一個重要分支。自從1947年G. B. Dantzig 提出求解線性規劃的單純形方法以來,線性規劃在理論上趨向成熟,在實用中日益廣泛與深入。特別是在計算機能處理成千上萬個約束條件和決策變量的線性規劃問題之后,線性規劃的適用領域更為廣泛了,已成為現代管理中經常采用的基本方法之一。 如果目標函數或約束條件中包含非線性函數,就稱這種規劃問題為非線性規劃問題。一般說來,解非線性規劃要比解線性規劃問題困難得多。而且,也不象線性規劃有單純形法這一通用方法,非線性規劃目前還沒有適于各種問題的一般算法,各個方法都有自己特定的適用范圍。 下面通過實例歸納出非線性規劃數學模型的一般形式,介紹有關非線性規劃的基本概念。
上傳時間: 2013-10-19
上傳用戶:lunshaomo