亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

消除器

  • LLC諧振變換器的研究.rar

    諧振變換器相對硬開關(guān)PWM變換器,具有開關(guān)頻率高、關(guān)斷損耗小、效率高、重量輕、體積小、EMI噪聲小、開關(guān)應(yīng)力小等優(yōu)點。而LLC諧振變換器具有原邊開關(guān)管易實現(xiàn)全負載范圍內(nèi)的ZVS,次級二極管易實現(xiàn)ZCS諧振電感和變壓器易實現(xiàn)磁性元件的集成,以及輸入電壓范圍寬等優(yōu)點,因而得到了廣泛的關(guān)注。 本文對諧振變換器的基本分類和各種諧振變換器的優(yōu)缺點進行了比較和總結(jié),并與傳統(tǒng)PWM變換器進行了對比,總結(jié)出LLC諧振變換器的主要優(yōu)點。并以400W LLC諧振變換器為目標設(shè)計,LLC前級使用APFC電路,后一級是LLC諧振變換器。 首先,基于FHA(基波分析法)的方法對LLC諧振變換器進了穩(wěn)態(tài)電路的分析,并詳細闡述了LLC諧振變換器在各個開關(guān)頻率范圍內(nèi)的工作原理和工作特性。隨后,文章詳細比較了LLC諧振變換器與傳統(tǒng)的諧振變換器和半橋PWM變換器不同之處。 然后,文章分別采用分段線性法和擴展描述函數(shù)法建立了LLC諧振變換器的小信號模型。由于分段線性法建立的小信號模型僅考慮了LLC諧振變換器工作在滿負載的情況下,為了建立更具一般性的模型,論文又采用了擴展描述函數(shù)法建模,用以指導(dǎo)控制環(huán)路的設(shè)計。 接著,論文對整個系統(tǒng)進行了綜合設(shè)計。文章給出了APFC部分的主電路和控制補償回路的具體設(shè)計;同時,也做出了LLC諧振變換器主電路的具體設(shè)計,而LLC諧振變換器控制回路的設(shè)計,仍需要更深一步的研究,并需提出一種切實可行的設(shè)計方法。 最后,采用Pspiee軟件建立了仿真模型。仿真結(jié)果得出LLC諧振變換器能在負載和輸入電壓變化范圍都很大的情況下實現(xiàn)輸出電壓的穩(wěn)定調(diào)節(jié),并能實現(xiàn)場效應(yīng)管和二極管的軟開關(guān),驗證了理論分析的正確性;由于實驗條件的限制,制作的實驗電路板處于調(diào)試之中,希望進一步驗證理論設(shè)計的正確性。

    標簽: LLC 諧振變換器

    上傳時間: 2013-04-24

    上傳用戶:DanXu

  • 基于軟開關(guān)全橋變換器的電動汽車充電電源設(shè)計.rar

    當今世界,環(huán)境污染嚴重,能源出現(xiàn)危機,機動車輛排氣污染已占城市大氣污染的很大比重,電動汽車作為無污染交通工具,在市場上具有很大的優(yōu)越性。而電動汽車充電技術(shù)也在不斷發(fā)展,不斷優(yōu)化。奧運臨近,我國為把2008年北京奧運會辦成真正的綠色奧運,將在奧運村及北京很多范圍內(nèi)使用電動汽車。本論文針對2008北京奧運會用電動汽車,對其充電電源進行了系統(tǒng)的研究設(shè)計。本文提出了以零電壓零電流(ZVZCS)全橋軟開關(guān)變換器為主拓撲的充電電源系統(tǒng),實現(xiàn)了較高功率因數(shù)與高效率的充電設(shè)備。文中首先總結(jié)了電動汽車充電電源的研究現(xiàn)狀和充電控制策略,進行了多種全橋軟開關(guān)拓撲比較,最終選擇采用副邊簡單輔助電路的ZVZCS變換器拓撲,該拓撲使用一個電容和兩個二極管構(gòu)成副邊輔助電路,無需有損元件和有源開關(guān)器件,輔助電路構(gòu)成簡單,控制方法簡單,能很好的實現(xiàn)主開關(guān)器件的ZVZCS,也能嵌位副邊整流電壓。以可靠性為大前提,對充電電源進行了參數(shù)設(shè)計。另外,本文針對輕載情況下,超前臂不能實現(xiàn)零電壓開通的問題,對變換器進行了改進,實現(xiàn)了全負載范圍的軟開關(guān)。實驗結(jié)果驗證了該拓撲應(yīng)用于電動汽車充電電源的可行性。

    標簽: 軟開關(guān) 全橋變換器 電動汽車充電

    上傳時間: 2013-07-13

    上傳用戶:wdq1111

  • 大功率鋰離子蓄電池充放電系統(tǒng)的研究.rar

    蓄電池作為一種儲能設(shè)備,廣泛應(yīng)用于國民經(jīng)濟的各個部門。近幾年來,電動汽車行業(yè)迅速發(fā)展,對于純電動汽車蓄電池是唯一的動力源,需要定期的滿充滿放的維護來提高電池性能,同時測量電池實際安時數(shù)。蓄電池的充放電技術(shù)與蓄電池相伴而生,與蓄電池的發(fā)展和應(yīng)用有著密切的關(guān)系。充放電系統(tǒng)性能直接影響著蓄電池的技術(shù)狀態(tài),使用壽命,并決定著放電時對電網(wǎng)污染的程度。 目前,大功率蓄電池充放電系統(tǒng)仍大量采用晶閘管移相控制技術(shù),該技術(shù)具有技術(shù)成熟,價格低廉的優(yōu)點,但網(wǎng)側(cè)功率因數(shù)低,對電網(wǎng)的污染大。而消除電網(wǎng)諧波污染、提高功率因數(shù)是電力電子領(lǐng)域研究的重大課題之一。本文為大功率鋰離子蓄電池充放電設(shè)計的系統(tǒng)采用電壓型PWM整流器和雙向DC/DC變換器的結(jié)構(gòu),在實現(xiàn)能量雙向流動的同時,實現(xiàn)網(wǎng)側(cè)電流波形的正弦化控制,具有節(jié)能,對電網(wǎng)污染小等優(yōu)點。 本文設(shè)計了主電路參數(shù)并在MATLAB/Simulink環(huán)境下進行了仿真。本文還提出了以MC9S12D64為核心的雙向DC/DC變換器控制板和控制器的硬件、軟件的完整的設(shè)計方案。充電采用恒流充電和恒壓充電相結(jié)合的控制策略,實現(xiàn)單體電池電壓控制,提高了充放電控制性能和安全性。充放電系統(tǒng)樣機測試結(jié)果表明:滿載時,系統(tǒng)效率80%以上,功率因數(shù)99%以上,諧波含量5%以下,滿足設(shè)計要求,驗證了系統(tǒng)設(shè)計的可行性。

    標簽: 大功率 充放電系統(tǒng) 鋰離子蓄電池

    上傳時間: 2013-06-27

    上傳用戶:啊颯颯大師的

  • 3kW光伏并網(wǎng)逆變器最大功率點跟蹤控制的研究.rar

    光伏發(fā)電是集開發(fā)可再生能源、改善生態(tài)環(huán)境于一體的重大課題,有巨大的經(jīng)濟、社會效益和學(xué)術(shù)研究價值。 本文首先介紹了3kW光伏并網(wǎng)逆變器系統(tǒng)的組成和結(jié)構(gòu)。3kW光伏并網(wǎng)逆變器采用兩級式結(jié)構(gòu),主電路由前級Boost變換器和后級的單相逆變橋組成。控制部分以DSP(DSP56F803)為核心,實現(xiàn)了光伏陣列最大功率點的跟蹤控制,以及產(chǎn)生與電網(wǎng)壓同頻同相的正弦電流,實現(xiàn)并網(wǎng)的功能。本文重點對逆變器系統(tǒng)的最大功率點跟蹤(MPPT)控制進行研究。 針對基于外特性建立的光伏陣列模型雖然簡單、參數(shù)易解,但精度低的問題,本文建立了基于物理特性的光伏陣列模型,并考慮光照強度、環(huán)境溫度對光伏陣列的影響,模型參數(shù)與實際參數(shù)嚴格對應(yīng)。將幾種最大功率點跟蹤算法應(yīng)用于所建立的光伏陣列模型使用MATLAB進行仿真,分析仿真結(jié)果,比較各種算法的優(yōu)缺點,總結(jié)出每種算法所適用的環(huán)境,并給出了最大功率點跟蹤控制在并網(wǎng)逆變器系統(tǒng)的實現(xiàn)策略。 設(shè)計了適用于額定功率為100W的光伏陣列最大功率點跟蹤的Boost電路,分別給出了利用PIC單片機16F873實現(xiàn)擾動觀察法和增量電導(dǎo)法的程序流程圖,實現(xiàn)了這兩種算法控制下光伏陣列的最大功率點跟蹤,并分析了兩種算法的跟蹤性能。

    標簽: 3kW 光伏并網(wǎng) 逆變器

    上傳時間: 2013-04-24

    上傳用戶:fudong911

  • 5kW光伏并網(wǎng)逆變器的研究.rar

    太陽能資源具有可持續(xù)發(fā)展和綠色能源兩大優(yōu)勢,太陽能發(fā)電作為一種太陽能資源的利用方式正逐漸受到各國重視,其中,光伏并網(wǎng)發(fā)電系統(tǒng)最具理論意義和實用價值。并網(wǎng)逆變器是光伏并網(wǎng)發(fā)電系統(tǒng)的關(guān)鍵環(huán)節(jié),其硬件研制和控制算法研究是光伏并網(wǎng)領(lǐng)域的熱點課題。本論文在充分研究近年來光伏發(fā)電領(lǐng)域重要研究成果的基礎(chǔ)上,設(shè)計了一個5kW的三相光伏并網(wǎng)逆變器,并在硬件設(shè)計、控制算法研究和仿真方面進行了深入探討。 該三相光伏并網(wǎng)逆變器由前級的DC-DC直流變換電路和后級的DC-AC三相并網(wǎng)逆變電路組成。其中,DC-DC電路采用多支路并聯(lián)結(jié)構(gòu),各支路均采用獨立的最大功率點跟蹤控制,解決了各支路間功率不匹配問題,可應(yīng)用于光伏與建筑一體化系統(tǒng)中;DC-AC電路采用三相PWM整流器電路結(jié)構(gòu)和空間電壓矢量控制方法,提高了直流電壓利用率,減小了注入電網(wǎng)的諧波。本文在分析三相光伏并網(wǎng)逆變器電路工作原理和控制算法的基礎(chǔ)上,采用計算機仿真驗證了控制算法的可行性,并討論了在不同電壓范圍內(nèi),三相光伏并網(wǎng)逆變器的工作特點及相應(yīng)控制算法。 本文從檢測與保護電路設(shè)計,電源電路設(shè)計,主電路參數(shù)選擇等方面討論了該逆變器的硬件設(shè)計方法,并進行仿真、調(diào)試,驗證了模擬電路設(shè)計的正確性,為類似結(jié)構(gòu)的光伏并網(wǎng)逆變器提供了硬件設(shè)計參考。

    標簽: 5kW 光伏并網(wǎng) 逆變器

    上傳時間: 2013-05-18

    上傳用戶:william345

  • 牽引逆變器分段同步調(diào)制算法及切換沖擊抑制的研究.rar

    現(xiàn)如今,逆變器的脈沖寬度調(diào)制(PWM)技術(shù)作為一種最常見的調(diào)制方式在交流傳動系統(tǒng)中廣泛應(yīng)用。采用PWM調(diào)制技術(shù)的最終目的在于追求逆變器輸出電壓、電流波形更接近正弦從而進一步控制負載電機的磁通正弦化。為了達到這些目的,很多種基于PWM原理的調(diào)制方法被相繼提出并應(yīng)用。 在鐵道牽引調(diào)速系統(tǒng)中,逆變裝置具有調(diào)速范圍寬,輸出頻率變化快等特點,而逆變器本身器件的開關(guān)頻率又不是很高。這種情況下,分段同步調(diào)制模式的使用有效地改善了變頻器的輸出,達到了減少諧波的目的。本文圍繞分段同步調(diào)制在交流牽引傳動系統(tǒng)中的應(yīng)用進行研究,主要目的在于解決該調(diào)制模式應(yīng)用中存在的切換點選擇、切換震蕩沖擊等問題。文章詳細討論了分段調(diào)制模式下載波比和載波比切換點選取的原則,重點分析了分段同步調(diào)制模式下載波比切換點沖擊電壓的產(chǎn)生原因和危害,提出了改善電壓電流沖擊的方法,并在搭建的實驗平臺上驗證了理論分析的正確性。此外,本文還對列車高速時載波比極低的極限情況下分段同步調(diào)制對變頻器輸出交流電壓和直流回流電流諧波的改善情況進行了理論推導(dǎo)和仿真分析。 論文搭建了用于調(diào)制實驗的3.7kW小功率電機實驗平臺,在開環(huán)的VVVF調(diào)速系統(tǒng)中進行了分段同步調(diào)制載波比切換實驗;在Matlab/Simulink環(huán)境下搭建了分段同步調(diào)制模式下的電機牽引模型,進行了分段同步調(diào)制載波比切換仿真;實驗和仿真結(jié)果表明,文章所提出的方法很好地完成了分段同步算法且有效抑制了可能發(fā)生的沖擊,所得結(jié)果驗證了理論分析的正確性。

    標簽: 牽引逆變器 分段 調(diào)制

    上傳時間: 2013-08-04

    上傳用戶:hphh

  • 基于DSP的三相異步電動機軟起動器的研究.rar

    三相異步電動機結(jié)構(gòu)簡單、價格便宜以及維修方便等優(yōu)點,被廣泛應(yīng)用于工農(nóng)業(yè)生產(chǎn)和日常生活等領(lǐng)域。隨著各行各業(yè)中生產(chǎn)機械的不斷更新和發(fā)展,其中對電動機的起動性能要求越來越高。傳統(tǒng)的電機起動方式其局限性,不能有效減少起動時對電網(wǎng)的大電流沖擊,已越來越不能適應(yīng)現(xiàn)代生產(chǎn)發(fā)展的要求。針對上述問題,本文提出了一種以TMS320LF2407 DSP為核心的高性能數(shù)字式電機軟起動器。相比于傳統(tǒng)的起動器,它能顯著的改善電機的起動性能。 由于軟起動器所具有的優(yōu)點及其它控制設(shè)備無法比擬的性價比,使得軟起動器的應(yīng)用前景十分廣闊。加上現(xiàn)在國內(nèi)電力供應(yīng)緊張,軟起動器在節(jié)能方面有突出的表現(xiàn)。因此軟起動器擁有十分廣闊的市場。但是在國內(nèi)軟起動器市場,以國外產(chǎn)品居多。國外產(chǎn)品質(zhì)量高,但是價格昂貴,性價比不高,在國內(nèi)徹底普及有困難。針對該現(xiàn)狀,本文設(shè)計出一種以DSP-TMS320LF2407為核心低價格,高性能的異步電動機軟起動器。 本軟起動器采用品閘管調(diào)壓方式,采用模塊化設(shè)計思想,通過改變晶閘管的觸發(fā)角來實現(xiàn)對定子兩端的電壓的調(diào)節(jié)。從而實現(xiàn)了異步電動機電壓斜坡起動、限流起動、軟停車等功能。 本文利用MATLAB搭建了軟起動器系統(tǒng)的仿真模型,對軟起動的控制方式進行了仿真研究。仿真結(jié)果表明該軟起動器系統(tǒng)可以有效地減小異步電動機起動時對電網(wǎng)的沖擊。本文同時也闡述了晶閘管調(diào)壓電路及軟起動器主電路的工作原理、軟起動器的硬件結(jié)構(gòu)和功能以及軟件設(shè)計。該軟起動器操作方便簡單,智能化程度高,能夠及時跟隨電機負載的變化,使電機順利起動。經(jīng)過實驗調(diào)試,基本上達到了改善鼠籠式異步電動機起動性能的要求,在保障降低異步電動機起動電流的前提下,使電機能夠平穩(wěn)可靠起動。

    標簽: DSP 三相異步電動機 軟起動器

    上傳時間: 2013-04-24

    上傳用戶:lht618

  • MSP430定時器的使用.rar

    MSP430定時器的使用,有詳細的例子程序和講解,是新手學(xué)習(xí)的好資料哦

    標簽: MSP 430 定時器

    上傳時間: 2013-07-08

    上傳用戶:西伯利亞狼

  • 單級功率因數(shù)校正ACDC變換器的研究.rar

    在低功率應(yīng)用領(lǐng)域中,為了降低成本,單級功率因數(shù)校正(PFC)技術(shù)越來越受到人們的關(guān)注。單級PFC技術(shù)是把PFC變換器和DC/DC變換器結(jié)合在一起,共用一個開關(guān)管和一套控制電路,同時提高功率因數(shù)和對輸出電壓進行快速調(diào)節(jié)。本文針對單級PFC技術(shù)進行了較詳細的分析。首先研究了基本Boost型單級PFC變換器,詳細分析了其工作原理和特性,指出在現(xiàn)有的單級PFC變換器中,必須解決兩個問題,即如何提高變換器的效率和控制中間儲能電容電壓在450V以下。同時分析了Boost型單級PFC變換器的三端和兩端拓撲結(jié)構(gòu),并討論了兩者之間的聯(lián)系。接著引用了直接功率傳遞原理(DPT),研究了一種新型的可實現(xiàn)直接功率傳遞的單級PFC變換器。詳細分析了該變換器的工作原理和特性。該變換器在引入直接功率傳遞原理的基礎(chǔ)上,相對于一般單級PFC變換器來說,具有更高的效率和良好的功率因數(shù)校正效果。同時可以將單級PFC變換器中間儲能電容電壓的值限制在450V以下。最后,本文用仿真分析驗證了理論的正確性,證明了這種新型的單級PFC變換器比一般的單級PFC變換器性能更優(yōu)越。

    標簽: ACDC 單級功率 因數(shù)校正

    上傳時間: 2013-05-19

    上傳用戶:shenglei_353

  • 軟開關(guān)PWM雙向DCDC變換器的研究.rar

    隨著電力電子技術(shù)的迅速發(fā)展,雙向DC/DC變換器的應(yīng)用日益廣泛。尤其是軟開關(guān)技術(shù)的出現(xiàn),使雙向DC/DC變換器不斷朝著高效化、小型化、高頻化和高性能化的方向發(fā)展,軟開關(guān)技術(shù)的應(yīng)用可以降低雙向DC/DC變換器的開關(guān)損耗,提高變換器的工作效率,為變換器的高頻化提供可能性,從而減小變換器的體積,提高變換器的動態(tài)性能。雙向DC/DC變換器在直流不停電電源系統(tǒng)、航空電源系統(tǒng)、電動汽車等車載電源系統(tǒng)、直流功率放大器以及蓄電池儲能等場合都得到了廣泛的應(yīng)用。 本論文首先在研究硬開關(guān)的缺陷上,提出軟開關(guān)技術(shù);然后在研究雙向DC/DC變換器的基本工作原理的基礎(chǔ)上,對雙向DC/DC變換器的應(yīng)用及軟開關(guān)雙向DC/DC變換器的幾種拓撲結(jié)構(gòu)進一步闡述;把軟開關(guān)技術(shù)和雙向DC/DC變換器技術(shù)有機地結(jié)合在一起,提出一種新型的雙向DC/DC變換器的拓撲結(jié)構(gòu)。該雙向DC/DC變換器的降壓變換電路采用移相控制ZVSPWMDC/DC變換器;升壓變換電路采用Boost升壓和推挽式升壓兩種變換器相結(jié)合的兩級升壓的新型變換器。 在分別對移相控制ZVSPWMDC/DC變換器和Boost推挽式DC/DC變換器的工作原理進行分析研究的基礎(chǔ)上,使用PSpice9.2計算機仿真軟件對變換器的主電路進行仿真和分析,驗證該新型雙向DC/DC變換器的拓撲結(jié)構(gòu)設(shè)計的正確性和可行性。

    標簽: DCDC PWM 軟開關(guān)

    上傳時間: 2013-04-24

    上傳用戶:2525775

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲精品免费看| 免费成人av资源网| 国产精品久久网站| 老司机午夜精品视频在线观看| 亚洲最快最全在线视频| 亚洲国产裸拍裸体视频在线观看乱了| 国产欧美va欧美va香蕉在| 欧美日韩四区| 欧美日韩一区二区三区免费| 欧美激情视频一区二区三区免费| 鲁大师成人一区二区三区| 久久久国产精品一区二区三区| 欧美一区日本一区韩国一区| 亚洲欧美日韩精品综合在线观看| 亚洲综合丁香| 亚洲欧美999| 欧美一区二区三区在线视频 | 最新中文字幕亚洲| 亚洲欧美日韩精品久久奇米色影视| 在线成人h网| 激情综合色丁香一区二区| 韩国欧美国产1区| 伊人伊人伊人久久| 亚洲人成在线观看网站高清| 亚洲日本成人在线观看| 日韩亚洲视频在线| 夜夜嗨av一区二区三区| 亚洲午夜电影在线观看| 性视频1819p久久| 久久久最新网址| 免费观看亚洲视频大全| 欧美日本不卡| 国产精品亚洲人在线观看| 国产一区二区三区在线观看免费视频| 韩日欧美一区| 亚洲美女在线国产| 亚洲欧美日韩人成在线播放| 久久久国产精品一区二区三区| 欧美大片91| 国产精品欧美日韩一区二区| 韩国女主播一区二区三区| 亚洲欧洲精品一区二区| 亚洲已满18点击进入久久| 欧美日本三级| 欧美乱妇高清无乱码| 亚洲深夜av| 激情久久久久| 久久综合给合| 亚洲国产精品久久久久| 欧美激情网友自拍| 国产精品久久久对白| 欧美在线视频二区| 在线看片成人| 国产精品女同互慰在线看| 欧美大片91| 国产精品免费区二区三区观看| 久久久久久久综合| 国产精品久久久久7777婷婷| 亚洲高清一区二区三区| 中日韩美女免费视频网址在线观看 | 亚洲精品美女在线| 一本大道久久a久久精二百| 久久亚洲春色中文字幕| **网站欧美大片在线观看| 欧美日本在线播放| 午夜精品一区二区在线观看| 久久精品欧美日韩| 欧美日韩在线影院| 韩国精品在线观看| 亚洲图片在线观看| 免费在线欧美黄色| 欧美视频在线免费| 亚洲国产一区在线| 欧美影院精品一区| 欧美色图五月天| 日韩小视频在线观看| 老牛嫩草一区二区三区日本| 国产日韩欧美精品| 亚洲综合清纯丝袜自拍| 欧美久久成人| 在线不卡中文字幕播放| 欧美一区三区三区高中清蜜桃| 欧美日韩综合一区| 亚洲精品美女在线| 免费观看日韩av| 亚洲国产成人在线| 久久青草久久| 国产日韩欧美二区| 性伦欧美刺激片在线观看| 欧美日韩亚洲综合在线| 亚洲国产裸拍裸体视频在线观看乱了中文 | 亚洲区一区二| 欧美一区二区三区免费视频| 国产精品永久免费观看| 亚洲一区二区三区免费观看| 欧美黄色小视频| 日韩一级免费观看| 老牛嫩草一区二区三区日本| 精品av久久久久电影| 午夜综合激情| 国产欧美激情| 久久久综合精品| 尤物九九久久国产精品的分类| 久久久www成人免费精品| 国产亚洲综合性久久久影院| 久久久亚洲国产天美传媒修理工| 在线观看91精品国产入口| 男男成人高潮片免费网站| 亚洲福利在线视频| 欧美激情中文字幕一区二区| 亚洲天堂激情| 狠狠色综合色区| 欧美激情影院| 亚洲欧美在线观看| 国产综合一区二区| 国产一二三精品| 噜噜噜噜噜久久久久久91| 日韩视频在线你懂得| 国产精品蜜臀在线观看| 久久精品视频播放| 亚洲伦伦在线| 国产一区二区在线免费观看| 免费欧美电影| 亚洲一区三区视频在线观看| 国产亚洲一区在线| 欧美理论在线播放| 香蕉久久a毛片| 亚洲高清在线观看| 国产精品日韩一区| 榴莲视频成人在线观看| 一区二区久久| 国产一区二区三区免费在线观看| 麻豆九一精品爱看视频在线观看免费| 亚洲精选国产| 狠久久av成人天堂| 国产精品久久久久9999吃药| 玖玖玖国产精品| 亚洲午夜精品久久| 91久久精品日日躁夜夜躁国产| 国产欧美在线视频| 欧美日韩在线播| 久热精品视频在线观看一区| 亚洲在线免费观看| 亚洲日本中文字幕免费在线不卡| 国产精品一区二区黑丝| 欧美日本免费一区二区三区| 欧美在线视频观看| 亚洲一区二区三区四区视频| 在线日韩中文| 国产在线精品一区二区夜色| 国产精品成人aaaaa网站| 欧美电影在线观看| 久久久人成影片一区二区三区| 亚洲在线免费| 在线亚洲一区观看| 亚洲精品一区二区三| 韩国精品久久久999| 国产精品永久| 国产精品午夜春色av| 欧美日韩亚洲网| 欧美国产日韩一区| 欧美成人黑人xx视频免费观看| 亚洲男人av电影| 一本色道久久加勒比88综合| 亚洲精品国产品国语在线app| 在线成人亚洲| 在线观看视频一区二区| 国内精品美女在线观看| 国产一区二区三区在线观看视频| 国产精品尤物福利片在线观看| 国产精品mm| 国产精品久久夜| 国产精品美女久久久免费| 欧美午夜精彩| 欧美性淫爽ww久久久久无| 欧美日韩福利视频| 裸体女人亚洲精品一区| 先锋影音国产精品| 亚洲综合国产| 一区二区三区日韩精品| 日韩视频在线一区二区| 99精品免费网| 亚洲一区二区不卡免费| 亚洲男女自偷自拍| 欧美一区视频| 久久久成人网| 久久只精品国产| 你懂的视频一区二区| 欧美岛国激情| 欧美激情影院| 国产精品国产三级国产普通话99 | 一区二区三区亚洲| 激情成人中文字幕| 亚洲第一精品福利| 91久久精品一区| 中文在线资源观看网站视频免费不卡 | 欧美日韩亚洲在线| 国产精品久久久久77777| 国产精品中文在线| 国产综合自拍|