本文提出了一種基于Atmega128 單片機的某種專用泥漿壓力脈沖信號仿真器,該仿真器用于石油鉆井無線隨鉆測量儀器的研制開發和維修過程中。本信號仿真器的核心是ATmega128 單片機,通過單片機的軟件來模擬各種不同類型的信號和噪聲,并且能將這些信號和噪聲混合后,通過特殊的硬件電路以4-20 毫安電流環的標準工業傳感器形式輸出。這種仿真器使用簡單方便,能夠逼真的模擬實際工程現場的壓力信號,穩定性好,性能先進。
上傳時間: 2013-10-20
上傳用戶:ljt101007
無論是功能,還是性能,德州儀器(TI)的MSC1210單片機都達到了混合信號處理的顛峰,它集成了一個增強型8051內核,有8路24位低功耗(4roW)A. A/D轉換器;21個中斷源;16位PWM;全雙工UART(并兼容有SPI功能);停止方式電流小于1 A;比標準8051內核執行速度快3倍且全兼容;片內集成32K字節FLASH,而且FLASH可定義為程序分區與數據存儲分區,給設計帶來非常大的靈活性;片內SRAM也多達1.2K字節;采用TQFP64小型封裝。由于具有如此高的模擬和數字集成度,對各種要求小體積、高集成度和精確測量而言,MCS1210實為理想的整合選擇。表1列出MSC1210的主要特性。
上傳時間: 2013-10-11
上傳用戶:yangzhiwei
8051系列單片機應用系統的PROTEUS仿真設計:介紹PROTEUS軟件的基礎上,以電扶梯單片機控制系統為實例來介紹如何采用PROTEUS軟件進行8051單片機應用系統仿真設計。關鍵詞:8051單片機 應用系統 PROTEUS軟件 keil c軟件 綁定 仿真單片機在電子產品中的應用已經越來越廣泛,由于市場競爭日趨激烈,要求新產品的開發周期越來越短。因此應運而生了單片機仿真技術。PROTEUS軟件是英國Labcenter electronics公司研發的EDA工具軟件。它是一個集模擬電路、數字電路、模/數混合電路以及多種微控制器系統為一體的系統設計和仿真平臺。是目前同類軟件中最先進、最完整的電子類仿真平臺之一。它真正實現了在計算機上完成從原理圖、電路分析與仿真、單片機代碼調試與仿真、系統測試與功能驗證到PCB板生成的完整的電子產品研發過程。1. PROTEUS軟件簡介PROTEUS從1989年問世至今,經過了近20年的使用、完善,功能越來越強、性能越來越好。運行PROTEUS軟件,計算機系統需具有:200MHz或更高的奔騰處理器,Win98/Me/2000/XP或更高版本的操作系統,64MB或以上的可用硬盤空間,64MB或以上的RAM空間,用PROTEUS VSM仿真時,則要求300MHz以上的奔騰處理器,如果專門使用PROTEUS VSM作實時仿真較大或較復雜的電路系統,則建議采用更高配置的計算機系統,以便獲得更好的仿真效果[1]。已經安裝了Proteus ISIS7軟件的桌面上就會有圖標 。雙擊該圖標,出現工作界面如圖1所示。界面中包括:標題欄、下拉主菜單、快捷按鈕欄、標準工具欄、繪圖工具箱、狀態欄、選擇元器件按鈕、預覽對象方位控制按鈕、仿真操作按鈕、預覽窗口、電路原理圖編輯窗口等。
上傳時間: 2013-11-05
上傳用戶:003030
Fuion時間上首個模數混合的FPGA,在PROASIC3的集成上加入FLSHMEMROY,ADC,RTC,以及RC振蕩器等,使用SOC成為了可能。
上傳時間: 2013-10-13
上傳用戶:2218870695
MSP430系列超低功耗16位單片機原理與應用TI公司的MSP430系列微控制器是一個近期推出的單片機品種。它在超低功耗和功能集成上都有一定的特色,尤其適合應用在自動信號采集系統、液晶顯示智能化儀器、電池供電便攜式裝置、超長時間連續工作設備等領域。《MSP430系列超低功耗16位單片機原理與應用》對這一系列產品的原理、結構及內部各功能模塊作了詳細的說明,并以方便工程師及程序員使用的方式提供軟件和硬件資料。由于MSP430系列的各個不同型號基本上是這些功能模塊的不同組合,因此,掌握《MSP430系列超低功耗16位單片機原理與應用》的內容對于MSP430系列的原理理解和應用開發都有較大的幫助。《MSP430系列超低功耗16位單片機原理與應用》的內容主要根據TI公司的《MSP430 Family Architecture Guide and Module Library》一書及其他相關技術資料編寫?! 禡SP430系列超低功耗16位單片機原理與應用》供高等院校自動化、計算機、電子等專業的教學參考及工程技術人員的實用參考,亦可做為應用技術的培訓教材。MSP430系列超低功耗16位單片機原理與應用 目錄 第1章 MSP430系列1.1 特性與功能1.2 系統關鍵特性1.3 MSP430系列的各種型號??第2章 結構概述2.1 CPU2.2 代碼存儲器?2.3 數據存儲器2.4 運行控制?2.5 外圍模塊2.6 振蕩器、倍頻器和時鐘發生器??第3章 系統復位、中斷和工作模式?3.1 系統復位和初始化3.2 中斷系統結構3.3 中斷處理3.3.1 SFR中的中斷控制位3.3.2 外部中斷3.4 工作模式3.5 低功耗模式3.5.1 低功耗模式0和模式13.5.2 低功耗模式2和模式33.5.3 低功耗模式43.6 低功耗應用要點??第4章 存儲器組織4.1 存儲器中的數據4.2 片內ROM組織4.2.1 ROM表的處理4.2.2 計算分支跳轉和子程序調用4.3 RAM與外圍模塊組織4.3.1 RAM4.3.2 外圍模塊--地址定位4.3.3 外圍模塊--SFR??第5章 16位CPU?5.1 CPU寄存器5.1.1 程序計數器PC5.1.2 系統堆棧指針SP5.1.3 狀態寄存器SR5.1.4 常數發生寄存器CG1和CG2?5.2 尋址模式5.2.1 寄存器模式5.2.2 變址模式5.2.3 符號模式5.2.4 絕對模式5.2.5 間接模式5.2.6 間接增量模式5.2.7 立即模式5.2.8 指令的時鐘周期與長度5.3 指令集概述5.3.1 雙操作數指令5.3.2 單操作數指令5.3.3 條件跳轉5.3.4 模擬指令的簡短格式5.3.5 其他指令5.4 指令分布??第6章 硬件乘法器?6.1 硬件乘法器的操作6.2 硬件乘法器的寄存器6.3 硬件乘法器的SFR位6.4 硬件乘法器的軟件限制6.4.1 硬件乘法器的軟件限制--尋址模式6.4.2 硬件乘法器的軟件限制--中斷程序??第7章 振蕩器與系統時鐘發生器?7.1 晶體振蕩器7.2 處理機時鐘發生器7.3 系統時鐘工作模式7.4 系統時鐘控制寄存器7.4.1 模塊寄存器7.4.2 與系統時鐘發生器相關的SFR位7.5 DCO典型特性??第8章 數字I/O配置?8.1 通用端口P08.1.1 P0的控制寄存器8.1.2 P0的原理圖8.1.3 P0的中斷控制功能8.2 通用端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理圖8.2.3 P1、P2的中斷控制功能8.3 通用端口P3、P48.3.1 P3、P4的控制寄存器8.3.2 P3、P4的原理圖8.4 LCD端口8.5 LCD端口--定時器/端口比較器??第9章 通用定時器/端口模塊?9.1 定時器/端口模塊操作9.1.1 定時器/端口計數器TPCNT1--8位操作9.1.2 定時器/端口計數器TPCNT2--8位操作9.1.3 定時器/端口計數器--16位操作9.2 定時器/端口寄存器9.3 定時器/端口SFR位9.4 定時器/端口在A/D中的應用9.4.1 R/D轉換原理9.4.2 分辨率高于8位的轉換??第10章 定時器?10.1 Basic Timer110.1.1 Basic Timer1寄存器10.1.2 SFR位10.1.3 Basic Timer1的操作10.1.4 Basic Timer1的操作--LCD時鐘信號fLCD?10.2 8位間隔定時器/計數器10.2.1 8位定時器/計數器的操作10.2.2 8位定時器/計數器的寄存器10.2.3 與8位定時器/計數器有關的SFR位10.2.4 8位定時器/計數器在UART中的應用10.3 看門狗定時器11.1.3 比較模式11.1.4 輸出單元11.2 TimerA的寄存器11.2.1 TimerA控制寄存器TACTL11.2.2 捕獲/比較控制寄存器CCTL11.2.3 TimerA中斷向量寄存器11.3 TimerA的應用11.3.1 TimerA增計數模式應用11.3.2 TimerA連續模式應用11.3.3 TimerA增/減計數模式應用11.3.4 TimerA軟件捕獲應用11.3.5 TimerA處理異步串行通信協議11.4 TimerA的特殊情況11.4.1 CCR0用做周期寄存器11.4.2 定時器寄存器的啟/停11.4.3 輸出單元Unit0??第12章 USART外圍接口--UART模式?12.1 異步操作12.1.1 異步幀格式12.1.2 異步通信的波特率發生器12.1.3 異步通信格式12.1.4 線路空閑多處理機模式12.1.5 地址位格式12.2 中斷與控制功能12.2.1 USART接收允許12.2.2 USART發送允許12.2.3 USART接收中斷操作12.2.4 USART發送中斷操作12.3 控制與狀態寄存器12.3.1 USART控制寄存器UCTL12.3.2 發送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率選擇和調制控制寄存器12.3.5 USART接收數據緩存URXBUF12.3.6 USART發送數據緩存UTXBUF12.4 UART模式--低功耗模式應用特性12.4.1 由UART幀啟動接收操作12.4.2 時鐘頻率的充分利用與UART模式的波特率12.4.3 節約MSP430資源的多處理機模式12.5 波特率的計算??第13章 USART外圍接口--SPI模式?13.1 USART的同步操作13.1.1 SPI模式中的主模式--MM=1、SYNC=113.1.2 SPI模式中的從模式--MM=0、SYNC=113.2 中斷與控制功能13.2.1 USART接收允許13.2.2 USART發送允許13.2.3 USART接收中斷操作13.2.4 USART發送中斷操作13.3 控制與狀態寄存器13.3.1 USART控制寄存器13.3.2 發送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率選擇和調制控制寄存器13.3.5 USART接收數據緩存URXBUF13.3.6 USART發送數據緩存UTXBUF??第14章 液晶顯示驅動?14.1 LCD驅動基本原理14.2 LCD控制器/驅動器14.2.1 LCD控制器/驅動器功能14.2.2 LCD控制與模式寄存器14.2.3 LCD顯示內存14.2.4 LCD操作軟件例程14.3 LCD端口功能14.4 LCD與端口模式混合應用實例??第15章 A/D轉換器?15.1 概述15.2 A/D轉換操作15.2.1 A/D轉換15.2.2 A/D中斷15.2.3 A/D量程15.2.4 A/D電流源15.2.5 A/D輸入端與多路切換15.2.6 A/D接地與降噪15.2.7 A/D輸入與輸出引腳15.3 A/D控制寄存器??第16章 其他模塊16.1 晶體振蕩器16.2 上電電路16.3 晶振緩沖輸出??附錄A 外圍模塊地址分配?附錄B 指令集描述?B1 指令匯總B2 指令格式B3 不增加ROM開銷的指令模擬B4 指令說明B5 用幾條指令模擬的宏指令??附錄C EPROM編程?C1 EPROM操作C2 快速編程算法C3 通過串行數據鏈路應用\"JTAG\"特性的EPROM模塊編程C4 通過微控制器軟件實現對EPROM模塊編程??附錄D MSP430系列單片機參數表?附錄E MSP430系列單片機產品編碼?附錄F MSP430系列單片機封裝形式?
上傳時間: 2014-05-07
上傳用戶:lwq11
MSP430F413實現的智能遙控器設計:MSP430F413 單片機是TI 公司最近推出的超低功耗混合信號16 位單片機系列中的一種。它采用16 位精簡指令系統,125ns 指令周期,大部分的指令在一個指令周期內完成,16 位寄存器和常數發生器,發揮了最高的代碼效率,而且片內含有硬件乘法器,大大節省運算的時間。該芯片采用低功耗設計,具有五種低功耗模式,供電電壓范圍為1.8~3.6V,在工作模式下:2.2 伏工作電壓1MHz 工作頻率時電流為225uA;在待機模式電流為0.7uA;掉電模式(RAM 數據保持不變)電流為0.1uA。所以特別適用長期使用電池工作的場合。它采用數字控制振蕩器(DCO),使得從低功耗模式到喚醒模式的轉換時間小于6us。該芯片具有8KB+256B Flash Memory,256B RAM,采用串行在線編程方式,為用戶編譯程序和控制參數提供靈活的空間,內部的安全保密熔絲可使程序不必非法復制。此外,MSP430F413 具有強大的中斷功能,48 個通用I/O 引腳,96 段LCD 驅動器,一個16 位定時器,這樣提高了對外圍設備的開發能力。
上傳時間: 2013-11-08
上傳用戶:bruce5996
用單片機制作多功能莫爾斯碼電路:用單片機制作多功能莫爾斯碼電路莫爾斯電碼通信有著悠久的歷史,盡管它已被現代通信方式所取代,但在業余無線電通信和特殊的專業場合仍具有重要的地位,這是因為等幅電碼通信的抗干擾能力是其它任何一種通信方式都無法相比的。在短波波段用幾瓦的功率即可進行國際間的通信,收發射設備簡單易制成本低廉,所以深受業余無線電愛好者的喜愛,是業余無線電高手必備的技能。要想熟練掌握莫爾斯電碼的收發技術除了持之以恒的毅力外,還需要相關的設備。設計本電路的目的就是給愛好者提供一個實用和訓練的工具。 一、功能簡介 本電路可以配合自動鍵體和手動鍵體,產生莫爾斯碼控制信號,設有16種速度,從初學者到操作高手都能適用。監聽音調也有16種,均可以通過功能鍵進行選擇??梢园闯绦蛑性O定好的呼號自動呼叫,設有聽抄練習功能,聽抄練習有短碼和混合碼兩種模式,分別對10個數字和常用的38個混合碼模擬隨機取樣,產生分組報碼,供愛好者提高抄收水平之用,速度低4檔的聽抄練習是專為初學者所設,內容是時間間隔較長的單字符。設有PTT開關鍵,可以決定是否控制發射機工作,不需要反復通斷控制線。無論當前處于呼叫狀態還是聽抄狀態只要電鍵接點接通則自動轉到人工發報程序。4分鐘內不使用電路將自動關閉電源,只有按復位鍵才能重新開始工作。先按住聽抄練習鍵復位則進入短碼練習狀態,其它功能不變。從開機到自動關機執行每個功能都有不同的莫爾斯碼提示音。本電路具有較強的抗高低頻干擾的能力和使用方便的大電流開關接口,以適應不同的發射設備。 二、硬件電路原理硬件電路如圖1所示。設計電路的目的在于方便實用,以免在緊張的操作中失誤,所以除了聽抄練習鍵外其它鍵沒有定義復用功能。各鍵的作用在圖中已經標出。PTT控制在每次復位時處于關閉狀態,每按動一次PTT功能鍵則改變一次狀態,這樣可以使用軟件開關控制發射。 PTT處于控制狀態時發光二極管隨控制信號閃亮??紤]到自制設備及淘汰軍用設備與高檔設備控制電流的不同,PTT開關管采用了2SC2073,可以承受500mA的電流,同時還增加了無極性PTT開關電路,無論外部被控制的端口直流極性如何加到VT3的極性始終不變,供有興趣的愛好者實驗。應該注意,如果被控制的負載是感性,則電感兩端必須并聯續流二極管,除自制設備外成品機在這方面一般沒有什么問題。手動鍵只有一個接點,接通后產生連續的音頻和發射控制信號。在本電路中手動鍵的輸入端是P1.5 ,程序不斷檢測P1.5電平,當按鍵按下時P1.5電平為0,程序轉入手動鍵子程序。 自動鍵的接點分別接到P1.3和P1.4 ,同樣當程序檢測到有接點閉合時便自動產生“點”或“劃”。音頻信號從P輸出,經VT1放大后推動揚聲器發音。單片機的I/O口在輸入狀態下阻抗較高,容易受到高低頻信號干擾,所以在每個輸入端口和三極管的be端并聯電阻和高頻旁路電容,確保在較長的電鍵連線和大功率發射時電路工作穩定。圖2是印刷電路版圖,尺寸為110mmX85mm,揚聲器用粘合劑直接粘接在電路版有銅箔的面。 三、軟件設計方法 “點”時間長度是莫爾斯電碼中的基本時間單位。按規定“劃”的時間長度不小于三個“點”,同字符中“點”與“劃”的間隔不小于一個“點”,字符之間不小于一個“劃”,詞與詞之間不應小于五個“點”。在本程序中用條件轉移指令來產生“點”時間長度。通過速度功能鍵功可以設置16種延時參數。用T0中斷產生監聽音頻信號,并將中斷設為優先級,保證在聽覺上純正悅耳。T1用于自動關機計時,如果不使用任何功能四分鐘后將向PCON 位寫1,單片機進入休眠狀態,此時耗電量僅有幾個微安。自動鍵的“點”或“劃”以及手動鍵的連續發音都是子程序的反復調用。P1.2對地短接時自動呼叫可設定為另一內容。為了便于熟悉匯編語言的讀者對發音內容進行修改,這里介紹發音字符的編碼方法。莫爾斯碼的信息與計算機中二進制恰好相同,我們可以用0表示“點”,用1表示“劃”。提示音、自動呼叫、聽抄內容等字符是預先按一定編碼方式存儲在程序中的常數。每個字符的莫爾斯碼一般是由1至6位“點”、“劃”組成,也就是發音次數最多6次。程序中每個字符占用1個字節,字符時間間隔不占用字節,但更長的延時或發音結束信息占用一個字節。我們用字節的低三位表示字節的性質,對于5次及5次以下發音的字符我們用存儲器的高5位存儲發音信息,發音順序由高位至低位,用低3位存儲發音次數,發音時將數據送入累加器A,先得到發音次數,然后使A左環移,對E0進行位尋址,判斷是發“點”還是“劃”,環移次數由發音次數決定。對于6次發音的字符不能完全按照上述編碼規則,否則會出現信息重疊,如果是6次發音且最后一次是“劃”我們把發音次數定義為111B,因為這時第6次位尋址得到的是1。如果第6次發音是“點”,那么這個字符的低三位定義為000B。字符間隔時間由程序自動產生,更長的時間隔或結束標志由字節低三位110B來定義,高半字節表示字符間隔的倍數,例如26H表示再加兩倍時間間隔。如果字節為06H則表示讀字符程序結束,返回主程序。更詳細的內容不再贅述,讀者可閱讀源程序。四、使用注意事項手動鍵的操作難度相對大一些,時間節拍全由人掌握,其特點是發出的電碼帶有“人情味”。自動鍵的“點”、“劃”靠電路產生,發音標準,容易操作,而且可以達到相當快的速度,長時間工作也不易疲勞。在干擾較大、信號微弱的條件下自動鍵碼的辨別程度好于手動鍵碼。初學者初次使用手動鍵練習發報要有老師指導,且不可我行我素,一旦養成不正確的手法則很難糾正。在電臺上時常聽到一些讓對方難以抄收的電碼,這可能會使對方反感而拒絕回答。使用自動鍵也應在一定的聽抄基礎上再去練習。在暫時找不老師的情況下可多練習聽力,這對于今后能夠發出標準正確的電碼非常有益。
上傳時間: 2013-10-31
上傳用戶:sdq_123
AVR單片機GCC程序設計:第一章 概述1.1 AVR 單片機GCC 開發概述1.2 一個簡單的例子1.3 用MAKEFILE 管理項目1.4 開發環境的配置1.5 實驗板CA-M8第二章 存儲器操作編程2.1 AVR 單片機存儲器組織結構2.2 I/O 寄存器操作2.3 SRAM 內變量的使用2.4 在程序中訪問FLASH 程序存儲器2.5 EEPROM 數據存儲器操作2.6 avr-gcc 段結構與再定位2.7 外部RAM 存儲器操作2.8 堆應用第三章 GCC C 編譯器的使用3.1 編譯基礎3.2 生成靜態連接庫第四章 AVR 功能模塊應用實驗4.1 中斷服務程序4.2 定時器/計數器應用4.3 看門狗應用4.4 UART 應用4.5 PWM 功能編程4.6 模擬比較器4.7 A/D 轉換模塊編程4.8 數碼管顯示程序設計4.9 鍵盤程序設計4.10 蜂鳴器控制第五章 使用C 語言標準I/O 流調試程序5.1 avr-libc 標準I/O 流描述5.2 利用標準I/0 流調試程序5.3 最小化的格式化的打印函數第六章 CA-M8 上實現AT89S52 編程器的實現6.1 編程原理6.2 LuckyProg2004 概述6.3 AT989S52 isp 功能簡介6.4 下位機程序設計第七章 硬件TWI 端口編程7.1 TWI 模塊概述7.2 主控模式操作實時時鐘DS13077.3 兩個Mega8 間的TWI 通信第八章 BootLoader 功能應用8.1 BootLoader 功能介紹8.2 avr-libc 對BootLoader 的支持8.3 BootLoader 應用實例8.4 基于LuckyProg2004 的BootLoader 程序第九章 匯編語言支持9.1 C 代碼中內聯匯編程序9.2 獨立的匯編語言支持9.3 C 與匯編混合編程第十章 C++語言支持附錄 1 avr-gcc 選項附錄 2 Intel HEX 文件格式描述
上傳時間: 2014-04-03
上傳用戶:ligi201200
家電制造業的競爭日益激烈,市場調整壓力越來越大,原始設備制造商們(OEM)為了面對這一挑戰,必須在滿足電磁兼容性的條件下,不斷降低產品的成本。由于強調成本控制,為防止由電源和信號線的瞬變所產生的電器故障而實施必要的瞬態免疫保護,對于家電設計者來說變得更具挑戰性。由于傳統的電源設計和電磁干擾(EMI)控制措施為節約成本讓路,家電設計者必須開發出新的技術來滿足不斷調整的電磁兼容(EMC)需求。本應用筆記探討了瞬態電氣干擾對嵌入式微控制器(MCU)的影響,并提供了切實可行的硬件和軟件設計技術,這些技術可以為電快速瞬變(EFT)、靜電放電(ESD)以及其它電源線或信號線的短時瞬變提供低成本的保護措施。雖然這種探討是主要針對家電制造商,但是也適用于消費電子、工業以及汽車電子方面的應用。
上傳時間: 2013-11-22
上傳用戶:csgcd001
數據處理與控制策略Data Processing & Control Strategy數字控制器的設計技術,數字濾波和數據處理,數控技術基礎,數字PID控制算法常規控制方案,先進控制方案,計算機控制系統的設計是指在給定系統性能指標的條件下,設計出控制器的控制規律和相應的數字控制算法 大多數計算機控制系統是由處理數字信號的過程控制計算機和連續的被控過程組成的數字信號與連續信號并存的“混合系統” 數字控制器的分析和設計方法數字控制器的連續化設計技術數字控制器的離散化設計技術
上傳時間: 2013-10-30
上傳用戶:yanming8525826